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Convergence of generalized cross-validation for an ill-posed integral equation®

Tim Jahn'

Abstract. In this article we rigorously show consistency of generalized cross-validation applied to an exemplary
ill-posed integral equation, given a finite number of noisy point evaluations. In particular, we pres-
ent non-asymptotic order-optimal error estimates in probability. Hereby it is remarkable that the
unknown true solution is not required to fulfill a self-similarity condition, which is generally needed
for other heuristic parameter choice rules.
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1. Introduction. Generalized cross validation (GCV) is a popular parameter choice rule
for regularized solution of ill-posed inverse problems. It is based on dividing the data into
two parts, where the first fraction is used to construct a solution candidate for the task,
while the second fraction is used to validate the performance of the candidate, see e.g. Stone
[19] for a classic reference or, more recently, Hastie et. al [8] and Arlot & Celisse [1]. The
generalized cross-validation technique analyzed here goes back to Wahba & Craven [6], who
used it for spline smoothing of noisy point evaluations of a function. One distinct feature of
the rule is that neither knowledge of the noise level nor knowledge of the smoothness of the
unknown function is required. In its original form, ’leaving-one-out’, one tries to fit a spline
to all but one datum, and takes the error of the unused datum as the quality criteria, where
one varies a so called smoothing parameter to balance how well the candidate fits the data
points with the norm of the candidate. Ultimately, this results in a minimization problem
over the smoothing parameter. In the similar framework of inverse integral equations the same
method has been applied for choosing the regularization parameter by Wahba [21], Vogel [20],
Lukas [15] and others. Extending the original fields of application, GCV and its variants
have established themselves as some of the main re-sampling methods in high-dimensional
statistics, data science and machine learning, see Witten & Frank [22], Kuhn & Johnson [11]
or Giraud [7] for an overview. Given the importance of GCV as a practical rule in these areas,
in this article we aim to shed some light on the theoretical properties of the original method.

In general one differs between two types of convergence results for cross-validation. The
vast majority is of weak type. This means that not properties of the minimizer of the (ran-
dom) data-driven functional are investigated, but properties of the minimizer of the population
counterpart of that functional. While convergence results for minimizes of the expected value
give valuable insight into the problem, from a statistical perspective, they do not even guaran-
tee consistency of the original method. For inverse integral equations there are yet no strong
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2 T. JAHN

convergence results for GCV. Given the inherent instability of inverse integral equations, this
is clearly unsatisfactory. The major contribution of this manuscript is a convergence analysis
for GCV applied to inverse integral equations of strong type, that is where properties of the
minimizer of the random data-driven functional are studied.

Such strong results have been obtained in some other settings, as e.g. spline smoothing or
model selection, by Speckman [18] and Li [12, 13]. Moreover, there exists a consistency result
in the framework of semi-supervised statistical learning from Caponnetto & Yao [5]. However,
we will not follow the approach from Li, which is based on comparison to Stein-estimators.
Consequently, our result will not be a straightforward generalization of the approach from
Li and takes a different form. For example, Li showed that generalized cross-validation is
asymptotically optimal for model selection, as the number of point evaluations tends to infinity,
while the noise level § and the smoothness of the exact solution are kept fixed. As a preliminary
result in Corollary 3.6 below, we show that generalized cross-validation is order-optimal (that
is optimal up to a constant, which is weaker than asymptotic optimality), however this bound
is guaranteed to hold also in the non-asymptotic regime.

Apart from showing the consistency of GCV, we also carefully analyze the discretization
error, which is often not taken into account. While the integral equation is formulated in
an inherently infinite-dimensional setting, through the finite number of measurement points
a discrete model is induced. Moreover, the cross-validation method can only be formulated
in the finite-dimensional setting, and in most works no error estimates of the constructed
estimator to the continuous solution are given. Here we will give the complete picture, that
is we give a strong consistency result for our cross-validation estimator and show convergence
to the continuous solution, when the number of point evaluations tend to infinity. We do this
for a concrete explicit yet not trivial example and also show paths how to extend the results
to more general settings.

2. Setting and main result. We will analyze the following integral equation

1
(2.1) (Kfﬂ@-—L;H@%&ﬂwd%

with k(z,y) := min (z(1 — y),y(1 — z)). Note that several results developed in this article
will hold for general continuous  also. We have access to noisy point evaluations

(2.2) B =9 (Em) + 05, j=1,..m,

where g = K fT is the unknown exact data, &, := j/(m + 1) € (0,1) are the evaluation
points, 6 > 0 is the noise level and ¢; are unbiased i.i.d random variables with unit variance.
The goal is to reconstruct the exact solution ff. Through (2.1) a compact operator K :
L?(0,1) — L%(0,1) is defined. Moreover, continuity of x implies that K f is continuous even
if f is only square-integrable. The above equation (2.1) is ill-posed and hence needs to be
regularized. For that we rely on spectral methods using the spectral decomposition of the
induced discretization of K, which we will denote by K, and define as follows:
K., : L*(0,1) — R™

m

P (DG = ([ WEmnstan)

Jj=1
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 3

with j = 1,...,m. We will assume from now a uniform discretization, i.e., &, 1= j/(m +1).
The setting here is particularly simple, since we can give the exact singular value decomposition
of K and K,,:

Lemma 2.1. For A\, := m2k? =: kal and vg(z) := v/2sin(v/Apz) there holds K*Kuvy, = a,%vk
for all k € N and the (vg)ren form an orthonormal basis of N'(K)*+ C L?(0,1). Moreover, for

\/1 — 351112 ( (ﬁ1)>

4v/m sm (2(\/:1))

Okm =

and

Uk m Z sin (\/751) &l my” /Uk m and Uk,m =

= (sin(kmm)

it holds that KpnVrm = OrmUkm and Kjugm = OkmVkm, With (Vkm) g, 004 (Ukm) e,
orthonormal bases of N'(Ky,)* C L?(0,1) and R™ respectively.

