Numerical Simulation (V4E2)

Summer semester 2012
Prof. Dr. Alexey Chernov
Claudio Bierig

Problem Sheet 7

1. A representation for the derivative of $\operatorname{det}\left(D T_{t}\right)$

Let $D \subset \mathbb{R}^{d}$ be a smooth domain. We define a smooth velocity

$$
\begin{align*}
V: \mathbb{R}_{+} \times \mathbb{R}^{d} & \rightarrow \mathbb{R}^{d} \\
(t, x) & \mapsto V(t, x) \tag{1}
\end{align*}
$$

with a compact support in \mathbb{R}^{d}. We can describe the displacement of a point $x \in \mathbb{R}^{d}$ by V through T_{t}, for which holds:

$$
\left\{\begin{align*}
\frac{d}{d t} T_{t}(X) & =V\left(t, T_{t}(X)\right) \tag{2}\\
T_{0}(X) & =X
\end{align*}\right.
$$

By this, we can define perturbed domains of D via $D_{t}=T_{t}(D)$. Furthermore we define the transformation determinant $\gamma(t):=\operatorname{det}\left(D T_{t}\right)$, such that for a smooth function $Y: D_{t} \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\int_{D_{t}} Y(x) d x=\int_{D} Y\left(T_{t}(x)\right) \gamma(t, x) d x \tag{3}
\end{equation*}
$$

Prove for $d=2$ that $\gamma^{\prime}(0)=\operatorname{div} V(0)$.

2. On the Poisson Equation with Neumann Boundary on a perturbed domain

We look at the problem

$$
\left\{\begin{align*}
-\Delta u & =f \text { in } D \tag{4}\\
\frac{\partial u}{\partial n} & =g \text { on } \Gamma=\partial D
\end{align*}\right.
$$

where f and g are functions defined on \mathbb{R}^{d}. There exists a unique solution in $H^{1}(D) / \mathbb{R}$. Let V and T_{t} be defined as in the first exercise. In the lecture we have defined the shape derivative of a function $y\left(D_{t}\right)$ as

$$
\begin{equation*}
y^{\prime}(D, V):=\dot{y}(D, V)-\nabla y(D) \cdot V(0), \tag{5}
\end{equation*}
$$

where the material derivative was defined by

$$
\begin{equation*}
\dot{y}(D, V):=\lim _{t \rightarrow 0} \frac{y\left(D_{t}\right) \circ T_{t}-y(D)}{t} . \tag{6}
\end{equation*}
$$

The shape derivative of a function $z\left(\Gamma_{t}\right)$ on a surface is defined equivalently

$$
\begin{equation*}
z^{\prime}(\Gamma, V):=\dot{z}(\Gamma, V)-\nabla_{\Gamma} z(\Gamma) \cdot V(0), \tag{7}
\end{equation*}
$$

where the material derivative was defined by

$$
\begin{equation*}
\dot{z}(\Gamma, V):=\lim _{t \rightarrow 0} \frac{z\left(\Gamma_{t}\right) \circ T_{t}-z(\Gamma)}{t} . \tag{8}
\end{equation*}
$$

Prove that $u^{\prime}=u^{\prime}(D, V) \in H^{1}(D) / \mathbb{R}$ fullfills

$$
\left\{\begin{align*}
-\Delta u^{\prime} & =0 & & \text { in } D \tag{9}\\
\frac{\partial u^{\prime}}{\partial n} & \left.=\operatorname{div}_{\Gamma}\left(v_{n}(0) \nabla_{\Gamma} u\right)+f v_{n}(0)+\left(\frac{\partial g}{\partial n}+g \kappa\right) v_{n}(0)\right) & & \text { on } \Gamma=\partial D,
\end{align*}\right.
$$

where $\kappa=\operatorname{div}_{\Gamma}(n)$ is the mean curvature of Γ and $v_{n}=V \cdot n$ is the velocity in the normal direction. By this equation u^{\prime} is uniquely defined in $H^{1}(D) / \mathbb{R}$.

Date of submission: Friday, 8 June 2012
Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/

