

Numerical Algorithms

Winter Semester 2015 Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 2.

Due date: Tuesday, 17.11.15.

Programming Exercise 1. (Characteristics)

In the previous exercise sheet it was seen that the initial value problem

$$\begin{cases} u_t + uu_x = 0, \quad t > 0, \; x \in \mathbb{R}, \\ u(x,0) = u_0(x), \quad x \in \mathbb{R}. \end{cases}$$
(1)

has a unique solution if the implicit equation

$$x = x(y,t) := y + u_0(y)t,$$
(2)

in the unknown y has a unique solution y(x, t) then

$$u(x,t) = u_0(y(x,t)).$$
 (3)

- a) Write a program plot_char(y_l, y_r, t_i, t_e) that given the initial condition u₀(x), plots the characteristic lines (2) for y ∈ [y_l,y_r] and t ∈ [t_i,t_e].
- b) Extend the program so it also sketches a solution (3) by dragging the initial data $u_0(x)$ along the characteristic lines (2). That is, plot the triples $(x(y,t),t,u_0(y))$.

Test your program with for following initial data functions

$$u_0(x) = \exp(-4(x-1)^2).$$

$$u_0(x) = \begin{cases} 1 & \text{if } x \le 0, \\ 1-x & \text{if } 0 < x < 1, \\ 0 & \text{if } x > 0. \end{cases}$$

$$u_0(x) = \begin{cases} 1 & \text{if } x \le 0, \\ 0 & \text{if } x \ge 1. \end{cases}$$

In all cases take $y \in [-1,3]$ and $t \in [0,2]$.

(6 points)

Programming Exercise 2. (2D Riemann Solver)

Write a program Riemann_2D_solv(A,q_1,q_r) that given any 2×2 matrix A and states q_l and q_r solves the Riemann problem and plots the solutions $q^1(x,t)$ and $q^2(x,t)$ as functions of x for some fixed time t. Test it out with

a)
$$A = \begin{pmatrix} 2 & 1 \\ 10^{-4} & 2 \end{pmatrix}, q_l = \begin{pmatrix} 0 \\ 1 \end{pmatrix} q_r = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

b)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, q_l = \begin{pmatrix} 1 \\ 0 \end{pmatrix} q_r = \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$
 (4 points)