Numerical Algorithms

Winter 2023/24
Prof. Dr. Carsten Burstedde
Hannes Brandt
UNIVERSITÄT BONN

Exercise Sheet 8.

Exercise 1. (Mass Matrix Implementation)
Let $\Omega=[0,1]^{2}$ and $\phi_{i j}(x, y)=\psi_{i}(x) \psi_{j}(y), 1 \leq i, j \leq p$ a tensorized basis set on Ω. For some weight function $G: \Omega \rightarrow \mathbb{R}$, we approximate mass matrix entries $M_{i j, k l}=\int_{\Omega} \phi_{i j} \phi_{k l} G$ via tensorized numerical integration

$$
\begin{equation*}
M_{i j, k l} \approx \sum_{\alpha, \beta} w_{\alpha} w_{\beta} \phi_{i j}\left(x_{\alpha}, x_{\beta}\right) \phi_{k l}\left(x_{\alpha}, x_{\beta}\right) G\left(x_{\alpha}, x_{\beta}\right) \tag{1}
\end{equation*}
$$

with weights w_{1}, \ldots, w_{p} and nodes x_{1}, \ldots, x_{p}. Derive an algorithm which computes the matrix-vector multiplication $y=M u$ in $\mathcal{O}\left(p^{3}\right)$.

Exercise 2. (Tensor-Product Elements)
On the d-dimensional hypercube $Q_{\text {ref }}=[0,1]^{d}$ we consider for some $m \in \mathbb{N}$ the space

$$
\mathcal{Q}_{m}:=\operatorname{span}\left\{\left(x_{1}, \ldots, x_{d}\right) \mapsto \psi_{1}\left(x_{1}\right) \cdot \ldots \cdot \psi_{d}\left(x_{d}\right) \mid \quad \psi_{i} \text { polynomial of degree } \leq m\right\},
$$

i.e. \mathcal{Q}_{m} consists of all polynomials in the variables x_{1}, \ldots, x_{d} such that each x_{i} appears only with exponents at most m.
a) Given arbitray $0=z_{0}<z_{1}<\ldots<z_{m}=1$, show that there is a nodal basis for \mathcal{Q}_{m} with respect to the point set

$$
Z=\left\{\left(z_{i_{1}}, \ldots, z_{i_{d}}\right) \mid i_{1}, \ldots, i_{d}=0, \ldots, m\right\} .
$$

Now we consider only $d=2$ and a domain $\Omega \subset \mathbb{R}^{2}$ being partitioned in a rectangular mesh, i.e. all cells of the mesh are rectangles w.l.o.g. with edges parallel to the coordinate axes. Additionally, we denote a Finite Element by a triple (T, Π, Σ), where T is a reference polyhedron, Π is a finite dimensional subspace of $C(T)$ and Σ is a basis of Π. The nodal interpolation points on a shared edge are identified with their counterpart of the respective neighboring edge.
b) Show that the finite element $\left(Q_{\text {ref }}, \mathcal{Q}_{m}\right.$, point evaluations at $\left.Z\right)$ generates an $H^{1}(\Omega)$-conforming finite element space on Ω.
c) Does the finite element ($Q_{\text {ref }}, \mathcal{Q}_{3}$, point evaluations at Z) generate an $H^{2}(\Omega)$-conforming finite element space on the rectangular mesh?

