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This paper addresses the linear independence of T-splines in three space dimensions.
We give an abstract definition of analysis-suitability, and prove that it is equivalent to dual-
compatibility, wich guarantees linear independence of the T-spline blending functions. In
addition, we present a local refinement algorithm that generates analysis-suitable meshes
and has linear computational complexity in terms of the number of marked and generated
mesh elements.
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1. Introduction

T-splines [1] have been introduced as a free-form geometric technology and were the first tool of interest
in Adaptive Isogeometric Analysis (IGA). Although they are still among the most common techniques
in Computer Aided Design, T-splines provide algorithmic difficulties that have motivated a wide range
of alternative approaches to mesh-adaptive splines, such as hierarchical B-splines [2, 3], THB-splines
[4], LR splines [5], hierarchical T-splines [6], amongst many others.

One major difficulty using T-splines for analysis has been pointed out by Buffa, Cho and Sangalli
[7], who showed that general T-spline meshes can induce linear dependent T-spline blending functions.
This prohibits the use of T-splines as a basis for analytical purposes such as solving a discretized partial
differential equation. This insight motivated the research on T-meshes that guarantee the linear inde-
pendence of the corresponding T-spline blending functions, referred to as analysis-suitable T-meshes.
Analysis-suitability has been characterized in terms of topological mesh properties [8] and, in an alter-
native approach, through the equivalent concept of Dual-Compatibility [9]. While Dual-Compatibility
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has been characterized in arbitrary dimensions [10], Analysis-Suitability as a topological criterion for
linear independence of the T-spline functions is only available in the two-dimensional setting.

In this paper, we introduce 3D analysis-suitable T-splines, and propose an algorithm for their local
refinement, based on our preliminary work in [11]. In addition, we generalize the algorithm from [11]
by introducing a grading parameter m that represents the number of children in a single elements’
refinement. This allows the user to fully control how local the refinement shall be. Choosing m large
yields meshes with very local refinement, while a small m will cause more wide-spreaded refinement.
The former yields a smaller number of degrees of freedom, while the latter reduces the overlap of the
basis functions and hence provides sparser Galerkin and collocation matrices.

This paper is organized as follows. Section 2 defines the initial mesh and basic refinement steps and
introduces our new refinement algorithm. Section 3 then characterizes the class of ‘admissible meshes’
generated by this algorithm. In Section 4 we give a brief definition of trivariate odd-degree T-splines.
In Section 5 we give an abstract definition of Analysis-Suitability in the 3D setting and prove that all
admissible meshes are analysis-suitable. In Section 6 we define dual-compatible meshes, and prove that
analysis-suitability and dual-compatibility are equivalent, and that all dual-compatible meshes provide
linear independent T-spline functions. (Figure 1 illustrates this “long way” to linear independence.)
Section 7 proves linear complexity of the refinement procedure, and conclusions and an outlook to
future work are finally given in Section 8.

Symbol Section

refinement algorithm refp,m 2

admissible meshes Ap,m 3

analysis-suitable meshes ASp 5

dual-compatible meshes DCp 6

refp,m(Ap,m)
Theorem 3.3⊆ Ap,m Theorem 5.3⊆ ASp Theorem 6.6

= DCp Theorem 6.7⊆
[

meshes with linearly
independent T-splines

]

Figure 1: How we prove linear independence of the T-splines induced by the generated meshes.

2. Adaptive mesh refinement

This section defines the new refinement algorithm and characterizes the class of meshes which are gen-
erated by this algorithm. Tha algorithm is essentially a 3D version of the one introduced in [11], with
the additional feature of variable grading. The initial mesh is assumed to have a very simple structure.
In the context of IGA, the partitioned rectangular domain is referred to as index domain. This is, we
assume that the physical domain (on which, e.g., a PDE is to be solved) is obtained by a continuous
map from the active region (cf. Section 6), which is a subset of the index domain. Throughout this
paper, we focus on the mesh refinement only, and therefore we will only consider the index domain.
For the parametrization and refinement of the T-spline blending functions, we refer to [12].

Definition 2.1 (Initial mesh, element). Given X̃, Ỹ , Z̃ ∈ N, the initial mesh G0 is a tensor product mesh
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consisting of closed cubes (also denoted elements) with side length 1, i.e.,

G0 B
{
[x − 1, x] × [y − 1, y] × [z − 1, z] | x ∈ {1, . . . , X̃}, y ∈ {1, . . . , Ỹ}, z ∈ {1, . . . , Z̃}

}
.

