

Numerical Simulation (V4E2) Summer semester 2012 Prof. Dr. Alexey Chernov Claudio Bierig

## **Problem Sheet 1**

## 1. Fundamental Solution

The function

$$G(x) = \begin{cases} \frac{1}{2\pi} \log |x| & d = 2\\ \frac{1}{d(d-2)|B_1(0)|} |x|^{2-d} & d \ge 3 \end{cases}$$
(1)

is called the fundamental solution of the Laplace operator, where

$$B_{\delta}(x) = \{ x \in \mathbb{R}^d \mid |x| < \delta \}.$$
(2)

The convolution of two functions f, g is defined by

$$(f*g)(x) = \int_{\mathbb{R}^d} f(y)g(x-y)\,dy.$$
(3)

Let  $f \in C_c^2(\mathbb{R}^d)$ . Prove that u := G \* f solves  $\Delta u = f$  in  $\mathbb{R}^d$  for  $d \ge 2$ .

 $\begin{array}{l} \text{Hints}:\\ &-\Delta(G*f)=G*(\Delta f)\in C^0(\mathbb{R}^d)\\ &-\text{ Split the integral in }B_\varepsilon(0) \text{ and }\mathbb{R}^d\backslash B_\varepsilon(0). \text{ Let }\varepsilon\to 0 \text{ at the very end.}\\ &-f\in W^{2,\infty}(\mathbb{R}^d) \text{ and }f\in W^{1,\infty}(\mathbb{R}^d)\\ &-\Delta G(x)=0 \text{ for }|x|>\varepsilon\\ &-\varepsilon^{d-1}d|B_1(0)|=|\partial B_\varepsilon(0)| \end{array}$ 

## 2. Tensor products of seperable Hilbert spaces

Let  $H_1$ ,  $H_2$  be two separable Hilbert spaces. For  $\varphi_1 \in H_1$ ,  $\varphi_2 \in H_2$ , we denote by  $\varphi_1 \otimes \varphi_2$  the conjungate bilinear form on  $H_1 \times H_2$  defined by

$$(\varphi_1 \otimes \varphi_2)(\psi_1, \psi_2) := \langle \psi_1, \varphi_1 \rangle_{H_1} \langle \psi_2, \varphi_2 \rangle_{H_2} \quad \forall \psi_i \in H_i, \, i = 1, 2.$$
(4)

Let  $\mathcal{E}$  denote the space of all finite linear combinations of such bilinear forms; on  $\mathcal{E}$ , we define an inner product by

$$\langle \varphi \otimes \psi, \eta \otimes \mu \rangle := \langle \varphi, \eta \rangle_{H_1} \langle \psi, \mu \rangle_{H_2} \tag{5}$$

## a) Prove that $\langle \cdot, \cdot \rangle$ from (5) is well-defined and postive definite.

Therfore,  $\mathcal{E}$  is a pre-Hilbert space with inner product  $\langle \cdot, \cdot \rangle$ . We define the tensor product  $H_1 \otimes H_2$  of  $H_1$  and  $H_2$  as the completion of  $\mathcal{E}$  under  $\langle \cdot, \cdot \rangle$ . Let  $(\varphi_k)_k$  and  $(\psi_l)_l$  be orthonormal bases of  $H_1$  and  $H_2$ , respectively.

b) Prove that  $(\varphi_k \otimes \psi_l)_{k,l}$  is an orthonormal basis of  $H_1 \otimes H_2$ .

Date of submission : Friday, 20 April 2012

Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/