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Abstract. In this article we rigorously show consistency of generalized cross-validation applied to an exemplary4
ill-posed integral equation, given a finite number of noisy point evaluations. In particular, we pres-5
ent non-asymptotic order-optimal error estimates in probability. Hereby it is remarkable that the6
unknown true solution is not required to fulfill a self-similarity condition, which is generally needed7
for other heuristic parameter choice rules.8
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1. Introduction. Generalized cross validation (GCV) is a popular parameter choice rule11

for regularized solution of ill-posed inverse problems. It is based on dividing the data into12

two parts, where the first fraction is used to construct a solution candidate for the task,13

while the second fraction is used to validate the performance of the candidate, see e.g. Stone14

[19] for a classic reference or, more recently, Hastie et. al [8] and Arlot & Celisse [1]. The15

generalized cross-validation technique analyzed here goes back to Wahba & Craven [6], who16

used it for spline smoothing of noisy point evaluations of a function. One distinct feature of17

the rule is that neither knowledge of the noise level nor knowledge of the smoothness of the18

unknown function is required. In its original form, ’leaving-one-out’, one tries to fit a spline19

to all but one datum, and takes the error of the unused datum as the quality criteria, where20

one varies a so called smoothing parameter to balance how well the candidate fits the data21

points with the norm of the candidate. Ultimately, this results in a minimization problem22

over the smoothing parameter. In the similar framework of inverse integral equations the same23

method has been applied for choosing the regularization parameter by Wahba [21], Vogel [20],24

Lukas [15] and others. Extending the original fields of application, GCV and its variants25

have established themselves as some of the main re-sampling methods in high-dimensional26

statistics, data science and machine learning, see Witten & Frank [22], Kuhn & Johnson [11]27

or Giraud [7] for an overview. Given the importance of GCV as a practical rule in these areas,28

in this article we aim to shed some light on the theoretical properties of the original method.29

In general one differs between two types of convergence results for cross-validation. The30

vast majority is of weak type. This means that not properties of the minimizer of the (ran-31

dom) data-driven functional are investigated, but properties of the minimizer of the population32

counterpart of that functional. While convergence results for minimizes of the expected value33

give valuable insight into the problem, from a statistical perspective, they do not even guaran-34

tee consistency of the original method. For inverse integral equations there are yet no strong35
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2 T. JAHN

convergence results for GCV. Given the inherent instability of inverse integral equations, this36

is clearly unsatisfactory. The major contribution of this manuscript is a convergence analysis37

for GCV applied to inverse integral equations of strong type, that is where properties of the38

minimizer of the random data-driven functional are studied.39

Such strong results have been obtained in some other settings, as e.g. spline smoothing or40

model selection, by Speckman [18] and Li [12, 13]. Moreover, there exists a consistency result41

in the framework of semi-supervised statistical learning from Caponnetto & Yao [5]. However,42

we will not follow the approach from Li, which is based on comparison to Stein-estimators.43

Consequently, our result will not be a straightforward generalization of the approach from44

Li and takes a different form. For example, Li showed that generalized cross-validation is45

asymptotically optimal for model selection, as the number of point evaluations tends to infinity,46

while the noise level δ and the smoothness of the exact solution are kept fixed. As a preliminary47

result in Corollary 3.6 below, we show that generalized cross-validation is order-optimal (that48

is optimal up to a constant, which is weaker than asymptotic optimality), however this bound49

is guaranteed to hold also in the non-asymptotic regime.50

Apart from showing the consistency of GCV, we also carefully analyze the discretization51

error, which is often not taken into account. While the integral equation is formulated in52

an inherently infinite-dimensional setting, through the finite number of measurement points53

a discrete model is induced. Moreover, the cross-validation method can only be formulated54

in the finite-dimensional setting, and in most works no error estimates of the constructed55

estimator to the continuous solution are given. Here we will give the complete picture, that56

is we give a strong consistency result for our cross-validation estimator and show convergence57

to the continuous solution, when the number of point evaluations tend to infinity. We do this58

for a concrete explicit yet not trivial example and also show paths how to extend the results59

to more general settings.60

2. Setting and main result. We will analyze the following integral equation61

(2.1) (Kf)(x) =

∫ 1

0
κ(x, y)f(y)dx,62

with κ(x, y) := min (x(1− y), y(1− x)). Note that several results developed in this article63

will hold for general continuous κ also. We have access to noisy point evaluations64

(2.2) gδj,m := g†(ξj,m) + δεj , j = 1, ...m,65

where g† = Kf † is the unknown exact data, ξj,m := j/(m + 1) ∈ (0, 1) are the evaluation66

points, δ > 0 is the noise level and εj are unbiased i.i.d random variables with unit variance.67

The goal is to reconstruct the exact solution f †. Through (2.1) a compact operator K :68

L2(0, 1) → L2(0, 1) is defined. Moreover, continuity of κ implies that Kf is continuous even69

if f is only square-integrable. The above equation (2.1) is ill-posed and hence needs to be70

regularized. For that we rely on spectral methods using the spectral decomposition of the71

induced discretization of K, which we will denote by Km and define as follows:72

Km : L2(0, 1)→ Rm73

f 7→ ((Kf)(ξj,m))mj=1 =

(∫
κ(ξj,m, y)f(y)dy

)m
j=1

,74

75
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 3

with j = 1, ...,m. We will assume from now a uniform discretization, i.e., ξj,m := j/(m+ 1).76

The setting here is particularly simple, since we can give the exact singular value decomposition77

of K and Km:78

Lemma 2.1. For λk := π2k2 =: σ−1
k and vk(x) :=

√
2 sin(

√
λkx) there holds K∗Kvk = σ2

kvk79

for all k ∈ N and the (vk)k∈N form an orthonormal basis of N (K)⊥ ⊂ L2(0, 1). Moreover, for80

σk,m :=

√
1− 2

3 sin2
( √

λk
2(m+1)

)
4
√
m+ 1

3
sin2

( √
λk

2(m+1)

)81

and82

vk,m(·) :=
m∑
l=1

sin
(√

λkξl

)
κ(ξl,m, ·)/σk,m and uk,m :=

√
2

m+ 1
(sin(kπξj,m))mj=183

it holds that Kmvk,m = σk,muk,m and K∗muk,m = σk,mvk,m, with (vk,m)k≤m and (uk,m)k≤m84

orthonormal bases of N (Km)⊥ ⊂ L2(0, 1) and Rm respectively.85

The proof will be given below in Section A. We define an approximation to the unknown f †86

via spectral cut-off and set87

(2.3) f δk,m :=

k∑
j=1

(
gδm, uj,m

)
Rm

σj,m
vj,m88

and the ultimate goal will be to determine the stopping index k ≤ m dependent only on m89

(and without knowledge of δ or assumptions on the smoothness of f †). For the determination90

of the truncation index k we choose generalized cross-validation due to Wahba. It is defined91

as follows:92

km = km(δ, f †, gδm) = arg min
k=0,...,m

2

∑m
j=k+1(gδm, uj,m)2(

1− k
m

)2 =: arg min
k=0,...,m

2

Vm(k).(2.4)93

94

This choice was introduced by Vogel [20] and can be derived from the original method from95

Wahba [21], when Tikhonov regularization is replaced with spectral cut-off regularization.96