The proof will be given below in Section A. We define an approximation to the unknown fT
via spectral cut-off and set

k
9 > m
(2.3) fom =~ '] AT IR

j=1 im

and the ultimate goal will be to determine the stopping index & < m dependent only on m
(and without knowledge of & or assumptions on the smoothness of fT). For the determination
of the truncation index k we choose generalized cross-validation due to Wahba. It is defined
as follows:

m 1) 2
= m7u'7m
(2.4) Em = km (3, f1,63,) = arg  min 2=k i1l9 2] S _ =rarg min_V,(k).
k=0,...,.2 (1_%) k=0,..., 2

This choice was introduced by Vogel [20] and can be derived from the original method from
Wahba [21], when Tikhonov regularization is replaced with spectral cut-off regularization.
The only difference to [20] is that the minimizing set is restricted to k& < m/2 instead of
k < m. Other choices, say k < %m would be possible as well, as long as it is avoided that
single random coefficients dominate the functional. In [20] such restriction was not needed,
since there the expectation of the functional was considered. Note that the cross-validation
functional V,, is kind of an approximation of the weak (predictive) norm

S (k) = | Ko R — K f1]|* = Zé2e2+ Z (1 05m)?

j=k+1
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4 T. JAHN

In fact, it holds that

(25) BIS (] = 7+ 3 oy
j=k+1
m — k)d> mo o2 et 32

As already mentioned in the introduction, most results for cross-validation are of weak form,
in the sense that they do not investigate k., but rather &}, = arg miny E[V,,(k)]. The results
are usually that k), = (1 + o(1)) arg ming E[S;, (k)] (as m — oo) under certain assumptions
on the singular value decomposition of K, K,, and f', and the constants hidden in o(1) are
not given or unknown. In this note we will investigate the data-driven choice k,,, and we will
exactly calculate all involved constants. It is classic to calculate this error explicitly assuming
that f' belongs to some unknown subset of L? with a certain smoothness. For the given kernel
we define the subsets as Holder source conditions

X,, = {f:(K*K)%h . he L2 ||h| gp}.

Below we will relate X , to classical smoothness in Proposition 3.9. We Will use the following
function to quantify the uncertainty of our estimator. For t € N and ¢ < 12, set

t

pelt) = 2B [|s S - 1)

J=1

Clearly, since the €;’s are unbiased with unit variance, we have p.(t) — 0 as t — co. We are
ready to formulate our main result:

Theorem 2.2. Assume that s > % Then, uniformly over fi e Xs.p, the probability that
[
(R

_4s / "
g Has 5 p [l [l
/ S "
L < mt 1> Y, TR TR S VT s DERR S )

IN

_1
is larger then 1 — p. %%C (ngf})’ﬁ) 5+4S>, where the constants L., L and Cs are given
below in (3.11) and (3.7).

We comment on the result. The first term in the upper bound resembles the optimal con-
vergence rate for the source condition X , in the idealized functional white noise model with
variance +1, for m the number of point evaluations tending to infinity. In the latter model
we again seek the solution K f = g, but instead of having m noisy point evaluations, we
can measure scalar products (g h) with h € L?. Hereby, the latter has the same distribu-
tion as (g7, h) + \/Trfiﬂ The second term comes from the restriction k:gcv < 7§ and usually
is dominated by the first term, unless the noise level § is very small. The remaining two
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 5

terms are upper bounds for the discretization error, under different smoothness s of the ex-
act solution and expresses how good the exact solution fT can be represented in the span of
K(&1,my ), - K(&mym, +) (note that those span the space of piece-wise linear functions on the
grid given by &1, ..., &mom). Note that the assumption s > % imposes a substantial differen-
tiability condition onto the solution fT. If this assumption is violated a similar bound will still
hold, however it is not possible to explicitly bound the aforementioned discretization error
anymore.

A key advantage of GCV is that it does not require any knowledge of the noise level 4.
Therefore it belongs to the class of heuristic parameter choice rules. The term heuristic stems
from the fact that these rules provably do not assemble convergent regularization schemes
under a classical deterministic worst-case noise model, due to the seminal work by Bakushinskii
[2]. Still, for the white noise error model some heuristic parameter choice rules, i.e. the quasi-
opimality criterion and the heuristic discrepancy principle yield convergent regularization
methods, see Bauer & Reif8 [3] and Jahn [10]. In order to prove mini-max optimality for
those approaches, however additional to the classical source condition the true solution must
fulfill a self-similarity condition, which is a substantial structural assumption as it demands a
concrete relation between the high and low frequency parts of the unknown solution. Therefore
it is remarkable that GCV yields mini-max optimality without assuming self-similarity. On
the other hand, as will be explained below, the GCV is probably not consistent for general
ill-posed problems, as it might lack stability for exponentially falling singular values. Such
limitations regarding the robustness for exponentially ill-posed problems have recently been
studied for several related methods based on unbiased risk estimation from Lucka & al [14].

We finally mention here modifications of GCV which are designed to improve the stability
of the method when applied to inverse problems. Those methods were developed by Lukas
and are called robust and strong robust cross-validation, see [16] and [17].

