Numerical Algorithms

Winter 2023/24
Prof. Dr. Carsten Burstedde
Hannes Brandt
UNIVERSITÄT BONN

Exercise Sheet 6.

Submission: 05.12.2023

Exercise 1. (Continuity in Sobolev Spaces)
Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded domain. An admissible triangulation of Ω is a set $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{M}\right\}$ of triangles with

$$
\bigcup_{T \in \mathcal{T}} T=\bar{\Omega}
$$

and for $T, T^{\prime} \in \mathcal{T}$ with $T \neq T^{\prime}$ the set $T \cap T^{\prime}$ is either empty, contains a single corner or a whole shared edge.
Show that for $k \geq 1$ and an admissible triangulation \mathcal{T} a function $v: \bar{\Omega} \rightarrow \mathbb{R}$ with

$$
\left.v\right|_{T} \in C^{\infty}(T) \quad \text { for all } T \in \mathcal{T}
$$

is in $H^{k}(\Omega)$ if and only if it is in $C^{k-1}(\bar{\Omega})$.

Exercise 2. (Mass Matrix Recursion in 1D)
Consider a set of basis functions $\left\{\phi_{i}(x)\right\}$ that satisfies the recursion formula

$$
\phi_{i}(x)=\left(a_{i} x+b_{i}\right) \phi_{i-1}(x)+c_{i} \phi_{i-2}(x) .
$$

Show that the mass matrix entries $M_{i j}=\int g(x) \phi_{i}(x) \phi_{j}(x) \mathrm{d} x$ satisfy

$$
\begin{equation*}
M_{i j}=\frac{a_{i}}{a_{j+1}} M_{i-1, j+1}-\frac{a_{i} b_{j+1}}{a_{j+1}} M_{i-1, j}-\frac{a_{i} c_{j+1}}{a_{j+1}} M_{i-1, j-1}+b_{i} M_{i-1, j}+c_{i} M_{i-2, j} . \tag{6Points}
\end{equation*}
$$

Exercise 3. (Piecewise Linear Elements)
Let $\Omega \subset \mathbb{R}^{2}$ be an open, bounded domain. For $a, f \in L_{2}(\Omega)$ and $u \in C^{2}(\Omega)$ consider the elliptic PDE

$$
\operatorname{div}(a(x) \nabla u(x))=f(x) \quad \text { on } \Omega
$$

with an arbitrary fitting Dirichlet boundary condition. Based on an admissible triangulation \mathcal{T} of Ω we can compute an approximate weak solution of the PDE in the function space

$$
M_{0}^{1}:=\left\{v \in L_{2}(\Omega)|v|_{T} \in \mathcal{P}_{1} \text { for all } T \in \mathcal{T}\right\} \cap C^{0}(\Omega) \subset H^{1}(\Omega)
$$

of piecewise linear functions. Prove, that the coefficient function a can be replaced by a piecewise constant function yielding the same weak solution.
(0 Points)