The only difference to [20] is that the minimizing set is restricted to k ≤ m/2 instead of97

k ≤ m. Other choices, say k ≤ 2
3m would be possible as well, as long as it is avoided that98

single random coefficients dominate the functional. In [20] such restriction was not needed,99

since there the expectation of the functional was considered. Note that the cross-validation100

functional Vm is kind of an approximation of the weak (predictive) norm101

Sm(k) := ‖Kmf
δ
k,m −Kmf

†‖2 =
k∑
j=1

δ2ε2
j +

m∑
j=k+1

σ2
j,m(f †, vj,m)2.102

103
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4 T. JAHN

In fact, it holds that104

E[Sm(k)] = kδ2 +
m∑

j=k+1

σ2
j,m(f †, vj,m)2(2.5)105

E[Vm(k)] =
(m− k)δ2 +

∑m
j=k σ

2
j,m(f †, vj,m)2(

1− k
m

)2 .(2.6)106

107

As already mentioned in the introduction, most results for cross-validation are of weak form,108

in the sense that they do not investigate km, but rather k∗m = arg mink E[Vm(k)]. The results109

are usually that k∗m = (1 + o(1)) arg mink E[Sm(k)] (as m → ∞) under certain assumptions110

on the singular value decomposition of K,Km and f †, and the constants hidden in o(1) are111

not given or unknown. In this note we will investigate the data-driven choice km, and we will112

exactly calculate all involved constants. It is classic to calculate this error explicitly assuming113

that f † belongs to some unknown subset of L2 with a certain smoothness. For the given kernel114

we define the subsets as Hölder source conditions115

Xs,ρ :=
{
f = (K∗K)

s
2h : h ∈ L2, ‖h‖ ≤ ρ

}
.116

Below we will relate Xs,ρ to classical smoothness in Proposition 3.9. We will use the following117

function to quantify the uncertainty of our estimator. For t ∈ N and ε ≤ 1
12 , set118

pε(t) :=
3

ε
E

∣∣∣∣∣∣1t
t∑

j=1

(ε2
j − 1)

∣∣∣∣∣∣
 .119

Clearly, since the εj ’s are unbiased with unit variance, we have pε(t) → 0 as t → ∞. We are120

ready to formulate our main result:121

Theorem 2.2. Assume that s > 3
4 . Then, uniformly over f † ∈ Xs,ρ, the probability that122

‖f δkgcv,m − f
†‖123

≤ L′s

(
δ√
m+ 1

) 4s
5+4s

ρ
5

5+4s + L′′s
ρ

m2s
+

‖f †′‖√
2(m+ 1)

χ{ 3
4
<s≤ 5

4
} +

‖f †′′‖
2(m+ 1)2

χ{s> 5
4
}124

125

is larger then 1 − pε
(

2
3

ε
ε+1Cs

(
(m+1)ρ2

δ2

) 1
5+4s

)
, where the constants L′s, L

′′
s and Cs are given126

below in (3.11) and (3.7).127

We comment on the result. The first term in the upper bound resembles the optimal con-128

vergence rate for the source condition Xs,ρ in the idealized functional white noise model with129

variance δ2

m+1 , for m the number of point evaluations tending to infinity. In the latter model130

we again seek the solution Kf = g, but instead of having m noisy point evaluations, we131

can measure scalar products (gδ, h) with h ∈ L2. Hereby, the latter has the same distribu-132

tion as (g†, h) + δ√
m+1

ε1. The second term comes from the restriction kδgcv ≤ m
2 and usually133

is dominated by the first term, unless the noise level δ is very small. The remaining two134
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 5

terms are upper bounds for the discretization error, under different smoothness s of the ex-135

act solution and expresses how good the exact solution f † can be represented in the span of136

κ(ξ1,m, ·), ..., κ(ξm,m, ·) (note that those span the space of piece-wise linear functions on the137

grid given by ξ1,m, ..., ξm,m). Note that the assumption s > 3
4 imposes a substantial differen-138

tiability condition onto the solution f †. If this assumption is violated a similar bound will still139

hold, however it is not possible to explicitly bound the aforementioned discretization error140

anymore.141

A key advantage of GCV is that it does not require any knowledge of the noise level δ.142

Therefore it belongs to the class of heuristic parameter choice rules. The term heuristic stems143

from the fact that these rules provably do not assemble convergent regularization schemes144

under a classical deterministic worst-case noise model, due to the seminal work by Bakushinskii145

[2]. Still, for the white noise error model some heuristic parameter choice rules, i.e. the quasi-146

opimality criterion and the heuristic discrepancy principle yield convergent regularization147

methods, see Bauer & Reiß [3] and Jahn [10]. In order to prove mini-max optimality for148

those approaches, however additional to the classical source condition the true solution must149

fulfill a self-similarity condition, which is a substantial structural assumption as it demands a150

concrete relation between the high and low frequency parts of the unknown solution. Therefore151

it is remarkable that GCV yields mini-max optimality without assuming self-similarity. On152

the other hand, as will be explained below, the GCV is probably not consistent for general153

ill-posed problems, as it might lack stability for exponentially falling singular values. Such154

limitations regarding the robustness for exponentially ill-posed problems have recently been155

studied for several related methods based on unbiased risk estimation from Lucka & al [14].156

We finally mention here modifications of GCV which are designed to improve the stability157

of the method when applied to inverse problems. Those methods were developed by Lukas158

and are called robust and strong robust cross-validation, see [16] and [17].159

3. Proof of the main result. We first prove the following lemma which holds for gen-160

eral kernel κ and evaluation points. Note however that in this case the singular system161

(σj,m, vj,m, uj,m) of Km is not computable and has to be approximated numerically. Here162

no source condition is required, but we define the so called weak and strong oracles for each163

individual f †:164

tδm : = tδm(f †) := max

0 ≤ k ≤ m : kδ2 ≤
m∑

j=k+1

σ2
j,m(f †, vj,m)2

 ,(3.1)165

sδm : = sδm(f †) := max

0 ≤ k ≤ m :
kδ2

σ2
k,m

≤
m∑

j=k+1

(f †, v2
j,m)

 .(3.2)166

167
168

Lemma 3.1. For Ls and Ca given below and uniformly for all f † with tδm(f †) ≥ t ∈ N, it169

holds that170

P

∥∥∥f δkgcv,m − PN (Km)⊥f
†
∥∥∥ ≤ Ls

√
sδmδ + Ca

√∑m
j=m

2
+1(g†m, uj,m)2

Rm

σ sδm
ε2
,m

 ≥ 1− pε
(

2

3

ε

1 + ε
t

)
.171
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6 T. JAHN

Remark 3.2. The above is kind of an oracle inequality for our estimator with respect to172

the projected exact solution. While the second summand of the denominator is due to the173

constraint kδgcv ≤ m
2 and is usually negligible, the fact that we have σ sδm

ε2
,m

instead of σsδm,m174

in the nominator is more sincere, since this term explodes for rapidly falling singular values.175

