Numerical Simulation (V4E2)
 Summer semester 2012
 Prof. Dr. Alexey Chernov
 Claudio Bierig

Problem Sheet 10

We are looking a the stationary diffusion problem with random coefficients. Let D be some domain in \mathbb{R}^{d} and $I=[-1,1]^{M}, \varrho=\left(\frac{1}{2}\right)^{M}$. Let u be the solution of

$$
\left\{\begin{align*}
-\operatorname{div} a(x, y) \nabla u(x, y) & =f(x) & & x \in D, y \in I \tag{1}\\
u(x, y) & =0 & & x \in \partial D, y \in I
\end{align*}\right.
$$

in $L_{\varrho}^{2}(I) \otimes V$, where $V=H_{0}^{1}(D)$ and f is independent of y.

1. On the Legendre coefficients decay of the solution

Let $a(x, y)=1+\sum_{n=1}^{M} b_{n} y_{n}$ be independent of x, where $b_{n}>0$ and

$$
\begin{equation*}
0<a_{\min } \leq a(y) \leq a_{\max }<\infty \tag{2}
\end{equation*}
$$

We denote with $g \in V$ the solution of the following auxiliary problem

$$
\left\{\begin{align*}
-\Delta g(x) & =f(x) & & x \in D \tag{3}\\
g(x) & =0 & & x \in \partial D
\end{align*}\right.
$$

Prove that

$$
\begin{equation*}
\left\|u_{p}\right\|_{L^{\infty}(I, V)} \leq \frac{\|g\|_{V}}{a_{\min }} \frac{|p|!}{p!} e^{-\sum_{n=1}^{M} g_{n} p_{n}} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{n}=-\log \left(\frac{b_{n}}{2 a_{\min }}\right) \tag{5}
\end{equation*}
$$

2. Semi-discretizing the problem with Lagrange polynomials

Let

$$
\begin{equation*}
a(x, y)=\bar{a}(x)+\sum_{n=1}^{M} \varphi_{n}(x) y_{n} . \tag{6}
\end{equation*}
$$

We denote with $\left(y_{\nu}^{p}\right)_{\nu=1}^{p}$ the zeros of the p-th Legendrepolynomial. Let

$$
\begin{equation*}
\ell_{\nu}^{p}(y)=\prod_{\mu \neq \nu} \frac{y-y_{\mu}^{p}}{y_{\nu}^{p}-y_{\mu}^{p}} \tag{7}
\end{equation*}
$$

be the Lagrange polynomials associated with $\left(y_{\nu}^{p}\right)$. We denote the tensorized Lagrange polynomials by

$$
\begin{equation*}
L_{\nu}^{p}(y)=\prod_{n=1}^{M} \ell_{\nu_{n}}^{p_{n}}\left(y_{n}\right) \tag{8}
\end{equation*}
$$

and the span of all Lagrange polynomials for a fixed p with $\Lambda(p)$:

$$
\begin{equation*}
\Lambda(p)=\operatorname{span}\left\{L_{\nu}^{p} \mid 1 \leq \nu_{n} \leq p_{n}\right\} . \tag{9}
\end{equation*}
$$

Prove that the solution of (1) in $\Lambda(p) \otimes V$ can be written as

$$
\begin{equation*}
u(x, y)=\sum_{\nu} u_{p}(x) L_{\nu}^{p}(y) \tag{10}
\end{equation*}
$$

where u_{p} is the solution of

$$
\left\{\begin{align*}
-\operatorname{div} a\left(x, y_{\nu}^{p}\right) \nabla u_{p}(x) & =f(x) & & x \in D, \tag{11}\\
u_{p}\left(x, y_{\nu}^{p}\right) & =0 & & x \in \partial D .
\end{align*}\right.
$$

Hint: Show that

$$
\begin{equation*}
\int_{I} a(x, y) L_{\nu}^{p}(y) L_{\mu}^{p}(y) \varrho(y) d y=\delta_{\nu \mu} \lambda_{\nu}^{p} a\left(x, y_{\nu}^{p}\right) \tag{12}
\end{equation*}
$$

where $\lambda_{\nu}^{p}=\prod_{n=1}^{M} \lambda_{\nu_{n}}^{p_{n}}$ and $\lambda_{\nu_{n}}^{p_{n}}$ are the weights of the Gauss-Legendre quadrature rule

$$
\begin{equation*}
\int_{-1}^{1} \varphi(y) \frac{1}{2} d y \approx \sum_{\nu=1}^{p} \varphi\left(y_{\nu}^{p}\right) \lambda_{\nu}^{p} \tag{13}
\end{equation*}
$$

which is exact up to degree $2 p-1$.
Date of submission: Friday, 6 June 2012
Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/