3. Proof of the main result. We first prove the following lemma which holds for gen-
eral kernel x and evaluation points. Note however that in this case the singular system
(0j,m> Vjms Wjm) of Ky is not computable and has to be approximated numerically. Here
no source condition is required, but we define the so called weak and strong oracles for each
individual f:

(3.1) th, :=t0,(fN) i=max{0<k<m : k®< D oF  (flvim) p
j=k+1
52 m
(3.2) =0 (fN) =max{0<k<m « 5 < Y (fF02,)

Lemma 3.1. For L, and C, given below and uniformly for all fT with t3 (fT) >t € N, it
holds that

5 i Ly \/%5 + Ca \/Z;n:%-&-l(g;rm Uj,m)]%gm 2 ¢
]]‘:D kagcv,m_PN(Km)Lf H S g5 Z l_pE §1+€t .
o
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6 T. JAHN

Remark 3.2. The above is kind of an oracle inequality for our estimator with respect to
the projected exact solution. While the second summand of the denominator is due to the

constraint kgcv < 4 and is usually negligible, the fact that we have o5 instead of oy ,,
2 UL m

in the nominator is more sincere, since this term explodes for rapidly falhng singular values.

Proof of Lemma 3.1. For the analysis we define the event

l
(3.3) Q=0 D (g = ghrtjm)gm — (1 — k)6 < el — k)&%, VI > ¢, k <
j=k+1

N[ =~

On €); we can control the random errors, and for its probability we claim that

(3.4) P()>1—p. <§1j_€t>.

Remark 3.3. Note that if [ > ¢, but % < k <1, we will occasionally use the upper bound

l l

> (90 = g tjam)Emxa, < Z — g wim)Emxa, < (1+¢€)16%
j=h+1 i=1
. o 2
We first prove the claim (3.4) and define, for ¢’ := $15,
! 1 ) T 2 2 € ’
Qt = l Z((gm gm7u],m)Rm_5 ) Sga WZEt
j=1

Using the Kolmogorov-Doob inequality for backwards martingales one can prove that (see,
e.g., Proposition 4.1 of [9])

e't

P(0)>1- % %Z(e?—l) — 1 pe ().
=1

and it remains to show that Q) C ;. For this, we refine the argumentation in the proof of
Proposition 3.1 of [10]. So let [ > t and first assume that k > £'l. Then k > £’t and thus

l l k
2 _ 2 2 € 2 4
> Eixg —;ejm; —;Qm; < <1+§>l— (1— f)k_ (L+2)(1—k) = el + 5ok

j=k+1
<(1+e)(l—k),

since k < [/2. Similar, Zé ht1 jXQ' (1 —e)(l = k)xq;- For k < £'l, we obtain
2
Z e2xq <Ze Yoy < (1+ )l—(1+5)(l—k)—§sl+(1+e)k
j=k+1

<(1+4+e)(l—k) - §5l+ (1+e)l=1+e)l—k),

This manuscript is for review purposes only.
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197 by definition of /. Finally,

l l

€ €

198 Z 6?)(9; > Z 6?)(92 > (1 — g) ZXQ; — (1 + g) EIZXQ;
j=k+1 j=e'l+1

2 €
199 =1 —-¢e)( —k)xa, + (35 - (1 + §> 6/> Ixa, + (1 —¢e)kxq,
309 =1 =)l =k)xa, + (1 —e)kxq, = (1 —&)(l = k)xqy-
202 This proves ) C €, and therefore the claim (3.4).
203 In the following we fix ¢ < 75. We first show stability.
204 Proposition 3.4. Fort < tfn it holds that kgcv,mxﬂt < iig”‘
205 Proof of Proposition 3.4. It suffices to show that
206 (3.5) (10 )xq, < \Ifm(k)
207 for all 3 < k < 5. By definition of ¢, in this case 0 < % Now, on the one hand
208 \Pm(tm)XQt

k

, Z;'nzténﬂ (90 Uj,m ) fom Zj:ténﬂ (90 Uj,m ) fm E;‘n:k+1 (900 Uj,m ) fem
200 = XQ, = X + X

(l—ﬂf (1-%) (1-%)

2
(\/Z 5 +1(9 — g wjm) 3 + \/Z] 9, 1 (ghsuy, mﬁw) 1- £ ?
X0, + U, (k)

210

IN

\? s
(1-%) :
(14 e)VES + /1,6 .
211 < ( +51 +> ) +<m_t§1>2q]m(k)
)V + VRS B B
212 < <(1+ 21 k5;)2 2k6) <77T— t%)z\llm(k) S “(122:’;32 + (::— tl;n)Z\Ifm(k)
213 m ps

214 Note that K <m — k and t% < £2k. Then, on the other hand,

(\/Z;nk—&-l(ggn - Qin, Uj,m)%gm - \/Z;n:lfﬂ(gin» Uj,m)]%am>2
(-5
(1 —epvm—hs - ﬁa) ((1—5)m5—5\/ﬁs)2

215 U (k)xa, >

X

216 > (- 7)2 XQ, = (1- ﬁ)g X
(1 —e)v/m — ks —ev/m — k6)? (1 - 26)2(m — k)o?

{ = 2 t = 2 t
" (1-%) ©E T oy
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We solve the second inequality for § and plug into the first equation and obtain

1+ 2¢)2k62 —k\?
%(tfn)xms(“)xm(m ) (k)

m—t9,
U, (k) + ( m—k )Q\I/m(k:)

5
m—to,

_ 2Pk (1- Y

m

B (1 _ %)2 (1 —2e)%(m — k)
v

since

for e < 1/12. This proves that

min U, (k) > U,,(£2))

and hence kgchQt = X, argming<g<m Wi (k) < 10 /2.
é

gev,m

The upper bound for &

directly yields an (up to a multiplicative constant optimal) bound

for the (weak) data propagation error. We now deduce a bound for the (weak) approximation

error also.