Proof of Lemma 3.1. For the analysis we define the event176

(3.3) Ωt :=


∣∣∣∣∣∣

l∑
j=k+1

(gδm − g†m, uj,m)2
Rm − (l − k)δ2

∣∣∣∣∣∣ ≤ ε(l − k)δ2, ∀l ≥ t, k ≤ l

2

 .177

On Ωt we can control the random errors, and for its probability we claim that178

(3.4) P (Ωt) ≥ 1− pε
(

2

3

ε

1 + ε
t

)
.179

180

Remark 3.3. Note that if l ≥ t, but l
2 < k ≤ l, we will occasionally use the upper bound181

l∑
j=k+1

(gδm − g†m, uj,m)2
RmχΩt ≤

l∑
j=1

(gδm − g†m, uj,m)2
RmχΩt ≤ (1 + ε)lδ2.182

We first prove the claim (3.4) and define, for ε′ := 2
3

ε
1+ε ,183

Ω′t :=


∣∣∣∣∣∣1l

l∑
j=1

(
(gδm − g†m, uj,m)2

Rm − δ2
)∣∣∣∣∣∣ ≤ ε

3
, ∀l ≥ ε′t

 .184

Using the Kolmogorov-Doob inequality for backwards martingales one can prove that (see,185

e.g., Proposition 4.1 of [9])186

P
(
Ω′t
)
≥ 1− 3

ε
E

∣∣∣∣∣∣ 1

ε′t

ε′t∑
j=1

(ε2
j − 1)

∣∣∣∣∣∣
 = 1− pε

(
ε′t
)
.187

and it remains to show that Ω′t ⊂ Ωt. For this, we refine the argumentation in the proof of188

Proposition 3.1 of [10]. So let l ≥ t and first assume that k ≥ ε′l. Then k ≥ ε′t and thus189

l∑
j=k+1

ε2
jχΩ′t

=
l∑

j=1

ε2
jχΩ′t

−
k∑
j=1

ε2
jχΩ′t

≤
(

1 +
ε

3

)
l −
(

1− ε

3

)
k = (1 + ε)(l − k)− 2

3
εl +

4

3
εk190

≤ (1 + ε)(l − k),191192

since k ≤ l/2. Similar,
∑l

j=k+1 ε
2
jχΩ′t

≥ (1− ε)(l − k)χΩ′t
. For k < ε′l, we obtain193

l∑
j=k+1

ε2
jχΩ′t

≤
l∑

j=1

ε2
jχΩ′t

≤
(

1 +
ε

3

)
l = (1 + ε)(l − k)− 2

3
εl + (1 + ε)k194

≤ (1 + ε)(l − k)− 2

3
εl + (1 + ε)ε′l = (1 + ε)(l − k),195

196
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 7

by definition of ε′. Finally,197

l∑
j=k+1

ε2
jχΩ′t

≥
l∑

j=ε′l+1

ε2
jχΩ′t

≥
(

1− ε

3

)
lχΩ′t

−
(

1 +
ε

3

)
ε′lχΩ′t

198

= (1− ε)(l − k)χΩ′t
+

(
2

3
ε−

(
1 +

ε

3

)
ε′
)
lχΩ′t

+ (1− ε)kχΩ′t
199

= (1− ε)(l − k)χΩ′t
+ (1− ε)kχΩ′t

≥ (1− ε)(l − k)χΩ′t
.200

201

This proves Ω′t ⊂ Ωt and therefore the claim (3.4).202

In the following we fix ε ≤ 1
12 . We first show stability.203

Proposition 3.4. For t ≤ tδm it holds that kδgcv,mχΩt ≤
tδm
ε2

.204

Proof of Proposition 3.4. It suffices to show that205

(3.5) Ψm(tδm)χΩt < Ψm(k)206

for all tδm
ε2
< k ≤ m

2 . By definition of ε, in this case tδm < k
2 . Now, on the one hand207

Ψm(tδm)χΩt208

=

∑m
j=tδm+1(gδm, uj,m)2

Rm(
1− tδm

m

)2 χΩt =

∑k
j=tδm+1(gδm, uj,m)2

Rm(
1− tδm

m

)2 χΩt +

∑m
j=k+1(gδm, uj,m)2

Rm(
1− tδm

m

)2 χΩt209

≤

(√∑k
j=tδm+1(gδm − g

†
m, uj,m)2

Rm +
√∑k

j=tδm+1(g†m, uj,m)2
Rm
)2

(
1− tδm

m

)2 χΩt +

(
1− k

m

1− tδm
m

)2

Ψm(k)210

≤

(
(1 + ε)

√
kδ +

√
tδmδ
)2

(
1− tδm

m

)2 +

(
m− k
m− tδm

)2

Ψm(k)211

≤

(
(1 + ε)

√
kδ +

√
ε2kδ

)2

(
1− tδm

m

)2 +

(
m− k
m− tδm

)2

Ψm(k) ≤ (1 + 2ε)2kδ2(
1− tδm

m

)2 +

(
m− k
m− tδm

)2

Ψm(k)212

213

Note that k ≤ m− k and tδm ≤ ε2k. Then, on the other hand,214

Ψm(k)χΩt ≥

(√∑m
j=k+1(gδm − g

†
m, uj,m)2

Rm −
√∑m

j=k+1(g†m, uj,m)2
Rm

)2

(
1− k

m

)2 χΩt215

≥

(
(1− ε)

√
m− kδ −

√
tδmδ
)2

(
1− k

m

)2 χΩt ≥

(
(1− ε)

√
m− kδ − ε

√
kδ
)2

(
1− k

m

)2 χΩt216

≥
(
(1− ε)

√
m− kδ − ε

√
m− kδ

)2(
1− k

m

)2 χΩt ≥
(1− 2ε)2(m− k)δ2(

1− k
m

)2 χΩt217

218

This manuscript is for review purposes only.



8 T. JAHN

We solve the second inequality for δ and plug into the first equation and obtain219

Ψm(tδm)χΩt ≤
(1 + 2ε)2kδ2(

1− tδm
m

)2 χΩt +

(
m− k
m− tδm

)2

Ψm(k)220

≤ (1 + 2ε)2k(
1− tδm

m

)2

(
1− k

m

)2
(1− 2ε)2(m− k)

Ψm(k) +

(
m− k
m− tδm

)2

Ψm(k)221

= Ψm(k)
m− k

(m− tδm)2

(
k

(
1 + 2ε

1− 2ε

)2

+m− k

)
222

= Ψm(k)

m2 −
(

2−
(

1+2ε
1−2ε

)2
)
mk −

((
1+2ε
1−2ε

)2
− 1

)
k2

m2 − 2mtδm + tδm
2223

< Ψm(k)

m2 −
(

2−
(

1+2ε
1−2ε

)2
)
mk

m2 − 2mtδm
< Ψm(k),224

225

since226

2−
(

1+2ε
1−2ε

)2

2

k

tδm
≥

2−
(

1+2ε
1−2ε

)2

2ε2
> 1227

228

for ε ≤ 1/12. This proves that229

min
tδm
ε2
≤k≤m

2

Ψm(k) > Ψm(tδm)230

and hence kδgcvχΩt = χΩt arg min0≤k≤m
2

Ψm(k) < tδm/ε
2.231

The upper bound for kδgcv,m directly yields an (up to a multiplicative constant optimal) bound232

for the (weak) data propagation error. We now deduce a bound for the (weak) approximation233

error also.234

Proposition 3.5. Let t ≤ tδm. If tδm ≤ m
2 it holds that235

m∑
j=kδgcv,m+1

(g†m, uj,m)2
RmχΩt ≤ Catδmδ2

236

with Ca := 35 + 34ε, and if tδm > m
2 it holds that237

m∑
j=kδgcv,m+1

(g†m, uj,m)2
RmχΩt ≤ C ′a

m∑
j=m

2
+1

(g†m, uj,m)2
Rm238

with C ′a = 12 + 8ε.239
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 9

Proof of Proposition 3.5. Since Ca ≥ 1 the assertion clearly holds for kδgcv,mχΩt > tδm.240

