Numerical Algorithms

Winter Semester 2015
Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 2.

Programming Exercise 1. (Characteristics)

In the previous exercise sheet it was seen that the initial value problem

$$
\begin{cases}u_{t}+u u_{x} & =0, \quad t>0, x \in \mathbb{R} \tag{1}\\ u(x, 0) & =u_{0}(x), \quad x \in \mathbb{R}\end{cases}
$$

has a unique solution if the implicit equation

$$
\begin{equation*}
x=x(y, t):=y+u_{0}(y) t \tag{2}
\end{equation*}
$$

in the unknown y has a unique solution $y(x, t)$ then

$$
\begin{equation*}
u(x, t)=u_{0}(y(x, t)) \tag{3}
\end{equation*}
$$

a) Write a program plot_char (y_l, y_r, t_i, t_e) that given the initial condition $u_{0}(x)$, plots the characteristic lines (2) for $y \in\left[y _1, y _r\right]$ and $t \in\left[\mathrm{t}_{-} \mathrm{i}, \mathrm{t} _\mathrm{e}\right]$.
b) Extend the program so it also sketches a solution (3) by dragging the initial data $u_{0}(x)$ along the characteristic lines (2). That is, plot the triples $\left(x(y, t), t, u_{0}(y)\right)$.

Test your program with for following initial data functions

$$
\begin{aligned}
& u_{0}(x)=\exp \left(-4(x-1)^{2}\right) . \\
& u_{0}(x)=\left\{\begin{array}{llll}
1 & \text { if } & x \leq 0 \\
0 & \text { if } & x>0
\end{array}\right.
\end{aligned}
$$

In all cases take $y \in[-1,3]$ and $t \in[0,2]$.

Programming Exercise 2. (2D Riemann Solver)
Write a program Riemann_2D_solv(A, q_l, q_r) that given any 2×2 matrix A and states q_{l} and q_{r} solves the Riemann problem and plots the solutions $q^{1}(x, t)$ and $q^{2}(x, t)$ as functions of x for some fixed time t. Test it out with
a) $A=\left(\begin{array}{cc}2 & 1 \\ 10^{-4} & 2\end{array}\right), q_{l}=\binom{0}{1} q_{r}=\binom{1}{0}$.
b) $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), q_{l}=\binom{1}{0} q_{r}=\binom{2}{0}$.