Proposition 3.5. Let t < td,. If t5 < 2 it holds that

m

Z (ghs tjm)mm X < Caly,6°
j:kgcv,m+1

with Cq 1= 35+ 34¢, and if t3, > 2 it holds that

m m

> Ghoupm)iexa, <C6 > (gh tjm)Em

j:kgcv,m+1 j:%+1

with C}, = 12 + 8e.

This manuscript is for review purposes only.



CONVERGENCE OF GENERALIZED CROSS-VALIDATION 9

240 Proof of Proposition 3.5. Since C, > 1 the assertion clearly holds for kgcv,mXQt > 1.
241  Now assume kgcv,m <9 and t® < m/2. Then, by definition of 3,
m
242 Z (G0 Wjm)m X0
j:ggcv,m+1
£, m to,
2 2 2 5 2
25 = D (Ghewmliexast Y (Ghetim)in <Y (g wim)Enxa, +1n0
jZQgcv,m‘H j:tfr;n+1 j:kgcv,m+1
tn tn
. ) 2 1) 2 o 52
244 < 2 Z (Gr> Ujim ) em + 2 Z (90, = Gl wjm)&mXa, + 15,0
j:kgCV»mJ’_l j:kgcv,m+1
tn
25 <20 Y (g )R + (34 20)t0,6°.
24() j:kgcv,m+1

247 Because

5

m § ... 2 tm S s )2 m 5 2
e @ (k5 ) Zj:kgcv’m-f-l(gmau],m)]}%m j:kgcv’m+1(gm’u]’m)]1{m Zj:tfn—l—l(gm?uj;m)Rm

sevm 1 _ kgcv,m 2 1 _ kgcv,m 2 1 _ kgcv,m 2
m m m

& s 2

m . 2

Jokdoy it (G Ui ) m—t), 5
249 = : U (t,)

I 2 ké m
<1 — M) M — Rgey,m

250 m
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we conclude, since k‘gcv . is the minimizer of ¥,,, on 0 < k < m/2 and ¢, < 5
tn
0 2
Z (gmv U, m)RmXQt
-7 kgcvm

£ \?
= <1 gcvm> \I]m(kgcv,m)XQt - (1 - 7;;) \Ilm(t(rsn)XQt

2
"
(- ) et (1) et
2_ 52 s 5
U 5 s k2 —t 20 W, (19)
— m <2t ngcv m gcvam XQt S %th
) %z;":tmgzwuj,mném
m s, 2
(1-%)
< 4t5 Z] 5 +1(g gl%uj m)RmXQt+Z] 9, +1(97Tnauj, )]%g
m
4t (1 — 18102 + 0,62 t0 62
< M Q)M = i) 10" g 4 I 5y 4 o 52
m ts 53
(1-%) g

Putting everything together we obtain

m
> (gl uim)Emxa, < 32(1+ e)t5,67 + (3 4 26)t5,67 = (35 + 34e)t),0% = Cat),6”.
j:kgcv,m+1
Finally, assume that kgcv <t and t), > m/2. Then, using n5? < E?:%H(g;rn,u]',m)ﬁm in
this case, we get

m
Z gm7ujm RmXQt S 2 Z gmuu]’m Rm + 2 Z gmau] m)2
J=kde+1 J=kfey+1 j= kgcv+1
B\ m
< 2 Fie Uy (ko) +2(1+e)mo® <2 (1- =22 w,, (5) +2(1 + €)mo?
m
m m
<4 Y (Gheuwimin +4 Y (9o — G wim)re + 2(1+ £)mé?
j=%+1 j=%+1
m m
< (124 8¢) Z gm,ujm 2n=0C" Z (gjn,uj,m)%gm. [ |
j=5+1 =341
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 11

We move on to the main proof. Note that

(g wjm)rm = (B T t5m)em = (f1, Kugm) = 05m (f1,05m).

Splitting the error yields

5
5 o (g wym)z N
mo ], m
S m = Prrw) S = ‘ Vim = O (1 0jm)v5m
gov,m> , Ojm ’
j:l ’ ]21
k&
gcv,m (gé —gin uj m)Rm m ;
m U 5
= U.]7m - Z (f ,/Uj7m)/vj7m-
X Oj,m
Jj=1 J:kgcv,m+1
For the first term we obtain
2
k9 ( 5 T ) kS
gcv,m — Ui gev,m ) 2
I 7O s < (98, = Ghr s, < (14 &) Bvm®”
02 X > 3 Im = Im> Ujm )Rm XQ > € J2 X
j=1 J,m kgev,m 7=1 kgev,m
5 52
< 1+¢et),0
2
g2 0%
&2
and for the second,
m an m
2 2
Y Mumxa = Y. (FLom)xa+ D (Ffom)
j:kgcv,m+1 j:kgcv,m+1 j:SénJ'_l
5
S
1 us $0 42
2 m
< o2 Z (gTvuj,m)]RmXQt + o2
5 )
Sm,T kgcv,m+1 Sm,1
1 i s0 52
2 m
< 2 Z (gTvuj»m)RmXQt + 7]
Tss,.m kSey mt1 Tss,.m

Combining the preceding both estimates and using Proposition 3.5 together with the fact that
0 (f1) < 89 (f1), we conclude

La/53,8 + Oty /S 1 (9. 0g0)

Hf;fs m_PNJ-(Km)fTHXQt <

gev,mo 0 6
with Lg := —Vl;rg ++/C, 4+ 1 and the proof of Lemma 3.1 is finished. [ |

As a corollary of the preceding two propositions we formulate an oracle inequality for the
empirical predictive error of our estimator. Note that it holds for arbitrary continuous kernel
#. For simplicity we exclude the case tJ, (f1) > %, that is when the balancing weak oracle is
not in the range of the cross-validation.

