

## Numerical Algorithms

Winter Semester 2015 Prof. Dr. Carsten Burstedde Jose A. Fonseca



## Exercise Sheet 4.

## Due date: Tuesday, 1.12.15.

**Programming Exercise 1.** (Godunov's method for linear systems)

Write a program Godunov\_linear\_solv(A,q\_l,q\_r) that given any  $m \times m$  matrix A and states  $q_l$  and  $q_r$  approximates the solution of the Riemann problem:

$$\begin{cases} q_t + Aq_x = 0, & t > 0, x \in \mathbb{R} \\ q(x,0) = q_0(x), & t = 0. \end{cases} \quad q_0(x) := \begin{cases} q_1, & x < 0, \\ q_r, & x > 0. \end{cases}$$
(1)

with the Godunov's method (see equation (1.4.32)) for  $x \in [-2, 2]$  and  $t \in [0, 4]$ . The user should be able to choose the step sizes  $\Delta x$  and  $\Delta t$  for the corresponding discretization of these intervals. Additionally, the code must produce plots of the components of the approximate solution as a function of x for at least 3 distinct values of t or, optionally you can adapt the sample code to show an animation of one of the components of the solution for all the discrete times. Test out your program with

a) A scalar advection equation with  $A = \bar{u} = 2$  and states  $q_l = 0, q_r = 1$ .

b) 
$$A = \begin{pmatrix} 2 & 1 \\ 10^{-4} & 2 \end{pmatrix}, q_l = \begin{pmatrix} 0 \\ 1 \end{pmatrix} q_r = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$
  
c)  $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}, q_l = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} q_r = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$ 

Run your solver with different magnitudes of the ratio  $c := \Delta t / \Delta x$ . Report your findings when c < 1 and  $c \ge 1$ .

**Update:** Use periodic boundary conditions i.e q(-2,t) = q(2,t) for all t.

(6 points)