Now assume kδgcv,m < tδm and tδm ≤ m/2. Then, by definition of tδm,241

m∑
j=gδgcv,m+1

(g†m, uj,m)2
RmχΩt242

=

tδm∑
j=gδgcv,m+1

(g†m, uj,m)2
RmχΩt +

m∑
j=tδm+1

(g†m, uj,m)2
Rm ≤

tδm∑
j=kδgcv,m+1

(g†m, uj,m)2
RmχΩt + tδmδ

2
243

≤ 2

tδm∑
j=kgcv,m+1

(gδm, uj,m)2
Rm + 2

tδm∑
j=kδgcv,m+1

(gδm − g†m, uj,m)2
RmχΩt + tδmδ

2
244

≤ 2

tδm∑
j=kδgcv,m+1

(gδm, uj,m)2
Rm + (3 + 2ε)tδmδ

2.245

246

Because247

Ψm(kδgcv,m) =

∑m
j=kδgcv,m+1(gδm, uj,m)2

Rm(
1− kδgcv,m

m

)2 =

∑tδm
j=kδgcv,m+1

(gδm, uj,m)2
Rm(

1− kδgcv,m
m

)2 +

∑m
j=tδm+1(gδm, uj,m)2

Rm(
1− kδgcv,m

m

)2248

=

∑tδm
j=kδgcv,m+1

(gδm, uj,m)2
Rm(

1− kδgcv,m
m

)2 +

(
m− tδm

m− kδgcv,m

)2

Ψm(tδm)249

250
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10 T. JAHN

we conclude, since kδgcv,m is the minimizer of Ψm on 0 ≤ k ≤ m/2 and tδm ≤ m
2 ,251

tδm∑
j=kδgcv,m+1

(gδm, uj,m)2
RmχΩt252

=

(
1−

kδgcv,m

m

)2

Ψm(kδgcv,m)χΩt −
(

1− tδm
m

)2

Ψm(tδm)χΩt253

≤

(
1−

kδgcv,m

m

)2

Ψm(tδm)χΩt −
(

1− tδm
m

)2

Ψm(tδm)χΩt254

=
Ψm(tδm)

m

(
2tδm − 2kδgcv,m +

kδgcv,m
2 − tδm

2

m

)
χΩt ≤

2tδmΨm(tδm)

m
χΩt255

=
2tδm
m

∑m
j=tδm+1(gδm, uj,m)2

Rm(
1− tδm

m

)2256

≤ 4tδm
m

∑m
j=tδm+1(gδm − g

†
m, uj,m)2

RmχΩt +
∑m

j=tδm+1(g†m, uj,m)2
Rm(

1− tδm
m

)2257

≤ 4tδm
m

(1 + ε)(m− tδm)δ2 + tδmδ
2(

1− tδm
m

)2 ≤ 4(1 + ε)
tδmδ

2

1
22

= 16(1 + ε)tδmδ
2.258

259

Putting everything together we obtain260

m∑
j=kδgcv,m+1

(g†m, uj,m)2
RmχΩt ≤ 32(1 + ε)tδmδ

2 + (3 + 2ε)tδmδ
2 = (35 + 34ε)tδmδ

2 = Cat
δ
mδ

2.261

262

Finally, assume that kδgcv < tδm and tδm > m/2. Then, using m
2 δ

2 <
∑m

j=m
2

+1(g†m, uj,m)2
Rm in263

this case, we get264

m∑
j=kδgcv+1

(g†m, uj,m)2
RmχΩt ≤ 2

m∑
j=kδgcv+1

(g†m, uj,m)2
Rm + 2

m∑
j=kδgcv+1

(gδm − g†m, uj,m)2
265

≤ 2

(
1−

kδgcv

m

)2

Ψm(kδgcv) + 2(1 + ε)mδ2 ≤ 2

(
1−

kδgcv

m

)2

Ψm

(m
2

)
+ 2(1 + ε)mδ2

266

≤ 4

m∑
j=m

2
+1

(g†m, uj,m)2
Rm + 4

m∑
j=m

2
+1

(gδm − g†m, uj,m)2
Rm + 2(1 + ε)mδ2

267

≤ (12 + 8ε)
m∑

j=m
2

+1

(g†m, uj,m)2
Rm = C ′a

m∑
j=m

2
+1

(g†m, uj,m)2
Rm .268

269
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CONVERGENCE OF GENERALIZED CROSS-VALIDATION 11

We move on to the main proof. Note that270

(g†m, uj,m)Rm = (Kmf
†, uj,m)Rm = (f †,K∗muj,m) = σj,m(f †, vj,m).271

Splitting the error yields272

f δkδgcv,m,m
− PN⊥(Km)f

† =

kδgcv,m∑
j=1

(gδm, uj,m)Rm

σj,m
vj,m −

m∑
j=1

(f †, vj,m)vj,m273

=

kδgcv,m∑
j=1

(gδm − g
†
m, uj,m)Rm

σj,m
vj,m −

m∑
j=kδgcv,m+1

(f †, vj,m)vj,m.274

275

For the first term we obtain276

kδgcv,m∑
j=1

(
gδm − g

†
m, uj,m

)2

Rm

σ2
j,m

χΩt ≤
1

σ2
kgcv,m

kδgcv,m∑
j=1

(gδm − g†m, uj,m)2
RmχΩt ≤ (1 + ε)

kδgcv,mδ
2

σ2
kgcv,m

χΩt277

≤ 1 + ε

ε2

tδmδ
2

σ2
tδm
ε2

,278

279

and for the second,280

m∑
j=kδgcv,m+1

(f †, vj,m)χΩt =

sδm∑
j=kδgcv,m+1

(f †, vj,m)2χΩt +

m∑
j=sδm+1

(f †, vj,m)2
281

≤ 1

σ2
sδm,m

sδm∑
kδgcv,m+1

(g†, uj,m)2
RmχΩt +

sδmδ
2

σ2
sδm,m

282

≤ 1

σ2
sδm,m

m∑
kδgcv,m+1

(g†, uj,m)2
RmχΩt +

sδmδ
2

σ2
sδm,m

.283

284

Combining the preceding both estimates and using Proposition 3.5 together with the fact that285

tδm(f †) ≤ sδm(f †), we conclude286

∥∥∥f δkδgcv,m,m − PN⊥(Km)f
†
∥∥∥χΩt ≤

Ls
√
sδmδ + C ′a

√∑m
j=m

2
+1(g†m, uj,m)2

Rm

σ sδm
ε2
,m

287

288

with Ls :=
√

1+ε
ε +

√
Ca + 1 and the proof of Lemma 3.1 is finished.289

As a corollary of the preceding two propositions we formulate an oracle inequality for the290

empirical predictive error of our estimator. Note that it holds for arbitrary continuous kernel291

κ. For simplicity we exclude the case tδm(f †) > m
2 , that is when the balancing weak oracle is292

not in the range of the cross-validation.293

This manuscript is for review purposes only.