This manuscript is for review purposes only.



12 T. JAHN

294 Corollary 3.6. It holds that

. . s t 1 5 2 €

295 1}{15 P | Kmfim — G llrm < 2 +Ca\/t9,0 | > 1—pe 3T+ E15 .
t<td, (fH<%

296 We now use the concrete form of the singular value decomposition of the semi-discrete and
297 the continuous operator to calculate the error to the continuous solution f! for the proof of
208 Theorem 2.2. The following Lemma gives a first estimate for s, uniformly over the source
299 condition X ,.

300 Lemma 3.7. It holds that
1)p2 1
5+48s
301 sup 89 (f) < C, M ;
feXu, o
1
(m 4+ 1)p?\ 575
302 sup 0 (f) < C, (52 .
303 fEXu,p
304 with Cy given below in the proof.
305 Proof of Lemma 3.7. The following auxiliary proposition is needed and will be proved in
306  Appendix B.
307 Proposition 3.8. For j =t(m+1)+s withm € N;t € Ny and s € {0,....,m}, k € {1,...,m},
308 4t holds that
1 for s =k and t even
o
309 (Vj, Vkm) = m+1a—] —1  fors+k=m+1 andt odd
k7
"o else
310 By Proposition 3.8, it holds that
oo
311 Vjm = Z(vj,m, v1) vy
=1
[e.9]
41 _ \/’fm 0;j vj — mz 2t(m~+1)—j5Y2t(m+1)—j 2t(m+1)47 V2t(m~+1)+j .
o 0;
313 Jm t=1 Jm

This manuscript is for review purposes only.
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Therefore, with ff = > plo; 2 (h,vj)v; =: ) ;2 fjvj, we obtain

(fa Uj,m)
Z fi(vr, Uj,m) = T (Ujfj - Z (U2t(m+1)fjf2t(m+1)fj - UQt(m+1)+jf2t(m+1)+j)>
=1 Jm t=1

oips(0?
= ¢s(0F)Vm + 1]@(])) * ((h,vj)

, 2
Tjm¥s(05

B i 02t(m+1)—jPs (T2t(m+1)—3) (s Vat(m41)—5) = T2t(m41)+5Ps (026 (mt1)45) (B V2u(mi1)45)
t=1 01905(0]2-)

Using the Cauchy-Schwartz-inequality gives

((h’vj)

2
B Z O2t(m+1)— 3905(02t(m+1) )(h V2t(m+1) g) - Uzt(m+1)+g¢s(02t(m+1)+g)(h U2t(m+1)+j)>

port UJSDS( 32)
< 2(h,1)j)2
00 2 = 2 =R ;
Ot () —; T2t (m+1)+j
+2 Z <(U2)J> |(hy vag(ma1y—5)| + <(U2)j> [ (R V2t(m1)+5)]
t=1 J J

For the second term, we further obtain

t=1

=n s+1 2

= U%t(m—&-l)—j ’ Ugt(m+1)+j 2

— T | (B vat(mr1)—5)] + 0732 (s V2t(mt1)+5)]

> 2st2 1 2542 2
- [, 2t oy Ry Vgt 1) i

=1 ( 20 — 1) 5| <2tmj+1 +1> |02, Vat(me1)+5)]

s ds+4 . 4544

2

< Z < tm+1 1) ( tm+1 T 1) (Z (hy V2t(ma1)— ) + (A Vat(m1)45) >

<9—3-4s ( t—4s < h Vot(me41)— ) + (h, U2t(m+1)+j)2)

1

t=1
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333 and finally

334 ((h, vj)

2
335 — Z O2t(m-+1)— J%(Ugt(mH) ) (h, U2t(m+1) —j) — U2t(m+1)+J905(02t(m+1)+J)(h U2t(m+1)+ﬂ)
P ojps(o 32)
336 ( (h,vj) 2 + Z (h » V2t(m+1)— ) + (h, U2t(m+1)+j)2> :
337 t=1

338 Moreover, we use sin?(z) € [0, 1] and sin(z) < z and obtain

( ) 2 s+1 16(m + 1)3 Sil’l4 ( Jm ) s+1
ag:=
339 (m+ 1)L2 =(m+1)| - =(m+1) 2(’7“)
RIS (1 3 )
3 s+1 3s+1
340 <(m+1)|{—= = —.
i <m0 ()~
342  Putting both estimates together yields
m
343 Z (f,vjm)?
j=k+1
2 (.2
Ps (0k+1,m> “ il
344 < 2x 38+1W Z (h,vj) 2 + Z (h, V2t(m+1)— )2 + (h, th(m-i—l)-i—j)2
Jj=k+1 t=1
k+1)
, 9 4 3s+1 ) l—gsm (2((m+17r)) 00 )
o - (m+ 1)3% 3.4 ( (k+D)m Z (h, )
16(m + 1)3 sin (2(m+1)> =11
2x3FL L/ m+1 , 3l
346 (3.6 — L4 )2
B S Gy <24(k n 1)4) S

348 where we used that sin(z) > %ac for 0 < x < 7§ in the third step and the fact that for every
319 1 > m + 1 there is at most one pair (j,¢) such that [ =2t(m+1) —jorl =2t(m+1)+j in
350 the second step. Therefore, on the one hand,

o : ) 3s+1 ds 2
351 sup Z (f10m)” < 243_1k P
- fTeXsp ;2311

353 while on the other hand

2 16(m + 1)3sin (%) L6x4pd 5o
354 kj = . ; ]j( +1) k(52 < 12467Tk‘11k§2 — 7_1_4 k_i .
T 3 m
355 Tkm 1= 3sin (m) 521(m +1)
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356 Consequently,

