Numerical Algorithms

Winter 2023/24
Prof. Dr. Carsten Burstedde
Hannes Brandt
UNIVERSITÄT BONN

Exercise Sheet 9.

Submission: 19.12.2023

Exercise 1. (Anisotropic Diffusion)
We consider the anisotropic Poisson equation

$$
\begin{aligned}
-\left(\alpha \frac{\partial^{2}}{\partial x^{2}}+\beta \frac{\partial^{2}}{\partial y^{2}}\right) u & =f \text { in } \Omega=(0,1)^{2} \\
u & =0 \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

with $\alpha, \beta \in \mathbb{R}$ and $f \in L^{2}(\Omega)$.
a) Derive the weak formulation of the anisotropic Poisson equation in $H^{1}(\Omega)$.
b) We choose a tensor product approach for discretization. We consider a triangulation that partitions $\bar{\Omega}$ into a regular $N \times N$ grid of squares. As a basis we use the classic 'hat functions', which are 1 on one node/corner of the grid, 0 on every other node/corner and the tensor product of piecewise linear functions on every cell of the grid. By $\phi_{i j}$ for $i, j=0, \ldots, N$ we denote the hat function that is 1 on node (i, j) of the grid.
Compute the non-zero entries of the mass and the stiffness matrix. So, for an arbitrary basis function $\phi_{i j}$ compute only the 3×3 matrix representation of nonzero mass/stiffness matrix entries

$$
\left(\begin{array}{ccc}
\bar{m}_{i-1, j-1} & \bar{m}_{i-1, j} & \bar{m}_{i-1, j+1} \\
\bar{m}_{i, j-1} & \bar{m}_{i, j} & \bar{m}_{i, j+1} \\
\bar{m}_{i+1, j-1} & \bar{m}_{i+1, j} & \bar{m}_{i+1, j+1}
\end{array}\right)
$$

with $\bar{m}_{k, l}=M_{k l, i j}$.
The tensor product approach allows to reduce many computations to 1D. You can reuse results from the mass matrix computation for the stiffness matrix.