The domain partitioned by G0 is denoted by Ω B (0, X̃) × (0, Ỹ) × (0, Z̃).

The key property of the refinement algorithm will be that refinement of an element K is allowed
only if elements in a certain neighbourhood are sufficiently fine. The size of this neighbourhood,
which is denoted (p,m)-patch and defined through the definitions below, depends on the size of K, the
polynomial degree p = (p1, p2, p3) of the T-spline functions, and the grading parameter m. For the
sake of legibility, we assume that p1, p2, p3 are odd and greater or equal to 3. (For comments on even
polynomial degrees, see Section 8.)

Definition 2.2 (Level). The level of an element K is defined by

`(K) B − logm |K|,
where m is the manually chosen grading parameter, i.e., the number of children in a single elements’
refinement, and |K| denotes the volume of K. This implies that all elements of the initial mesh have
level zero and that the refinement of an element K yields m elements of level `(K) + 1.

Definition 2.3 (Vector-valued distance). Given x ∈ Ω and an element K, we define their distance as the
componentwise absolute value of the difference between x and the midpoint of K,

Dist(K, x) B abs
(
mid(K) − x

) ∈ R3,

with abs(y) B
(|y1|, |y2|, |y3|).

For two elements K1,K2, we define the shorthand notation

Dist(K1,K2) B abs
(
mid(K1) −mid(K2)

)
.

Definition 2.4. Given an element K, a grading parameter m ≥ 2 and the polynomial degree p =

(p1, p2, p3), we define the open environment

Up,m(K) B {x ∈ Ω | Dist(K, x) < Dp,m(`(K))},
where

Dp,m(k) B



m−k/3 (
p1 + 3

2 , p2 + 3
2 , p3 + 3

2
)

if k = 0 mod 3,

m−(k−1)/3 ( p1+3/2
m , p2 + 3

2 , p3 + 3
2
)

if k = 1 mod 3,

m−(k−2)/3 ( p1+3/2
m ,

p2+3/2
m , p3 + 3

2
)

if k = 2 mod 3.

The (p,m)-patch of K is defined as the set of all elements that intersect with environment of K,

Gp,m(K) B {K′ ∈ G | K′ ∩ Up,m(K) , ∅}.
Note as a technical detail that this definition does not require that K ∈ G. See also Figure 2 for
examples.

Remark. By definition, the size of the (p,m)-patch of an element K scales linearly with the size of K
and with the polynomial degree p. Since Dp,m(k) is decreasing in m, choosing m large will cause small
(p,m)-patches and hence more localized refinement.
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Figure 2: Examples for the (p,m)-patch of an element K, for p = (3, 3, 3), m = 3 and `(K) = 2, 3, 4.

In the subsequent definitions, we will give a detailed description of the elementary subdivision steps
and then present the new refinement algorithm.

Definition 2.5 (Subdivision of an element). Given an arbitrary element K = [x, x+x̃]×[y, y+ỹ]×[z, z+z̃],
where x, y, z, x̃, ỹ, z̃ ∈ R and x̃, ỹ, z̃ > 0, we define the operators

subdivx(K) B
{
[x +

j−1
m x̃, x +

j
m x̃] × [y, y + ỹ] × [z, z + z̃] | j ∈ {1, . . . ,m}},

subdivy(K) B
{
[x, x + x̃] × [y +

j−1
m ỹ, y +

j
m ỹ] × [z, z + z̃] | j ∈ {1, . . . ,m}},

and subdivz(K) B
{
[x, x + x̃] × [y, y + ỹ] × [z +

j−1
m z̃, z +

j
m z̃] | j ∈ {1, . . . ,m}}.

These operators will be used for x-, y-, and z-orthogonal subdivisions in the refinement procedure.
Their output is illustrated in Figure 3.

Definition 2.6 (Subdivision). Given a mesh G and an element K ∈ G, we denote by subdiv(G,K) the
mesh that results from a level-dependent subdivision of K,

subdiv(G,K) B G \ {K} ∪ child(K),

with child(K) B



subdivx(K) if `(K) = 0 mod 3,
subdivy(K) if `(K) = 1 mod 3,
subdivz(K) if `(K) = 2 mod 3.