357 3t L —As 2
\ m+1 = 24s-1
1
358 = k<C M o
359 - 62
360  with
g 1
5+4s
362 We conclude
1)p2\ 75
5+44s
363 sup 0 (fH <, (W) :
FTeXs,, g
364 With similar arguments we also get
1)p2 s .
365 sup t,,(f1) < C; <(m+2)p> :
fteXs, o
366 For t0 >t we therefore obtain, with (3.6),
367 kagcv o~ P lixes
Lsv/ 5m5 +Cq \/Z;'n:%+1(g;rn, uj,m)}%gm
368 .
s (3.8) < o
2 T
V3Lsm? 55§ 0mi1m =
360 (3.9) < 545 02 — + Cy 025 Z (ft,0m)?
., J= A+l
5
V302 L2 ((m+1)p2>2(5+43) B) =
370 < —— +3V2C, | Y (T 0jm)?
- 4 2 » ¥3,m
€ 0 vm+1 Pyl
71 (3.10) (=T s p
7 . = _— s ,
372 \vm+1 g *m?s
373 with
5
3C2 L2 35+2
374 (3.11) L, = \[87577 and L = +Cl.
54 S 248—5

375 Finally, we treat the discretization error || Pys. (Km) ft — f1||. First, by definition of x we see
376 that the span < vim, ..., Umm > is equal to the space of piece-wise linear functions on the
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grid &1.m, -, §mym, and fm = Py LfT is the L2-projection of fI onto that space. The
error depends on classical smoothness of fT and we now relate the Hélder source condition to
classical smoothness.

Proposition 3.9. Assume that fT € Xsp. If s > %, then fT is differentiable. if s > %, then
f1 is twice differentiable.

Proof of Proposition 3.9. First f1 e X;,, implies that there exists h € L? with ||h]| < p,
such that f = Zj; gos(af-)(h,vj)vj. Differentiating the sum formally term-by-term, we
obtain

\wa]SOS )(h,vj) cos (j-).

J=1

We now show that this series converges uniformly in z. Indeed, using Cauchy-Schwartz,

o0 o0

Zﬂws |(hy )| cos(jma)| < m | D (hvy)2, | D 5202(03) < 7' t2p

J=1 J=1

and the right hand side converges whenever s > %, uniformly in x. Consequently, it holds
that

\ijTFQDS )(h,vj) cos(mj-).

7j=1

Similar, differentiating f' twice formally term-by-term, we get

_\TZJ L @s(07)(h,vj)v;(-),

and
oo oo
ZW Fes () (hyvp)lvj ()| < 72 | D (hyv5)? ZJ p2o?) < mp | Y g,
j=1 j=1
where the right hand side converges uniformly in  whenever s > %. |

Proposition 3.9 and classical estimates for the linear interpolating spline then yield the fol-
lowing bound for the discretization error,

[[EaMP f 3
2l )? or s > 1

(3.12) | Parcacy ST = 1llie < § 34D .
PSR for s > 1

Finally, plugging the estimates (3.10) and (3.12) into the decomposition
1) 6
18y = P00 < 15T o = Pty £l + 1Py £ = £l

and applying Lemma 3.1 and Lemma 3.7 finishes the proof of Theorem 2.2.
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4. Numerical experiments. We now implement GCV and apply it to the integral equation
(2.1). First, we set D = 2% = 16384 and fix, for all simulations, X ii.d. standard Gaussian
random variables, j = 1,..., D. Based on this we define three exact solutions

D
fLTZZZE::q?)(ﬂU

J=1

with s; € {i, %, %} varying the smoothness of the solution. We define the corresponding exact
data as

m
D
. . m
gil = (KM am)) = V23 G0 X sin () | € R
=1 =1
We generate the perturbed data
(4.1) gid=ght o L],
Zm

with Z1,...,Z,, ii.d. standard Gaussian, sampled anew in every simulation loop. We first
give formulas to calculate the error of our estimator. Using Proposition 3.8, the projection

(foT vpm) = Z]D 1 JZHX (vj, Ug,m) can be calculated exactly for k = 1,...,m, and we define

f” = 23—1(f ’Tavj,m)vj,m. We have

k ; 2
§ i,12 (gihé»uj,m)ﬂ%m i, - it 2
1 = Fl 12 = — (" Nvim) |+ D (P vjm)
J

0jm

j=1 ’ j=k+1

and
m D

;ﬁ _'fzﬁ ::ziz(f 1U1n Vjm — 2{: f%T Ul

j=1 =1
D m
= | DU vjm) Wy v) = (F5F,00) | o+ Z Z !, 0jn) (Wi, 1)1
=1 \j=1 l=D+1 j=1

Thus, by orthogonality (|| fi° — fo112 = [|f2° — fal |12 + || fal — o112,

1f = £
k (gi,5 Wim)R 2 m
m y Ujm )R™ i i
= 3 (et ) S ()
j=1 Al j=k+1
2 2
D m . 00 m A
+ Z L) @im ) = (FLo) |+ 30 [ DS vim) (0g.m,01)
J=1 \j=1 I=D+1 \j=1
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431 and we define, suppressing the dependence on § and m,i, the approximative error of the
432 estimator:

k 2 m
. g ,U R 3 s
133 (4.2) Z ( m Ujm (fZ’T,Uj,m)) + Z (f"F, vjm)?
=1 J,m j=k+1

1
2\ 2

131 (4.3) +Z Z b 0jm) (Vims v1) — (FF, )

