

Numerical Simulation (V4E2) Summer semester 2012 Prof. Dr. Alexey Chernov **Claudio Bierig**

Problem Sheet 10

We are looking a the stationary diffusion problem with random coefficients. Let D be some domain in \mathbb{R}^d and $I = [-1, 1]^M$, $\varrho = \left(\frac{1}{2}\right)^M$. Let u be the solution of

$$\begin{cases} -\operatorname{div} a(x,y)\nabla u(x,y) &= f(x) \quad x \in D, \ y \in I, \\ u(x,y) &= 0 \quad x \in \partial D, \ y \in I, \end{cases}$$
(1)

in $L^2_{\varrho}(I) \otimes V$, where $V = H^1_0(D)$ and f is independent of y.

1. On the Legendre coefficients decay of the solution Let $a(x, y) = 1 + \sum_{n=1}^{M} b_n y_n$ be independent of x, where $b_n > 0$ and

$$0 < a_{\min} \le a(y) \le a_{\max} < \infty.$$
⁽²⁾

We denote with $g \in V$ the solution of the following auxiliary problem

$$\begin{cases} -\Delta g(x) = f(x) & x \in D, \\ g(x) = 0 & x \in \partial D. \end{cases}$$
(3)

Prove that

$$\|u_p\|_{L^{\infty}(I,V)} \le \frac{\|g\|_V}{a_{\min}} \frac{|p|!}{p!} e^{-\sum_{n=1}^M g_n p_n}$$
(4)

with

$$g_n = -\log(\frac{b_n}{2a_{\min}}).$$
(5)

2. Semi-discretizing the problem with Lagrange polynomials

Let

$$a(x,y) = \bar{a}(x) + \sum_{n=1}^{M} \varphi_n(x) y_n.$$
 (6)

We denote with $(y^p_{\nu})^p_{\nu=1}$ the zeros of the *p*-th Legendre polynomial. Let

$$\ell^{p}_{\nu}(y) = \prod_{\mu \neq \nu} \frac{y - y^{p}_{\mu}}{y^{p}_{\nu} - y^{p}_{\mu}}$$
(7)

be the Lagrange polynomials associated with (y^p_{ν}) . We denote the tensorized Lagrange polynomials by

$$L^{p}_{\nu}(y) = \prod_{n=1}^{M} \ell^{p_{n}}_{\nu_{n}}(y_{n})$$
(8)

and the span of all Lagrange polynomials for a fixed p with $\Lambda(p)$:

$$\Lambda(p) = \operatorname{span} \left\{ L_{\nu}^{p} \, | \, 1 \le \nu_{n} \le p_{n} \right\}.$$
(9)

Prove that the solution of (1) in $\Lambda(p) \otimes V$ can be written as

$$u(x,y) = \sum_{\nu} u_p(x) L_{\nu}^p(y)$$
(10)

where u_p is the solution of

$$\begin{cases} -\operatorname{div} a(x, y_{\nu}^{p})\nabla u_{p}(x) = f(x) & x \in D, \\ u_{p}(x, y_{\nu}^{p}) = 0 & x \in \partial D. \end{cases}$$
(11)

Hint: Show that

$$\int_{I} a(x,y) L^{p}_{\nu}(y) L^{p}_{\mu}(y) \varrho(y) \, dy = \delta_{\nu\mu} \lambda^{p}_{\nu} a(x,y^{p}_{\nu}), \tag{12}$$

where $\lambda_{\nu}^p = \prod_{n=1}^M \lambda_{\nu_n}^{p_n}$ and $\lambda_{\nu_n}^{p_n}$ are the weights of the Gauss-Legendre quadrature rule

$$\int_{-1}^{1} \varphi(y) \frac{1}{2} \, dy \approx \sum_{\nu=1}^{p} \varphi(y_{\nu}^{p}) \lambda_{\nu}^{p} \tag{13}$$

which is exact up to degree 2p - 1.

Date of submission: Friday, 6 June 2012

Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/