Figure 3: Elementary subdivision routines for m = 3: x-orthogonal subdivision of an element with
level 0 (left), y-orthogonal subdivision of an element with level 1 (middle), and z-orthogonal
subdivision of an element with level 2 (right).

Definition 2.7 (Multiple subdivisions). We introduce the shorthand notation subdiv(G,M) for the sub-
division of several elementsM = {K1, . . . ,KJ} ⊆ G, defined by successive subdivisions in an arbitrary
order,

subdiv(G,M) B subdiv(subdiv(. . . subdiv(G,K1), . . . ),KJ).
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We will now define the new refinement algorithm through the subdivision of a superset closp,m(G,M)
of the marked elementsM. In the remaining part of this section, we characterize the class of meshes
generated by this refinement algorithm.

Algorithm 2.8 (Closure). Given a mesh G and a set of marked elements M ⊆ G to be refined, the
closure closp,m(G,M) ofM is computed as follows.
∼M BM

repeat
for all K ∈ ∼M do∼M B ∼M∪ {

K′ ∈ Gp,m(K) | `(K′) < `(K)
}

end for
until ∼M stops growing
return closp,m(G,M) =

∼M
Algorithm 2.9 (Refinement). Given a mesh G and a set of marked elements M ⊆ G to be refined,
refp,m(G,M) is defined by

refp,m(G,M) B subdiv(G, closp,m(G,M)).

An example of this algorithm is given in Figure 4.

1st iter.→ 2nd iter.→

3rd iter.→ subdiv.→

Figure 4: Example for Algorithm 2.9, with p = (3, 3, 3), m = 3 andM = {K} with `(K) = 2. In the first
iteration of the for-loop, all coarser (level 1) elements in the (p,m)-patch of K are marked
as well. in the second iteration, all coarser (level 0) “neighbours” of those elements are also
marked. Since there are no elements that are coarser than level 0, the third iteration does not
change anything. Hence the for-loop ends, and all marked elements are subdivided in the
directions that correspond to their levels.

Example 2.10. Consider an initial mesh that consists of 4× 5× 8 cubes of size 1× 1× 1. We refine the
mesh by marking the lower left front corner element repeatedly until it is of the size 1

16 × 1
16 × 1

16 . The
resulting meshes for different choices of m are illustrated in Figure 5, and the results are listed below.
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(a) m = 2 (b) m = 4 (c) m = 16

Figure 5: Refinement examples for p = (3, 3, 3) and different choices of m. In all cases, the initial mesh
consists of 4 × 5 × 8 cubes of size 1 × 1 × 1, and is refined by marking the lower left front
corner element repeatedly until it is of the size 1

16 × 1
16 × 1

16 .

Figure m
number of

refinement steps
number of

new elements
5a 2 12 10728

5b 4 6 3175

5c 16 3 1030

3. Admissible meshes

In the subsequent definitions, we introduce a class of admissible meshes. We will then prove that this
class coindices with the meshes generated by Algorithm 2.9.

Definition 3.1 ((p,m)-admissible subdivisions). Given a meshG and an element K ∈ G, the subdivision
of K is called (p,m)-admissible if all K′ ∈ Gp,m(K) satisfy `(K′) ≥ `(K).

In the case of several elements M = {K1, . . . ,KJ} ⊆ G, the subdivision subdiv(G,M) is (p,m)-
admissible if there is an ordering (σ(1), . . . , σ(J)) (this is, if there is a permutation σ of {1, . . . , J}) such
that

subdiv(G,M) = subdiv(subdiv(. . . subdiv(G,Kσ(1)), . . . ),Kσ(J))

is a concatenation of (p,m)-admissible subdivisions.

Definition 3.2 (Admissible mesh). A refinement G of G0 is (p,m)-admissible if there is a sequence of
meshes G1, . . . ,GJ = G and markingsM j ⊆ G j for j = 0, . . . , J − 1, such that G j+1 = subdiv(G j,M j)
is an (p,m)-admissible subdivision for all j = 0, . . . , J − 1. The set of all (p,m)-admissible meshes,
which is the initial mesh and its (p,m)-admissible refinements, is denoted by Ap,m. For the sake of
legibility, we write ‘admissible’ instead of ‘(p,m)-admissible’ throughout the rest of this paper.
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Theorem 3.3. Any admissible mesh G and any set of marked elementsM ⊆ G satisfy

refp,m(G,M) ∈ Ap,m.

