Numerical Simulation (V4E2)

Summer semester 2012
Prof. Dr. Alexey Chernov
Claudio Bierig

Problem Sheet 2

1. On regularity of the solution of the second moment equation

Let $D=[0,1]$ and $C_{f}=\mathbb{E}[f \otimes f]$ be a stationary and even function, i.e. $C_{f}(x, y)$, $x, y \in D$ can be written as $C_{f}(x-y)$ with $C_{f}(z)=C_{f}(-z)$. We look at the problem

$$
\left\{\begin{align*}
\left(\partial_{x}^{2} \partial_{y}^{2}-\partial_{x}^{2}-\partial_{y}^{2}+\mathrm{Id}\right) C_{u} & =C_{f} & & \text { on } D \times D \tag{1}\\
\partial_{y} C_{u} & =0 & & \text { on } D \times \partial D \\
\partial_{x} C_{u} & =0 & & \text { on } \partial D \times D
\end{align*}\right.
$$

Prove Lemma 2.3 and Lemma 2.4 from the lecture, i.e. prove first that

$$
\begin{equation*}
V(z)=\mathcal{J}_{C_{f}}(z)+A \cosh (z)+B z \sinh (z) \tag{2}
\end{equation*}
$$

solves

$$
\begin{equation*}
V^{(4)}(z)-2 V^{\prime \prime}(z)+V(z)=C_{f}(z) \quad z \in(-1,1) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{J}_{C_{f}}(z)=\int_{0}^{z}((z-t) \cosh (z-t)-\sinh (z-t)) \frac{C_{f}(t)}{2} d t \tag{4}
\end{equation*}
$$

and A, B two constants. Afterwards show that for

$$
\begin{align*}
A & =\frac{2 \mathcal{J}_{C_{f}}(1)}{\sinh (1)} \tag{5}\\
B & =\frac{-\mathcal{J}_{C_{f}}(1)}{\sinh (1)} \tag{6}
\end{align*}
$$

and

$$
\begin{align*}
C_{u}^{\Gamma}(x, y)= & -\frac{1}{\sinh (1)}\left(V^{\prime}(1-x) \cosh (y)+V^{\prime}(x) \cosh (1-y)\right. \tag{7}\\
& \left.+V^{\prime}(1-y) \cosh (x)+V^{\prime}(y) \cosh (1-x)\right)
\end{align*}
$$

the function

$$
\begin{equation*}
C_{u}(x, y)=V(x-y)+C_{u}^{\Gamma}(x, y) \tag{8}
\end{equation*}
$$

solves (1).

2. Convergence rate for the full tensor product Galerkin discretization of a k-th moment equation

Let V be a Hilbertspace, A a continuous, V-elliptic operator and $f \in V^{\prime}$. Consider the following variational problem :

$$
\begin{equation*}
\text { Find } u \in V: \quad\langle A u, v\rangle=\langle f, v\rangle \text { for all } v \in V \text {. } \tag{9}
\end{equation*}
$$

We use a standard Galerkin discretization based on a finite-dimensional, nested and conforming family $\left(V_{\ell}\right)_{\ell}$ with $N_{\ell}=\operatorname{dim} V_{\ell}$ and $V_{\ell} \subset V_{\ell+1} \subset V$ for all ℓ. Then we can formulate for every ℓ a discrete problem

$$
\begin{equation*}
\text { Find } u_{\ell} \in V_{\ell}:\left\langle A u_{\ell}, v_{\ell}\right\rangle=\left\langle f, v_{\ell}\right\rangle \text { for all } v_{\ell} \in V_{\ell} \tag{10}
\end{equation*}
$$

Due to the Lemma of Lax-Milgram and the Lemma of Céa we have

$$
\begin{equation*}
\left\|u-u_{\ell}\right\|_{V} \leq C(A) \min _{v_{\ell} \in V_{\ell}}\left\|u-v_{\ell}\right\|_{V} \tag{11}
\end{equation*}
$$

We assume that for functions u in the smoothness spaces X_{s} with $s \in\left[0, s_{0}\right]$ we have the asymptotic approximation rate

$$
\begin{equation*}
\inf _{v_{\ell} \in V_{\ell}}\left\|u-v_{\ell}\right\|_{V} \leq C \Phi\left(N_{\ell}, s\right)\|u\|_{X_{s}} \tag{12}
\end{equation*}
$$

where typically for the standard Finite Element spaces $\Phi\left(N_{\ell}, s\right)=N_{\ell}^{-\frac{s}{d}}$ (d is the space dimension).
For $f \in L^{k}\left(\Omega, \mathbb{P} ; V^{\prime}\right)$ the k-th moment $Z=\mathcal{M}^{(k)} u$ is the unique solution of

$$
\begin{equation*}
\text { Find } Z \in V^{(k)}:\left\langle A^{(k)} Z, W\right\rangle=\left\langle\mathcal{M}^{(k)} f, W\right\rangle \text { for all } W \in V^{(k)} \tag{13}
\end{equation*}
$$

Setting $\bar{V}_{L}:=V_{L} \otimes \ldots \otimes V_{L}$ we have again a finite-dimensional, nested and conforming family $\left(\bar{V}_{L}\right)_{L}$ and can state the discrete problems

$$
\begin{equation*}
\text { Find } Z_{L} \in \bar{V}_{L}:\left\langle A^{(k)} Z_{L}, W_{L}\right\rangle=\left\langle\mathcal{M}^{(k)} f, W_{L}\right\rangle \text { for all } W_{L} \in \bar{V}_{L} \tag{14}
\end{equation*}
$$

We define for $X_{0}=V$

$$
\begin{align*}
{\left[X_{s}\right]_{\text {iso }}^{(k)}:=} & \left(X_{s} \otimes X_{0} \otimes \ldots \otimes X_{0}\right) \cap\left(X_{0} \otimes X_{s} \otimes X_{0} \otimes \ldots \otimes X_{0}\right) \tag{15}\\
& \cap \ldots \cap\left(X_{0} \otimes \ldots \otimes X_{0} \otimes X_{s}\right) .
\end{align*}
$$

Prove that 12$]$ implies the following estimate :

$$
\begin{equation*}
\left\|Z-Z_{L}\right\|_{V^{(k)}} \leq C(A, k) \Phi\left(N_{L}, s\right)\|Z\|_{\left[X_{s}\right]_{\text {iso }}^{(k)}} \tag{16}
\end{equation*}
$$

Hints :

- Prove (16) only for $k=2$
$-\|Z\|_{\left[X_{s}\right]_{\text {iso }}^{(k)}}=\|Z\|_{X_{s} \otimes X_{0} \otimes \ldots \otimes X_{0}}+\ldots+\|Z\|_{X_{0} \otimes \ldots \otimes X_{0} \otimes X_{s}}$
- Adopt the proof of Theorem 3.2 from the lecture. Choose

$$
\begin{equation*}
w_{L}=\sum_{0 \leq i, j \leq L}\left(Q_{i} \otimes Q_{j}\right) w \tag{17}
\end{equation*}
$$

Date of submission : Friday, 27 April 2012
Website :http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/