12 T. JAHN

Corollary 3.6. It holds that294

inf
f†

t≤tδm(f†)≤m
2

P

(
‖Kmf

δ
k,m − g†m‖Rm ≤

√
1

ε2
+ Ca

√
tδmδ

)
≥ 1− pε

(
2

3

ε

1 + ε
t

)
.295

We now use the concrete form of the singular value decomposition of the semi-discrete and296

the continuous operator to calculate the error to the continuous solution f † for the proof of297

Theorem 2.2. The following Lemma gives a first estimate for sδm uniformly over the source298

condition Xs,ρ.299

Lemma 3.7. It holds that300

sup
f∈Xν,ρ

sδm(f) ≤ Cs
(

(m+ 1)ρ2

δ2

) 1
5+8s

,301

sup
f∈Xν,ρ

tδm(f) ≤ Cs
(

(m+ 1)ρ2

δ2

) 1
5+8s

.302

303

with Cs given below in the proof.304

Proof of Lemma 3.7. The following auxiliary proposition is needed and will be proved in305

Appendix B.306

Proposition 3.8. For j = t(m+1)+s with m ∈ N, t ∈ N0 and s ∈ {0, ...,m}, k ∈ {1, ...,m},307

it holds that308

(vj , vk,m) =
√
m+ 1

σj
σk,m


1 for s = k and t even

−1 for s+ k = m+ 1 and t odd

0 else

309

By Proposition 3.8, it holds that310

vj,m =

∞∑
l=1

(vj,m, vl)vl311

=
√
m+ 1

σj
σj,m

vj −
√
m+ 1

∞∑
t=1

σ2t(m+1)−jv2t(m+1)−j − σ2t(m+1)+jv2t(m+1)+j

σj,m
.312

313
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Therefore, with f † =
∑∞

j=1 ϕ(σ2
j )(h, vj)vj =:

∑∞
j=1 fjvj , we obtain314

(f, vj,m)315

=
∞∑
l=1

fl(vl, vj,m) =

√
m+ 1

σj,m

(
σjfj −

∞∑
t=1

(
σ2t(m+1)−jf2t(m+1)−j − σ2t(m+1)+jf2t(m+1)+j

))
316

= ϕs(σ
2
j,m)
√
m+ 1

σjϕs(σ
2
j )

σj,mϕs(σ2
j,m)
∗

(
(h, vj)317

−
∞∑
t=1

σ2t(m+1)−jϕs(σ2t(m+1)−j)(h, v2t(m+1)−j)− σ2t(m+1)+jϕs(σ2t(m+1)+j)(h, v2t(m+1)+j)

σjϕs(σ2
j )

)
.318

319

Using the Cauchy-Schwartz-inequality gives320

(
(h, vj)321

−
∞∑
t=1

σ2t(m+1)−jϕs(σ2t(m+1)−j)(h, v2t(m+1)−j)− σ2t(m+1)+jϕs(σ2t(m+1)+j)(h, v2t(m+1)+j)

σjϕs(σ2
j )

)2

322

≤ 2(h, vj)
2

323

+2

 ∞∑
t=1

(
σ2

2t(m+1)−j

σ2
j

) s+1
2

|(h, v2t(m+1)−j)|+

(
σ2

2t(m+1)+j

σ2
j

) s+1
2

|(h, v2t(m+1)+j)|

2

.324

325

For the second term, we further obtain326

 ∞∑
t=1

(
σ2

2t(m+1)−j

σ2
j

) s+1
2

|(h, v2t(m+1)−j)|+

(
σ2

2t(m+1)+j

σ2
j

) s+1
2

|(h, v2t(m+1)+j)|

2

327

=

 ∞∑
t=1

(
1

2tm+1
j − 1

)2s+2

|(h, v2t(m+1)−j)|+

(
1

2tm+1
j + 1

)2s+2

|(h, v2t(m+1)+j)|

2

328

≤

 ∞∑
t=1

(
1

2tm+1
j − 1

)4s+4

+

(
1

2tm+1
j + 1

)4s+4
( ∞∑

t=1

(h, v2t(m+1)−j)
2 + (h, v2t(m+1)+j)

2

)
329

≤2−3−4s

( ∞∑
t=1

t−4s−4

)( ∞∑
t=1

(h, v2t(m+1)−j)
2 + (h, v2t(m+1)+j)

2

)
330

≤ 1

24s(4s+ 3)

( ∞∑
t=1

(h, v2t(m+1)−j)
2 + (h, v2t(m+1)+j)

2

)
331

332
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14 T. JAHN

and finally333 (
(h, vj)334

−
∞∑
t=1

σ2t(m+1)−jϕs(σ2t(m+1)−j)(h, v2t(m+1)−j)− σ2t(m+1)+jϕs(σ2t(m+1)+j)(h, v2t(m+1)+j)

σjϕs(σ2
j )

)2

335

≤2

(
(h, vj)

2 +

∞∑
t=1

(h, v2t(m+1)−j)
2 + (h, v2t(m+1)+j)

2

)
.336

337

Moreover, we use sin2(x) ∈ [0, 1] and sin(x) ≤ x and obtain338

(m+ 1)
σ2
jϕ

2
s(σ

2
j )

σ2
j,mϕ

2
s(σ

2
j,m)

= (m+ 1)

(
σ2
j

σ2
j,m

)s+1

= (m+ 1)

 16(m+ 1)3 sin4
(

jπ
2(m+1)

)
π4j4

(
1− 2

3 sin2
(

jπ
2(m+1)

))
s+1

339

≤ (m+ 1)

(
3

(m+ 1)

)s+1

=
3s+1

(m+ 1)s
.340

341

Putting both estimates together yields342

m∑
j=k+1

(f, vj,m)2
343

≤ 2 ∗ 3s+1
ϕ2
s

(
σ2
k+1,m

)
(m+ 1)2s

m∑
j=k+1

(
(h, vj)

2 +

∞∑
t=1

(h, v2t(m+1)−j)
2 + (h, v2t(m+1)+j)

2

)
344

≤ 2 ∗ 3s+1

(m+ 1)s
ϕ2
s

 1− 2
3 sin2

(
(k+1)π
2(m+1)

)
16(m+ 1)3 sin4

(
(k+1)π
2(m+1)

)
 ∞∑

l=k+1

(h, vl)
2

345

≤ 2 ∗ 3s+1

(m+ 1)s
ϕ2
s

(
m+ 1

24(k + 1)4

)
ρ2 =

3s+1

24s−1
k−4sρ2,(3.6)346

347

where we used that sin(x) ≥ 2
πx for 0 ≤ x ≤ π

2 in the third step and the fact that for every348

l ≥ m+ 1 there is at most one pair (j, t) such that l = 2t(m+ 1)− j or l = 2t(m+ 1) + j in349

the second step. Therefore, on the one hand,350

sup
f†∈Xs,ρ

∞∑
j=k+1

(f †, vj,m)2 ≤ 3s+1

24s−1
k−4sρ2,351

352

while on the other hand353

kδ2

σ2
k,m

=
16(m+ 1)3 sin4

(
kπ

2(m+1)

)
1− 2

3 sin2
(

kπ
2(m+1)

