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Exercise 1. (Programming Task II)
On a 2D triangle mesh described by a .node and an .ele output file of the Triangle
library we define a piecewise linear nodal basis {ϕi}i=1,...,#nodes, where ϕi is 1 on node i,
0 on all other nodes and affine linear on every triangle of the triangulation.
We want to lay the necessary foundations to implement a solver of the Laplace equation
in the third and final programming exercise. To achieve this, we need to be able to
compute the matrix-vector product for the mass matrix M and the stiffness matrix A
of the basis {ϕi}i=1,...,#nodes. For our basis of hat functions, both M and S will be sparse
and we want to avoid to compute and store them explicitly.
Instead, we can compute the matrix-vector products in an element-wise approach. We
loop over all triangles of the mesh and add their contribution to the matrix-vector
product onto the result vector one after another. Every triangle Te only affects the three
nodal basis functions of its corners. All other basis functions are all-zero on Te. The
triangles impact can be described by 3 × 3 local matrices M e and Ae.
To compute M e and Ae we consider the reference triangle T0 spanned by the corners
(0, 0), (1, 0) and (0, 1). For each triangle Te of the mesh we can find an affine linear
mapping

Fe : R2 → R2; x 7→ Bx + x0 with B ∈ R2×2, x0 ∈ R2

with Te = Fe(T0). Based on this linear mapping we can compute M e using the reference
local matrix M0

M e
ij = |DFe|

∫
T0

ϕiϕj = |DFe| M0
ij . (1)

With a similar approach we obtain

Ae
ij = |DFe|

∫
T0

∇ϕi (DFe)−1 (DFe)−T ∇ϕj (2)

for the stiffness matrix of the Laplace equation. So, it suffices to do most of the compu-
tation only once for the reference element T0.
For verification of the mass-matrix-vector product, we define e := (1, . . . , 1) ∈ R#nodes.
In our basis {ϕi}i=1,...,#nodes the vector e corresponds to the function that is constant
1 on the whole mesh. Therefore, the product eT Me should be equal to the area of the
domain covered by the mesh. For verification of the stiffness-matrix-vector product, we
can compute Ae, which should be 0, since the function is constant on the whole mesh.

a) Verify the equations (1) and (2) using the transformation theorem.

b) Construct an affine linear mapping Fe that maps the reference element T0 onto an
arbitrary triangle Te with corners a, b, c ∈ R2.

c) Based on the element-iterator from the first programming exercise and the mapping
from b), implement the mass-matrix-vector product and the stiffness-matrix-vector
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product. Use the equations (1) and (2) to compute M e and Ae. The matrix M0

and the gradients ∇ϕi may be hardcoded and should be set/computed only once.

d) Verify the correctness of your mass-matrix-vector product. Based on your results
from the first programming exercise, load the box.4.node and box.4.ele example
files available on the Florida State University site, which was linked on the lectures
website. Here, you may ignore the third coordinate of the nodes and consider the
mesh as a simple 2D mesh. Compute eT Me and compare it to the mesh’s expected
area of 8.
As an additional verification, you may also load the greenland.node and
greenland.ele files from same source, which contain a triangulation of Green-
land in a scale of approximately 1 : 4.5. Compare your results with the actual area
of Greenland. You should have an error margin of about 10%. Again, you may
ignore the third coordinate of the nodes in your calculations.

e) Ensure basic correctness of your stiffness matrix-vector product by checking Ae.
(0 Points)
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