436 In the simulations we calculate the computable GCV estimator

6
Zm:k+1(g;ﬁ 7uj1m>Rm
137 (4.4) kgov 1= arg Oglglm ’ (1— ky2 ’
m

438 and the in practice unfeasible optimal estimator

439 (4.5 koot = arg min e
( ) opt - g0<k<m k>

140  for reference. The error we make in approximatin 0 — fT| by (4.2) can be bounded from
PP g k,m
441 above as follows (where expectation is with respect to the X J’-s):

e 2 00 pity2
12 B{|ef - 17 - £
2
(0.) m o m
oy Si 2s; 2
= | (S (= 3 S
I=D+1 j=1 I=D+1 j=1
o0 o?
444 < max szsl (m+1)——<3 max 0251 -2 Z o? < py D3 max 02‘”_2
kA 7 O— b b
445 l:D+lj Jm J l=D+1
146 and so
3
5 (”57;) , fors=1
e 2. _ 3
447 51 = ; % s for Si = Z .
1 PR
148 s, fors;=3

449 is an upper bound for E He% — Hf,i’(S — f”||2H For our choices of m and D we thus obtain

-9 _ 1
2 , fors;=73
450 §; =277 | fors; = % .
—21 _5
2 , fors;=3

451  We will see below in the error plots that ¢; is of smaller order than e in all cases. We consider
452 different noise levels §, which we determine implicitly via the signal-to-noise ratio (SNR). The
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SNR is defined as

_ lsignall _ [lg"*llm
" |Inoise|| NGO

For each exact solution f%' and each SNR, we generate 200 independent noisy measurements
g% (in (4.1)), and calculate k. along with the corresponding errors ey , where - € {gcv, opt},
see (4.2) — (4.5). We fix the number of measurements as m = 2 and let SNR vary over
{1,10,...,10%} (that is we effectively vary the noise level §). The results are presented in
Figure 1. In the left column we visualize the statistics as box plots and in the right column
we give the corresponding sample means and sample standard deviations in tabular form. In
each box plot, the upper and lower edge give the 75- respective 25% quantile of the statistic
eg. for - = gev (red) and - = opt (blue). The median of the statistic is given as a red bar inside
the boxes. The whiskers extend to the samples whose distance to the upper respectively lower
edge is less than six times the height of the box. All samples which fall outside of the whiskers
are plotted individually as red crosses (outliers). Outliers above the upper limit 1 are plotted
just above, retaining their relative order, but not given the exact value.

We clearly observe the convergence of the error, as the noise level decreases (that is
as the SNR increases). Hereby, the convergence rate of the generalized cross-validation is
comparable to the one of the optimal rate at least for small noise levels. For larger noise
levels (smaller SNR) the statistic for the generalized cross-validation is rather spread out.
Moreover we observe saturation of the error for rougher solutions with smoothness parameter
si € {1/4,3/4}, due to a dominating discretization error. The difference between exg,, and

SNR

eps in the saturation regime is due to the constraint k'gcv < 5. Note that in all cases the error
op
for the largest SNR is still of higher order than the errors ¢; we make in the approximation.

5. Concluding remarks. In this article we deduced rigorously a non-asymptotic error
bound (in probability) for GCV as a parameter choice rule for the solution of a specific ill-
posed integral equation. In particular we verified the optimality of the rule in the mini-max
sense, remarkably without imposing a self-similarity condition onto the unknown solution,
which up to our knowledge so far was required for any rigorous and consistent optimality
result for heuristic parameter choice rules in the context of ill-posed problems. We conclude
with listing three possible further research directions. First, the findings could be extended
to integral equations with a general kernel x. As mentioned above, see e.g. Corollary 3.6, the
probabilistic analysis of the rule remains largely unchanged. However, it remains to analyze
the discretization error given by the relation between the decomposition of the continuous
operator K and the semi-discrete one K,,. In particular, the design matrix 7}, cannot be
calculated exactly in this case and has to be approximated by, e.g., a quadrature rule, and the
estimator should be based on the decomposition of the quadrature approximation. Second,
instead of spectral cut-off other regularization methods, like Tikhonov regularization or some
iterative scheme should be considered. This will require non-trivial changes of the probabilistic
analysis of GCV. Finally, it would be interesting to extend the analysis to more contemporary
settings, for example non-parametric regression based on kernelized spectral-filter algorithms.
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Appendix A. Proof of Lemma 2.1.

Proof of Lemma 2.1. Tt is well-known that in our setting the kernel is the Green’s function
of the Laplace equation, i.e., (Kf)” = —f. It is then straight forward to check that the
solutions of the differential equation are eigenfunctions of K, which yield o; and v;. While
the discretization of the differential equation has been analyzed in detail, see, e.g., [4], we
have not found results for the corresponding discretization of the integral equation in the
literature. We first show that the singular value decomposition of the semi-discrete K, is

strongly related to the eigenvalue decomposition of the symmetric m x m matrix (Tm)ij =
[ 6 m, ¥)E(Ejm, y)dy = &l £l)( £2 — 5]2- +2¢;). Indeed, since Ko = > ajk(&jm, ) for
a € R™, we obtain for f, := 2]21 a;jk(€jm,-) € L? and X € R the relation

*Kmfa = Ma — Too = A

and consequently we need to find the eigenvalue decomposition of T},. As auxiliary tools, we
need the following m x m-dimensional symmetric matrices:

(A1)
1 ..
4 1 ..
N, = , Rpi=|: ,  Spoi= (H({s,m,gt,m))st
-1 2 -1 1 4 1
1 4
Note that (m +1)2A,, is the discretization of the second derivative via Centered second order
finite differences on the homogeneous grid & m, ..., {mm and (Rm)ij = m+1 (AT AT 20,1y,

with the hat functions Ai(z) = (z — §—1,m)(Mm + D)X(g, 1 nieim) (T) + (§z+1,m — x)(m +
DX (i 6ir1.m) (). First we show that T;, and the matrices in (A.1) have mutual eigenvectors