) kδ2 ≤ 16π4k4

1
324(m+ 1)

kδ2 = 3π4 k5δ2

m+ 1
.354

355
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Consequently,356

3π4 kδ2

m+ 1

!
≤ 3s+1

24s−1
k−4sρ2

357

=⇒ k ≤ Cs
(

(m+ 1)ρ2

δ2

) 1
5+4s

358
359

with360

(3.7) Cs :=

(
3s

24s−1π4

) 1
5+4s

.361

We conclude362

sup
f†∈Xs,ρ

sδm(f †) ≤ Cs
(

(m+ 1)ρ2

δ2

) 1
5+4s

.363

With similar arguments we also get364

sup
f†∈Xs,ρ

tδm(f †) ≤ Cs
(

(m+ 1)ρ2

δ2

) 1
5+4s

.365

For tδm ≥ t we therefore obtain, with (3.6),366

‖f δkδgcv,m,m − PN (Km)⊥f
†‖χΩt367

≤
Ls
√
sδmδ + Ca

√∑m
j=m

2
+1(g†m, uj,m)2

Rm

σ sδm
ε2
,m

(3.8)368

≤
√

3Lsπ
2

ε4
sδm

5
2

δ√
m+ 1

+ Ca
σm

2
+1,m

σ sδm
ε2
,m

√√√√ m∑
j=m

2
+1

(f †, vj,m)2(3.9)369

≤
√

3C
5
2
s Lsπ

2

ε4

(
(m+ 1)ρ2

δ2

) 5
2(5+4s) δ√

m+ 1
+ 3
√

2Ca

√√√√ m∑
j=m

2
+1

(f †, vj,m)2370

= L′s

(
δ√
m+ 1

) 4s
5+8s

ρ
5

5+4s + L′′s
ρ

m2s
,(3.10)371

372

with373

(3.11) Ls :=

√
3C

5
2
s Lsπ

2

ε4
and L′′s :=

3s+2

24s− 3
2

Ca.374

Finally, we treat the discretization error ‖PN⊥(Km)f
† − f †‖. First, by definition of κ we see375

that the span < v1,m, ..., vm,m > is equal to the space of piece-wise linear functions on the376
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16 T. JAHN

grid ξ1,m, ..., ξm,m, and f †m = PN (Km)⊥f
† is the L2-projection of f † onto that space. The377

error depends on classical smoothness of f † and we now relate the Hölder source condition to378

classical smoothness.379

Proposition 3.9. Assume that f † ∈ Xs,ρ. If s > 3
4 , then f † is differentiable. if s > 5

4 , then380

f † is twice differentiable.381

Proof of Proposition 3.9. First f † ∈ Xs,ρ implies that there exists h ∈ L2 with ‖h‖ ≤ ρ,382

such that f † =
∑∞

j=1 ϕs(σ
2
j )(h, vj)vj . Differentiating the sum formally term-by-term, we383

obtain384

√
2

∞∑
j=1

πjϕs(σ
2
j )(h, vj) cos (πj·) .385

We now show that this series converges uniformly in x. Indeed, using Cauchy-Schwartz,386

∞∑
j=1

πjϕs(σ
2
j )|(h, vj)|| cos(jπx)| ≤ π

√√√√ ∞∑
j=1

(h, vj)2

√√√√ ∞∑
j=1

j2ϕ2
s(σ

2
j ) ≤ π

1+2sρ

√√√√ ∞∑
j=1

j2−4s,387

388

and the right hand side converges whenever s > 3
4 , uniformly in x. Consequently, it holds389

that390

(f †)′ =
√

2

∞∑
j=1

jπϕs(σ
2
j )(h, vj) cos(πj·).391

Similar, differentiating f † twice formally term-by-term, we get392

−
√

2
∞∑
j=1

j2π2ϕs(σ
2
j )(h, vj)vj(·),393

and394

∞∑
j=1

π2j2ϕs(σ
2
j )|(h, vj)||vj(x)| ≤ π2

√√√√ ∞∑
j=1

(h, vj)2

√√√√ ∞∑
j=1

j4ϕ2
s(σ

2
j ) ≤ π

2+2sρ

√√√√ ∞∑
j=1

j4−4s,395

396

where the right hand side converges uniformly in x whenever s > 5
4 .397

Proposition 3.9 and classical estimates for the linear interpolating spline then yield the fol-398

lowing bound for the discretization error,399

‖PN (Km)⊥f
† − f †‖L2 ≤


‖(f†)′‖L2√

2(m+1)
, for s ≥ 3

4

‖(f†)′′‖L2

2(m+1)2
, for s ≥ 5

4

.(3.12)400

401

Finally, plugging the estimates (3.10) and (3.12) into the decomposition402

‖f δkδgcv,m − f
†‖χΩt ≤ ‖f δkδgcv,m − PN (Km)⊥f

†‖χΩt + ‖PN (Km)⊥f
†
m − f †‖χΩt403

404

and applying Lemma 3.1 and Lemma 3.7 finishes the proof of Theorem 2.2.405
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4. Numerical experiments. We now implement GCV and apply it to the integral equation406

(2.1). First, we set D = 214 = 16384 and fix, for all simulations, Xj i.i.d. standard Gaussian407

random variables, j = 1, ..., D. Based on this we define three exact solutions408

f i,† :=

D∑
j=1

σsij Xjvj409

with si ∈
{

1
4 ,

3
4 ,

5
4

}
varying the smoothness of the solution. We define the corresponding exact410

data as411

gi,†m : =
(
Kf i,†(ξl,m)

)m
l=1

=
√

2

 D∑
j=1

(jπ)2(si+1)Xj sin (jπξl,m)

m

l=1

∈ Rm.412

413

We generate the perturbed data414

(4.1) gi,δm := gi,†m + δ

Z1

...
Zm

 ,415

with Z1, ..., Zm i.i.d. standard Gaussian, sampled anew in every simulation loop. We first416

give formulas to calculate the error of our estimator. Using Proposition 3.8, the projection417

(f i,†, vk,m) =
∑D

j=1 σ
si+1
j Xj(vj , vk,m) can be calculated exactly for k = 1, ...,m, and we define418

f i,†m :=
∑m

j=1(f i,†, vj,m)vj,m. We have419

‖f δk,m − f i,†m ‖2 =
k∑
j=1

(
(gi,δm , uj,m)Rm

σj,m
− (f i,†, vj,m)

)2

+
m∑

j=k+1

(f i,†, vj,m)2
420

421

and422

f i,†m − f i,† =
m∑
j=1

(f i,†, vj,m)vj,m −
D∑
l=1

(f i,†, vl)vl423

=
D∑
l=1

 m∑
j=1

(f i,†, vj,m)(vj,m, vl)− (f i,†, vl)

 vl +
∞∑

l=D+1

m∑
j=1

(f i,†, vj,m)(vj,m, vl)vl.424

425

Thus, by orthogonality (‖f i,δk − f
i,†‖2 = ‖f i,δk − f

i,†
m ‖2 + ‖f i,†m − f i,†‖2),426

‖f δk,m − f i,†‖2427

=
k∑
j=1

(
(gi,δm , uj,m)Rm

σj,m
− (f i,†, vj,m)

)2

+

m∑
j=k+1

(f i,†, vj,m)2
428

+

D∑
j=1

 m∑
j=1

(f i,†, vj,m)(vj,m, vl)− (f i,†, vl)

2

+

∞∑
l=D+1

 m∑
j=1

(f i,†, vj,m)(vj,m, vl)

