

Numerical Algorithms

Winter 2023/24 Prof. Dr. Carsten Burstedde Hannes Brandt

Exercise Sheet 8.

Submission: 12.12.2023

Exercise 1. (Mass Matrix Implementation)

Let $\Omega = [0, 1]^2$ and $\phi_{ij}(x, y) = \psi_i(x)\psi_j(y), 1 \le i, j \le p$ a tensorized basis set on Ω . For some weight function $G: \Omega \to \mathbb{R}$, we approximate mass matrix entries $M_{ij,kl} = \int_{\Omega} \phi_{ij}\phi_{kl}G$ via tensorized numerical integration

$$M_{ij,kl} \approx \sum_{\alpha,\beta} w_{\alpha} w_{\beta} \phi_{ij}(x_{\alpha}, x_{\beta}) \phi_{kl}(x_{\alpha}, x_{\beta}) G(x_{\alpha}, x_{\beta})$$
(1)

with weights w_1, \ldots, w_p and nodes x_1, \ldots, x_p . Derive an algorithm which computes the matrix-vector multiplication y = Mu in $\mathcal{O}(p^3)$.

(6 Points)

Exercise 2. (Tensor-Product Elements)

On the *d*-dimensional hypercube $Q_{\text{ref}} = [0, 1]^d$ we consider for some $m \in \mathbb{N}$ the space

$$\mathcal{Q}_m := \operatorname{span} \left\{ (x_1, \dots, x_d) \mapsto \psi_1(x_1) \cdot \dots \cdot \psi_d(x_d) \mid \psi_i \text{ polynomial of degree } \leq m \right\},$$

i.e. \mathcal{Q}_m consists of all polynomials in the variables $x_1, ..., x_d$ such that each x_i appears only with exponents at most m.

a) Given arbitray $0 = z_0 < z_1 < ... < z_m = 1$, show that there is a nodal basis for Q_m with respect to the point set

$$Z = \{(z_{i_1}, ..., z_{i_d}) \mid i_1, ..., i_d = 0, ..., m\}.$$

Now we consider only d = 2 and a domain $\Omega \subset \mathbb{R}^2$ being partitioned in a rectangular mesh, i.e. all cells of the mesh are rectangles w.l.o.g. with edges parallel to the coordinate axes. Additionally, we denote a Finite Element by a triple (T, Π, Σ) , where T is a reference polyhedron, Π is a finite dimensional subspace of C(T) and Σ is a basis of Π . The nodal interpolation points on a shared edge are identified with their counterpart of the respective neighboring edge.

- b) Show that the finite element $(Q_{\text{ref}}, \mathcal{Q}_m, \text{ point evaluations at } Z)$ generates an $H^1(\Omega)$ -conforming finite element space on Ω .
- c) Does the finite element $(Q_{\text{ref}}, \mathcal{Q}_3, \text{ point evaluations at } Z)$ generate an $H^2(\Omega)$ -conforming finite element space on the rectangular mesh?

(2+2+2 Points)