(A.2) Zhm =4/ mi— : (sin (VAg€im) ... sin (\/Eﬁmm))T €R™,

with & = 1,...,m. Using the polar identity 2isin(xz) = ¢ — e~ and the closed-form ex-
_ikm
pression for the partial geometric series with ¢ = em+1, one sees that ||z ,|2» = 1. By

exploiting the polar identity again one easily verifies that zj,, are the eigenvectors of the

s
m+1

responding eigenvalues for R,,. Moreover, slightly lengthy but straightforward computa-
tions yield A, Sy — SmAnm = 0 = ATy — T0,Ap,, which implies that the z;,, are also
the eigenvectors of S, and T},. Next we show that the eigenvalues p,, of Sy, are given

~1 ~1
by pkm = (—1)k+1 cos( VA )sm( VA ) sin (m) . Using the polar identity for

circulant matrices A,, and R,,, and moreover that py,, = 4 + 2COS< ) are the cor-

2(1+m) 2(1+m) 1+m
ik

q = e2(m+t1) and

Zm:qjj _ ¢+ ¢ (=1 —m+mq)
- (1—-q)?
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yields
m 7\)\
ZSin( \/)\kl)l: m+1(_1)k+1cos<2(mf1))
1 2 . Vie )’
=1 m+ sin (2(m—fl)>

and because sin (k7tm/(m + 1)) = sin (kw/(m + 1)), the py , can be computed with the defin-
ing relation of the eigenvalues:

Vem ]2 ]2
1 - muk,m(zk,m)m - T_H (szk,m)m

A
(A3)  ppmsin ( p—

Vi
" VL (—1)k+1 cos <2(m+1))
(A4) =Y &m(l =&y m)sin < > = .
lz; m+1 2(m+1) sin (2(ﬁ1)>

To finally determine the eigenvalues of a,% m of Ty, we set wy, py, 1= eril(zk,m)l“(fl,m, -) and
normalize in two ways. First,

m

lwemll® =) Gran)i(zram)i (6(Ems ) 5(Erms ) = 2T Zkan = O -
=1

Second, expanding &(&jm, ) = Y ivq K(&m»&im)Ai(+) in terms of the hat functions,

szmll2
(A5) = Z Zhm)t ) W€y Eam)AillP = 1) (Smzim)i AT I = 1l D (zm)i AT 1P
i=1 i=1 i=1
m m 1 G
= M%,m Z (2km )i (Zkm)ir (A", AGY) = Mzmm Z(zkm)z (B zik,m);
i,i'=1 i=1
4 4 2cos ()}{i)
: 6(m+1)

Putting (A.3) and (A.6) together, using sin(2x) = 2sin(z) cos(z) and cos(2x) = 1 — 2sin?(z),
then yields the explicit formulas for the eigenvalues oy, ,,, and the left singular functions vy, .
Finally, we calculate the right singular vectors wuy, p,:

() = ——(Kntem) €m) = —— 3 o)t (Kns(€1ms ) (E5m)

Ok,m Ok,m —1

m
Z ]l ka = (Zk,m)j =

mo=1

e sin(km&;m)- [ ]

Appendix B. Proof of Proposition 3.8 .
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Proof of Proposition 3.8. We need the following auxiliary identity: For m € N, ¢ € Ny and
ke{l,..,m},s €{0,...,m} and j = t(m + 1) + s there holds

m il - ’”T‘H for s = k and t even
(B.1) Zsin <m 1>sin <m—|—1> = —mil fors+k=m-+1andtodd.
=1 0 else

We first prove the claim. With ¢; = exp (i(j + k)7 /(m + 1)) and g2 = exp (i(j — k)7 /(m + 1))
and the polar identity we obtain

5 (i () 45 o).

=1

For g € {q1,q2}, if ¢ # 0,1, if holds that

i(qi +q7)=—1+ qm+i_ q_(m+2) =1+ (D)7 (=1) = (1 + (-1)**)
i=1 qz —q

N

since ¢tz = (—1)k+jq7%. If t is even and s = k, then j — k = t(m + 1) which implies
that g2 = 1, while, since 0 < 2k < 2(m + 1), the sum j + k = t(m + 1) + 2k cannot be a

multiple of 2(m + 1), therefore ¢; # 0,1 and thus, since j+k is even, ;" | sin ( Jfrll) = ot

Similar, if ¢ is odd and s + k = m + 1, then j + k = (¢t + 1)(m + 1) implies ¢; = 1, and
now j—k=tim+1)+s—k = (t+1)(m+ 1) — 2k is not a multiple of 2(m + 1), which

yields g2 # 0, 1. Since j + k is again even we deduce Y ;" sin ( j’ﬁl) sin ( n’fbfl) = -2t In

any other case it hold that gi,¢2 # 0,1 and therefore ;" , sin (Tfﬂl) sin (ﬁ—iﬁ) = 0, which

finishes the proof of the claim (B.1). We come to the proof of the proposition. As above we
can write j = t(m+1)+s with ¢t € Ny and s € {0,...,m}. Using the claim (B.1) together with

aj,mmT—H(vk,vjm): <Sln Zsm (\/>§l (&1m. - ))
> s (VA6 (sn(3/R0). i ) = oS sin (VAE) sin (Ve
=1 =1

concludes the proof. [ |
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Figure 1. Left column: Bozxplots of the errors for 200 independent runs, with different signal-to-noise
ratios (SNR). Right column: The corresponding sample mean and sample standard deviation of the errors.
First row: rough solution. Second row: differentiable solution. Third row: twice differentiable solution.
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