2

429

430
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and we define, suppressing the dependence on δ and m, i, the approximative error of the431

estimator:432

ek : =

 k∑
j=1

(
(gi,δm , uj,m)Rm

σj,m
− (f i,†, vj,m)

)2

+
m∑

j=k+1

(f i,†, vj,m)2(4.2)433

+

D∑
j=1

 m∑
j=1

(f i,†, vj,m)(vj,m, vl)− (f i,†, vl)

2
1
2

.(4.3)434

435

In the simulations we calculate the computable GCV estimator436

(4.4) kgcv := arg min
0≤k≤m

2

∑m
j=k+1(gi,δm , uj,m)Rm

(1− k
m)2

,437

and the in practice unfeasible optimal estimator438

(4.5) kopt := arg min
0≤k≤m

ek,439

for reference. The error we make in approximating ‖f δk,m− f †‖ by (4.2) can be bounded from440

above as follows (where expectation is with respect to the X ′js):441

E
[∣∣∣e2

k − ‖f
i,δ
k − f

i,†‖2
∣∣∣]442

=
∞∑

l=D+1

E

 m∑
j=1

σsij Xj(vj,m, vl)

2 =
∞∑

l=D+1

m∑
j=1

σ2si
j (vj,m, vl)

2
443

≤
∞∑

l=D+1

max
j=1,...,m

σ2si
j (m+ 1)

σ2
l

σ2
j,m

≤ 3 max
j=1,...,m

σ2si−2
j

∞∑
l=D+1

σ2
l ≤

3

π4

1

D3
max

j=1,...,m
σ2si−2
j444

445

and so446

δ2
i :=

3

π4


(mπ)3

D3 , for s = 1
4

mπ
D3 , for si = 3

4
1

πD3 , for si = 5
4

.447

448

is an upper bound for E
[∣∣∣e2

k − ‖f
i,δ
k − f

i,†‖2
∣∣∣]. For our choices of m and D we thus obtain449

δi �


2−9 , for si = 1

4

2−17 , for si = 3
4

2−21 , for si = 5
4

.450

We will see below in the error plots that δi is of smaller order than ek in all cases. We consider451

different noise levels δ, which we determine implicitly via the signal-to-noise ratio (SNR). The452

This manuscript is for review purposes only.



CONVERGENCE OF GENERALIZED CROSS-VALIDATION 19

SNR is defined as453

SNR :=
‖signal‖
‖noise‖

=
‖gi,†‖m√
mδ

.454

For each exact solution f i,† and each SNR, we generate 200 independent noisy measurements455

gδm (in (4.1)), and calculate k· along with the corresponding errors ek· , where · ∈ {gcv, opt},456

see (4.2) − (4.5). We fix the number of measurements as m = 29 and let SNR vary over457

{1, 10, ..., 108} (that is we effectively vary the noise level δ). The results are presented in458

Figure 1. In the left column we visualize the statistics as box plots and in the right column459

we give the corresponding sample means and sample standard deviations in tabular form. In460

each box plot, the upper and lower edge give the 75- respective 25% quantile of the statistic461

ek· for · = gcv (red) and · = opt (blue). The median of the statistic is given as a red bar inside462

the boxes. The whiskers extend to the samples whose distance to the upper respectively lower463

edge is less than six times the height of the box. All samples which fall outside of the whiskers464

are plotted individually as red crosses (outliers). Outliers above the upper limit 1 are plotted465

just above, retaining their relative order, but not given the exact value.466

We clearly observe the convergence of the error, as the noise level decreases (that is467

as the SNR increases). Hereby, the convergence rate of the generalized cross-validation is468

comparable to the one of the optimal rate at least for small noise levels. For larger noise469

levels (smaller SNR) the statistic for the generalized cross-validation is rather spread out.470

Moreover we observe saturation of the error for rougher solutions with smoothness parameter471

si ∈ {1/4, 3/4}, due to a dominating discretization error. The difference between ekδgcv and472

ekδopt
in the saturation regime is due to the constraint kδgcv ≤ m

2 . Note that in all cases the error473

for the largest SNR is still of higher order than the errors δi we make in the approximation.474

5. Concluding remarks. In this article we deduced rigorously a non-asymptotic error475

bound (in probability) for GCV as a parameter choice rule for the solution of a specific ill-476

posed integral equation. In particular we verified the optimality of the rule in the mini-max477

sense, remarkably without imposing a self-similarity condition onto the unknown solution,478

which up to our knowledge so far was required for any rigorous and consistent optimality479

result for heuristic parameter choice rules in the context of ill-posed problems. We conclude480

with listing three possible further research directions. First, the findings could be extended481

to integral equations with a general kernel κ. As mentioned above, see e.g. Corollary 3.6, the482

probabilistic analysis of the rule remains largely unchanged. However, it remains to analyze483

the discretization error given by the relation between the decomposition of the continuous484

operator K and the semi-discrete one Km. In particular, the design matrix Tm cannot be485

calculated exactly in this case and has to be approximated by, e.g., a quadrature rule, and the486

estimator should be based on the decomposition of the quadrature approximation. Second,487

instead of spectral cut-off other regularization methods, like Tikhonov regularization or some488

iterative scheme should be considered. This will require non-trivial changes of the probabilistic489

analysis of GCV. Finally, it would be interesting to extend the analysis to more contemporary490

settings, for example non-parametric regression based on kernelized spectral-filter algorithms.491

492
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Appendix A. Proof of Lemma 2.1.493

Proof of Lemma 2.1. It is well-known that in our setting the kernel is the Green’s function494

of the Laplace equation, i.e., (Kf)′′ = −f . It is then straight forward to check that the495

solutions of the differential equation are eigenfunctions of K, which yield σj and vj . While496

the discretization of the differential equation has been analyzed in detail, see, e.g., [4], we497

have not found results for the corresponding discretization of the integral equation in the498

literature. We first show that the singular value decomposition of the semi-discrete Km is499

strongly related to the eigenvalue decomposition of the symmetric m ×m matrix (Tm)ij :=500 ∫
κ(ξi,m, y)κ(ξj,m, y)dy = ξi(1−ξl)

6 (−ξ2
i − ξ2

j + 2ξj). Indeed, since K∗mα =
∑m

j=1 αjκ(ξj,m, ·) for501

α ∈ Rm, we obtain for fα :=
∑m

j=1 αjκ(ξj,m, ·) ∈ L2 and λ ∈ R the relation502

K∗mKmfα = λfα ⇐⇒ Tmα = λα.503504

and consequently we need to find the eigenvalue decomposition of Tm. As auxiliary tools, we505

need the following m×m-dimensional symmetric matrices:506

∆m : =


2 −1 ...
−1 2 −1 ...
...

. . .

−1 2 −1
−1 2

 , Rm :=


4 1 ...
1 4 1 ...
...

. . .

