Numerical Algorithms

Winter Semester 2015
Prof. Dr. Carsten Burstedde Jose A. Fonseca

Exercise Sheet 9.

Programming Exercise 1. (Jacobi polynomials)
a) Write a function JacobiP (x, alpha, beta, N) that uses the recursion (3.2.7) to evaluate the Jacobi polynomial $P_{N}^{(\alpha, \beta)}(x)$ at the points of a given vector x.
b) Write a JacobiDer (x, alpha, beta, N) that uses property (3.2.6) to compute $\frac{d}{d x} P_{n}^{(\alpha, \beta)}$ at the points of a given vector x.
c) Write a JacobiQuad(alpha, beta, N) that find the nodes and weights for the Gauß quadrature by finding the eigenvalues and the first eigenvector of the matrix T defined in (3.2.19).
d) Write a JacobiLGL(alpha, beta, N) that find the nodes and weights for the Gauß-Lobatto quadrature.
e) Write a function to obtain the Vandermonde \mathcal{V}_{N} and Differentiation \mathcal{D}_{N} matrices corresponding to the Legendre polynomial basis and Gauß-Lobato points of order N.
(10 points)
Programming Exercise 2. (Discrete derivatives)
a) Use the differentiation matrix \mathcal{D}_{N} to compute the discrete derivative of

$$
\begin{equation*}
u(x)=\exp (\sin (\pi x)) \tag{1}
\end{equation*}
$$

Present plots of the analytic derivative and the approximated one. Additionally plot the $L_{2}-$ norm of the error for $N=1,2, \ldots, 64$.
b) Consider the sequence of functions defined by

$$
u^{(0)}(x)=\left\{\begin{align*}
-\cos (\pi x), & x \in[-1,0), \quad \frac{d u^{(k+1)}}{d x}:=u^{(k)}, \quad k \geq 0 \tag{2}\\
\cos (\pi x), & x \in[0,1],
\end{align*}\right.
$$

Repeat the part a) for $u^{(1)}(x)$ and $u^{(2)}(x)$.

