Numerical Algorithms

Winter Semester 2015
Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise 1. (Weak solutions)
For the initial value problem

$$
\left\{\begin{array}{ll}
u_{t}+u u_{x} & =0, \quad t>0, x \in \mathbb{R}, \tag{1}\\
u(x, 0) & =u_{0}(x), \quad x \in \mathbb{R}
\end{array} \quad u_{0}(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
1 & \text { if } & x>0
\end{array}\right.\right.
$$

Verify that the following functions:

$$
u_{1}(x, t)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq \frac{t}{2}, \tag{2}\\
1 & \text { if } & x>\frac{t}{2}
\end{array} \quad u_{2}(x, t)=\left\{\begin{array}{lll}
0 & \text { if } \quad x \leq 0 \\
\frac{x}{t} & \text { if } \quad 0<x \leq t \\
1 & \text { if } \quad t<x
\end{array}\right.\right.
$$

are both weak solutions.

Exercise 2. (Rankine-Hugoniot condition)
Show that the function $u_{2}(x, t)$ in (2) satisfies the Rankine-Hugoniot condition.
(3 points)
Exercise 3. (Breaking Time)
Consider the general scalar conservation law

$$
\begin{cases}u_{t}+[f(u)]_{x} & =0, \quad t>0, x \in \mathbb{R} \tag{3}\\ u(x, 0) & =u_{0}(x), \quad x \in \mathbb{R}\end{cases}
$$

where $f \in \mathcal{C}^{2}(\mathbb{R}),\left|f^{\prime \prime}(y)\right| \leq M$ for some $M>0$ and $u_{0} \in \mathcal{C}^{1}(\mathbb{R})$. Find the minimum time t_{B} such that the solution of (3) fails to be in $\mathcal{C}^{1}(\mathbb{R})$.