1 4 1
1 4

 , Sm :=
(
κ(ξs,m, ξt,m)

)
st

(A.1)

507

508

Note that (m+ 1)2∆m is the discretization of the second derivative via centered second order509

finite differences on the homogeneous grid ξ1,m, ..., ξm,m and (Rm)ij = 6
m+1(Λmi ,Λ

m
j )L2(0,1),510

with the hat functions Λi(x) := (x − ξi−1,m)(m + 1)χ(ξi−1,m,ξi,m](x) + (ξi+1,m − x)(m +511

1)χ(ξi,m,ξi+1,m](x). First we show that Tm and the matrices in (A.1) have mutual eigenvectors512

(A.2) zk,m :=

√
2

m+ 1

(
sin
(√
λkξ1m

)
... sin

(√
λkξmm

))T ∈ Rm,513

with k = 1, ...,m. Using the polar identity 2i sin(x) = eix − e−ix and the closed-form ex-514

pression for the partial geometric series with q = e
ikπ
m+1 , one sees that ‖zk,m‖2Rm = 1. By515

exploiting the polar identity again one easily verifies that zk,m are the eigenvectors of the516

circulant matrices ∆m and Rm, and moreover that ρk,m := 4 + 2 cos
(

kπ
m+1

)
are the cor-517

responding eigenvalues for Rm. Moreover, slightly lengthy but straightforward computa-518

tions yield ∆mSm − Sm∆m = 0 = ∆mTm − Tm∆m, which implies that the zk,m are also519

the eigenvectors of Sm and Tm. Next we show that the eigenvalues µk,m of Sm are given520

by µk,m = (−1)k+1 cos
( √

λk
2(1+m)

)
sin
( √

λk
2(1+m)

)−1
sin
(√

λk
1+m

)−1
. Using the polar identity for521

q = e
ikπ

2(m+1) and522

m∑
j=1

qjj =
q + q1+m(−1−m+mq)

(1− q)2
523

524
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yields525

m∑
l=1

sin

( √
λkl

m+ 1

)
l =

m+ 1

2
(−1)k+1

cos
( √

λk
2(m+1)

)
sin
( √

λk
2(m+1)

) ,526

527

and because sin (kπm/(m+ 1)) = sin (kπ/(m+ 1)), the µk,m can be computed with the defin-528

ing relation of the eigenvalues:529

µk,m sin

(√
λkm

m+ 1

)
=

√
2

m+ 1
µk,m(zk,m)m =

√
2

m+ 1
(Smzk,m)m(A.3)530

=
m∑
l=1

ξl,m(1− ξm,m) sin

( √
λkl

m+ 1

)
=

(−1)k+1

2(m+ 1)

cos
( √

λk
2(m+1)

)
sin
( √

λk
2(m+1)

) .(A.4)531

532

To finally determine the eigenvalues of σ2
k,m of Tm we set wk,m :=

∑m
l=1(zk,m)lκ(ξl,m, ·) and533

normalize in two ways. First,534

‖wk,m‖2 =
m∑

l,l′=1

(zk,m)l(zk,m)l′(κ(ξl,m, ·), κ(ξl′,m, ·)) = zTk,mTmzk,m = σ2
k,m.535

536

Second, expanding κ(ξj,m, ·) =
∑m

i=1 κ(ξl,m, ξi,m)Λi(·) in terms of the hat functions,537

‖wk,m‖2538

= ‖
m∑
l=1

(zk,m)l

m∑
i=1

κ(ξl,m, ξi,m)Λi‖2 = ‖
m∑
i=1

(Smzk,m)i Λmi ‖2 = µ2
k,m‖

m∑
i=1

(zk,m)iΛ
m
i ‖2(A.5)539

= µ2
k,m

m∑
i,i′=1

(zk,m)i(zk,m)i′ (Λ
m
i ,Λ

m
i′ ) = µ2

k,m

1

6(m+ 1)

m∑
i=1

(zk,m)i (Rmzk,m)i540

= µ2
k,m

4 + 2 cos
(√

λk
m+1

)
6(m+ 1)

.(A.6)541
542

Putting (A.3) and (A.6) together, using sin(2x) = 2 sin(x) cos(x) and cos(2x) = 1− 2 sin2(x),543

then yields the explicit formulas for the eigenvalues σk,m and the left singular functions vk,m.544

Finally, we calculate the right singular vectors uk,m:545

(uk,m)j =
1

σk,m
(Kmvk,m)(ξj,m) =

1

σk,m

m∑
l=1

(zk,m)l(Kmκ(ξl,m, ·))(ξj,m)546

=
1

σk,m

m∑
l=1

(Tm)j,l(zk,m)l = (zk,m)j =

√
2

m+ 1
sin(kπξj,m).547

548

Appendix B. Proof of Proposition 3.8 .549
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Proof of Proposition 3.8. We need the following auxiliary identity: For m ∈ N, t ∈ N0 and550

k ∈ {1, ...,m}, s ∈ {0, ...,m} and j = t(m+ 1) + s there holds551

m∑
l=1

sin

(
jπl

m+ 1

)
sin

(
kπl

m+ 1

)
=


m+1

2 for s = k and t even

−m+1
2 for s+ k = m+ 1 and t odd

0 else

.(B.1)552

553

We first prove the claim. With q1 = exp (i(j + k)π/(m+ 1)) and q2 = exp (i(j − k)π/(m+ 1))554

and the polar identity we obtain555

m∑
l=1

sin

(
jπl

m+ 1

)
sin

(
kπl

m+ 1

)
=

1

4

m∑
l=1

(
ql2 + q−l2 − (ql1 + q−l1 )

)
.556

557

For q ∈ {q1, q2}, if q 6= 0, 1, if holds that558

m∑
i=1

(qi + q−i) = −1 +
qm+ 1

2 − q−(m+ 1
2)

q
1
2 − q−

1
2

= −1 + (−1)k+j(−1) = −(1 + (−1)k+j)559

560

since qm+ 1
2 = (−1)k+jq−

1
2 . If t is even and s = k, then j − k = t(m + 1) which implies561

that q2 = 1, while, since 0 < 2k < 2(m + 1), the sum j + k = t(m + 1) + 2k cannot be a562

multiple of 2(m+ 1), therefore q1 6= 0, 1 and thus, since j+k is even,
∑m

l=1 sin
(
jπl
m+1

)
= m+1

2 .563

Similar, if t is odd and s + k = m + 1, then j + k = (t + 1)(m + 1) implies q1 = 1, and564

now j − k = t(m + 1) + s − k = (t + 1)(m + 1) − 2k is not a multiple of 2(m + 1), which565

yields q2 6= 0, 1. Since j + k is again even we deduce
∑m

l=1 sin
(
jπl
m+1

)
sin
(
kπl
m+1

)
= −m+1

2 . In566

any other case it hold that q1, q2 6= 0, 1 and therefore
∑m

l=1 sin
(
jπl
m+1

)
sin
(
kπl
m+1

)
= 0, which567

finishes the proof of the claim (B.1). We come to the proof of the proposition. As above we568

can write j = t(m+1)+s with t ∈ N0 and s ∈ {0, ...,m}. Using the claim (B.1) together with569

σj,m
m+ 1

2
(vk, vj,m) =

(
sin(

√
λk·),

m∑
l=1

sin
(√

λjξl)κ(ξl,m, ·)
))

570

=
m∑
l=1

sin
(√

λjξl

)(
sin(

√
λk·), κ(ξl,m, ·)

)
= σk

m∑
l=1

sin
(√

λjξl

)
sin
(√

λkξl

)
571

572

concludes the proof.573
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Figure 1. Left column: Boxplots of the errors for 200 independent runs, with different signal-to-noise
ratios (SNR). Right column: The corresponding sample mean and sample standard deviation of the errors.
First row: rough solution. Second row: differentiable solution. Third row: twice differentiable solution.
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