Numerical Simulation (V4E2)

Summer semester 2012
Prof. Dr. Alexey Chernov
Claudio Bierig

Problem Sheet 9

1. On the connection between a function and its correlation kernel

Let H, S be two separable Hilbert spaces. For any

$$
\begin{equation*}
f=\sum_{m \in \Lambda} f_{m} \otimes s_{m} \in H \otimes S \tag{1}
\end{equation*}
$$

for some orthonormal basis $\left(s_{m}\right)_{m \in \Lambda}$ in S let C_{f} denote its correlation kernel with the representation

$$
\begin{equation*}
C_{f}=\sum_{m \in \Lambda} f_{m} \otimes f_{m} \tag{2}
\end{equation*}
$$

Furthermore let $C \in H \otimes H$ be a correlation kernel with representation

$$
\begin{equation*}
C=\sum_{m \in \Lambda} \lambda_{m} \phi_{m} \otimes \phi_{m} \tag{3}
\end{equation*}
$$

where $\left(\lambda_{m}, \phi_{m}\right)$ are the eigenpairs of the associated operator \mathcal{C}.
Prove that $C_{f}=C$ iff there exists an orthonormal family $\left(X_{m}\right)_{m \in \Lambda} \subset S$ such that

$$
\begin{equation*}
f=\sum_{m \in \Lambda} \sqrt{\lambda_{m}} \phi_{m} \otimes X_{m} \tag{4}
\end{equation*}
$$

(Prove Theorem 7.9.)

2. An Example for the Karhunen-Loève expansion

Let $D=[-1,1]$ and $a \in L^{2}\left(\Omega, L^{2}(D)\right)$ with correlation kernel $C(x, y)=e^{-c|x-y|}$. Let \mathcal{C} be its associated operator

$$
\begin{equation*}
(\mathcal{C} \phi)(x):=\int_{D} C(x, y) \phi(y) d y \tag{5}
\end{equation*}
$$

Compute the eigenpairs $\left(\lambda_{m}, \phi_{m}\right)$ of \mathcal{C}.
The Karhunen-Loève expansion of $a=\mathbb{E}[a]+\tilde{a}$ reads now

$$
\begin{equation*}
a(x, \omega)=\mathbb{E}[a](x)+\sum_{m=1}^{\infty} \sqrt{\lambda_{m}} \phi_{m}(x) X_{m}(\omega), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{m}(\omega)=\frac{1}{\sqrt{\lambda_{m}}} \int_{D} \tilde{a}(x, \omega) \phi_{m}(x) d x \tag{7}
\end{equation*}
$$

Hints: First prove that an Eigenpair (λ, ϕ) of \mathcal{C} is a solution of the ODE

$$
\left\{\begin{align*}
\phi^{\prime \prime}(x)+\omega^{2} \phi(x) & =0-1 \leq x \leq 1 \tag{8}\\
c \phi(1)+\phi^{\prime}(1) & =0 \\
c \phi(-1)-\phi^{\prime}(-1) & =0
\end{align*}\right.
$$

where $\omega=\sqrt{\frac{2 c-c^{2} \lambda}{\lambda}}$.
The well known solutions to this equations are

$$
\begin{equation*}
\phi(x)=a_{1} \cos (\omega x)+a_{2} \sin (\omega x) \tag{9}
\end{equation*}
$$

where a_{1} and a_{2} are defined by the boundary conditions. Prove next that there exists nontrivial solutions for (8) only if

$$
\left\{\begin{array}{c}
c-\omega \tan (\omega)=0 \tag{10}\\
\text { or } \\
c+\omega \tan (\omega)=0
\end{array}\right.
$$

Denote the solutions of the first equation by ω_{n} and of the second by ω_{n}^{\prime}. Finally prove that the assosciated $L^{2}(D)$ normalized functions ϕ_{n} and ϕ_{n}^{\prime} are defined through

$$
\begin{align*}
\phi_{n}(x) & =\frac{\cos \left(\omega_{n} x\right)}{\sqrt{1+\frac{\sin \left(2 \omega_{n}\right)}{2 \omega_{n}}}}, \tag{11}\\
\phi_{n}^{\prime}(x) & =\frac{\sin \left(\omega_{n}^{\prime} x\right)}{\sqrt{1-\frac{\sin \left(2 \omega_{n}^{\prime}\right)}{2 \omega_{n}^{\prime}}}} . \tag{12}
\end{align*}
$$

Date of submission: Friday, 29 June 2012
Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/

