Numerical Algorithms

Winter 2023/24
Prof. Dr. Carsten Burstedde
Hannes Brandt
UNIVERSITÄT BONN

Exercise Sheet 2.

Exercise 1. (Gauss Theorem continued)
Let $\Omega \subset \mathbb{R}^{d}$ be an open, bounded domain with piecewise smooth boundary $\partial \Omega$. Let $v \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{d}\right)$ a vector field, $A \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{d \times d}\right)$ a tensor field. Using a result from Exercise 1 of Sheet 1 show that

$$
\int_{\Omega} A: \nabla v=-\int_{\Omega} v \cdot \nabla \cdot A+\int_{\partial \Omega} v \cdot A \nu
$$

where ν is the outside normal vector, ∇v is the Jacobian matrix of v, ': ' denotes the Frobenius inner product and we define

$$
\begin{array}{rlr}
B: C & :=\sum_{i, j=1}^{d} b_{i j} c_{i j} & \text { for } B, C \in \mathbb{R}^{d \times d}, \\
(\nabla \cdot A)_{i} & :=\sum_{j=1}^{d} \partial_{j} a_{i j} & \text { for } i=1, \ldots, d \tag{6Points}
\end{array}
$$

Exercise 2. (Higher Regularity in 1D)
Let $I=[a, b] \subset \mathbb{R}, f \in L_{2}(I), u \in H_{0}^{1}(I)$ the weak solution of the Poisson equation

$$
-u^{\prime \prime}=f \quad \text { on } I
$$

with zero Dirichlet boundary conditions. Show that $u \in H^{2}(I)$.

