Numerical Algorithms

Winter 2023/24
Prof. Dr. Carsten Burstedde
Hannes Brandt
UNIVERSITÄT BONN

Exercise Sheet 3.

Submission: 07.11.2023

Exercise 1. (First Lemma of Strang)
Consider the variational problem

$$
a(u, v)=\langle\ell, v\rangle \quad \text { for } v \in V
$$

on $V \subset H^{m}(\Omega)$ for an elliptic bilinear form a. Furthermore, let there be a sequence of finite discretizations of this variational problem

$$
a_{h}\left(u_{h}, v\right)=\left\langle\ell_{h}, v\right\rangle \quad \text { for } v \in S_{h}
$$

on finite subspaces $S_{h} \subset V$. Additionally, assume that the bilinear forms a_{h} are equielliptic, so there is $\alpha>0$ independent of h with

$$
a_{h}(v, v) \geq \alpha\|v\|_{m}^{2} \quad \text { for } v \in S_{h}
$$

Prove the first Lemma of Strang, which states that under the above assumptions there is a constant $c>0$ so that

$$
\begin{align*}
\left\|u-u_{h}\right\|_{m} \leq & c\left(\inf _{v_{h} \in S_{h}}\left\{\left\|u-v_{h}\right\|_{m}+\sup _{w_{h} \in S_{h}} \frac{\left|a\left(v_{h}, w_{h}\right)-a_{h}\left(v_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{m}}\right\}\right. \\
& \left.+\sup _{w_{h} \in S_{h}}\left\{\frac{\left|\left\langle\ell, w_{h}\right\rangle-\left\langle\ell_{h}, w_{h}\right\rangle\right|}{\left\|w_{h}\right\|_{m}}\right\}\right) . \tag{6Points}
\end{align*}
$$

Exercise 2. (Fréchet derivative)
Let X, Y and Z be Banach spaces. Show that for Fréchet-differentiable functions $f: X \rightarrow Y$ and $g: X \rightarrow Y$ and a bounded bilinear operator $B: Y \times Y \rightarrow Z$ the function $B \circ(f, g): U \rightarrow Z$ is Fréchet-differentiable and satisfies

$$
D(B \circ(f, g))(x) h=B(D f(x) h, g(x))+B(f(x), D g(x) h)
$$

for all $x, h \in X$.
(6 Points)
Exercise 3. (Variational Problems)
Consider the bilinear form $a: H^{1}(0,1) \times H^{1}(0,1) \rightarrow \mathbb{R}$ defined by

$$
a(u, v):=\int_{0}^{1} x^{2} u^{\prime} v^{\prime} d x
$$

a) Write down the associated classical differential equation.
b) Show that the problem of finding a minimum of

$$
\frac{1}{2} a(u, u)-\int_{0}^{1} u d x
$$

does not have a solution in $H_{0}^{1}(0,1)$.
c) Show that a is not elliptic.
(0 Points)