The proof of Theorem 3.3 given at the end of this section relies on the subsequent results.

Lemma 3.4. Given an admissible mesh G and two nested elements K ⊆ K̂ with K, K̂ ∈ ⋃
Ap,m, the

corresponding (p,m)-patches are nested in the sense Gp,m(K) ⊆ Gp,m(K̂).

The proof is given in Appendix A.1.

Lemma 3.5 (local quasi-uniformity). Given K ∈ G ∈ Ap,m, any K′ ∈ Gp,m(K) satisfies `(K′) ≥ `(K)−1.

The proof is given in Appendix A.2.

Proof of Theorem 3.3. Given the mesh G ∈ Ap,m and marked elementsM ⊆ G to be refined, we have
to show that there is a sequence of meshes that are subsequent admissible refinements, with G being
the first and refp,m(G,M) the last mesh in that sequence.

Set ∼M B closp,m(G,M) and

L B max `( ∼M), L B min `( ∼M)

M j B
{
K ∈ ∼M | `(K) = j

}
for j = L, . . . , L

GL B G, G j+1 B subdiv(G j,M j) for j = L, . . . , L. (1)

It follows that refp,m(G,M) = GL+1. We will show by induction over j that all subdivisions in (1) are
admissible.

For the first step j = L, we know {K′ ∈ ∼M | `(K′) < L} = ∅, and by construction of ∼M that for
each K ∈ ∼ML holds {K′ ∈ Gp,m(K) | `(K′) < `(K)} ⊆ ∼M. Together with `(K) = L, it follows for any
K ∈ ∼ML that there is no K′ ∈ Gp,m(K) with `(K′) < `(K). This is, the subdivisions of all K ∈ ∼ML are
admissible independently of their order and hence subdiv(GL,

∼ML) is admissible.
Consider an arbitrary step j ∈ {L, . . . , L} and assume that GL, . . . ,G j are admissible meshes. Assume

for contradiction that there is K ∈ M j of which the subdivision is not admissible, i.e., there exists
K′ ∈ Gp,m

j (K) with `(K′) < `(K) and consequently K′ < ∼M, because K′ has not been refined yet. It
follows from the closure Algorithm 2.8 that K′ < G. Hence, there is K̂ ∈ G such that K′ ⊂ K̂. We have
`(K̂) < `(K′) < `(K), which implies `(K̂) < `(K) − 1. Note that K ∈ G becauseM j ⊆ ∼M ⊆ G. From
K′ ∈ Gp,m

j (K), it follows by definition that K′ ∩ Up,m(K) , ∅, and K′ ⊂ K̂ yields K̂ ∩ Up,m(K) , ∅ and
hence K̂ ∈ Gp,m(K). Together with `(K̂) < `(K)−1, Lemma 3.5 implies that G is not admissible, which
contradicts the assumption. �

4. T-spline definition

In this section, we define trivariate T-spline functions corresponding to a given admissible mesh. We
roughly follow the definitions from [11].

Definition 4.1 (Active nodes). For each element K = [x, x + x̃]× [y, y + ỹ]× [z, z + z̃], the corresponding
set of vertices is denoted by

N(K) B {x, x + x̃} × {y, y + ỹ} × {z, z + z̃}.
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We refer to the elements of N B ⋃
K∈GN(K) as nodes. We define the active region

AR B
[⌈ p1

2
⌉
, X̃ − ⌈ p1

2
⌉] ×

[⌈ p2
2
⌉
, Ỹ − ⌈ p2

2
⌉] ×

[⌈ p3
2
⌉
, Z̃ − ⌈ p3

2
⌉]

and the set of active nodes NA B N ∩AR.

Definition 4.2 (Skeleton). Given a mesh G, denote the union of all closed x-orthogonal element faces
by Ξx B

⋃
K∈G Ξx(K), with

Ξx(K) B {x, x + x̃} × [y, y + ỹ] × [z, z + z̃]

for any K = [x, x + x̃] × [y, y + ỹ] × [z, z + z̃] ∈ G.

We call Ξx the x-orthogonal skeleton. Analogously, we denote the y-orthogonal skeleton by Ξy, and
the z-orthogonal skeleton by Ξz.

Figure 6: x-orthogonal, y-orthogonal and z-orthogonal skeleton of the final mesh from Figure 4.

Definition 4.3 (Global index sets). For any x, y, z ∈ R, we define

XXX(y, z) B
{
x̃ ∈ [0,X̃] | (x̃, y, z) ∈ Ξx

}
,

YYY(x, z) B
{
ỹ ∈ [0, Ỹ] | (x, ỹ, z) ∈ Ξy

}
,

ZZZ(x, y) B
{
z̃ ∈ [0, Z̃] | (x, y, z̃) ∈ Ξz

}
.

Note that in an admissible mesh, the entries
{
0, . . . , d p1

2 e − 1, X̃ − d p1
2 e + 1, . . . , X̃

}
are always included

in XXX(y, z) (and analogously for YYY(x, z) and ZZZ(x, y)).

Definition 4.4 (Local index vectors). To each active node v = (v1, v2, v3) ∈ NA, we associate a local
index vector xxx(v) ∈ Rp1+2, which is obtained by taking the unique p1 + 2 consecutive elements in
XXX(v2, v3) having v1 as their p1+3

2 -th (this is, the middle) entry. We analogously define yyy(v) ∈ Rp2+2 and
zzz(v) ∈ Rp3+2.

Definition 4.5 (T-spline blending function). We associate to each active node v ∈ NA a trivariate B-
spline function, referred as T-spline blending function, defined as the product of the B-spline functions
on the corresponding local index vectors,

Bv(x, y, z) B Nxxx(v)(x) · Nyyy(v)(y) · Nzzz(v)(z).
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5. Analysis-Suitability

In this section, we give an abstract definition of Analysis-Suitability. Instead of using T-junction ex-
tensions as in the 2D case, we define perturbed regions through the intersection of particular T-spline
supports. Analysis-Suitability is then defined as the absence of intersections between these perturbed
regions. This idea is comparable to the 2D case, where Analysis-Suitability is defined as the absence
of intersections between T-junction extensions. Subsequent to these definitions, we prove that all pre-
viously defined admissible meshes are analysis-suitable.

Definition 5.1 (Perturbed regions). For q, r, s ∈ R define the slices

Sx(q) B {(x̃, ỹ, z̃) ∈ AR | x̃ = q} ,
Sy(r) B {(x̃, ỹ, z̃) ∈ AR | ỹ = r} ,
Sz(s) B {(x̃, ỹ, z̃) ∈ AR | z̃ = s} .

Moreover, we denote by

Nx(q) B {(v1, v2, v3) ∈ NA | (q, v2, v3) ∈ Ξx}

the set of all nodes of which the projection on the slice Sx(q) lies in some element’s face. Define
analogously

Ny(r) B
{
(v1, v2, v3) ∈ NA | (v1, r, v3) ∈ Ξy

}
,

Nz(s) B {(v1, v2, v3) ∈ NA | (v1, v2, s) ∈ Ξz} .

For any q, r, s ∈ R we define slice perturbations

Rx(q) B Sx(q) ∩
⋃

v∈Nx(q)

supp Bv ∩
⋃

v∈NA\Nx(q)

supp Bv,

Ry(r) B Sy(r) ∩
⋃

v∈Ny(r)

supp Bv ∩
⋃

v∈NA\Ny(r)

supp Bv,

Rz(s) B Sz(s) ∩
⋃

v∈Nz(s)

supp Bv ∩
⋃

v∈NA\Nz(s)

supp Bv.

The perturbed regions Rx, Ry, Rz are defined by

Rx B
⋃

q∈R
Rx(q), Ry B

⋃

r∈R
Ry(r), Rz B

⋃

s∈R
Rz(s).

In a uniform mesh, the perturbed regions are empty. In a non-uniform mesh, the perturbed regions are
a superset of all hanging nodes and edges (this is, all kinds of 3D T-junctions). See Figure 7 for a 2D
visualization of these definitions.

Definition 5.2 (Analysis-suitability). A given mesh G is analysis-suitable if the above-defined per-
turbed regions do not intersect, i.e. if

Rx ∩ Ry = Ry ∩ Rz = Rz ∩ Rx = ∅.
The set of analysis-suitable meshes is denoted by ASp.
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Sx(q)

q

y

x

NA \ Nx(q)

Nx(q)

Rx(q)

⋃

v∈Nx(q)

supp Bv

⋃

v∈NA\Nx(q)

supp Bv

Figure 7: 2D example for the construction of the slice perturbation Rx(q) in an analysis-suitable mesh.
The left figure illustrates the construction of Nx(q) and its complement NA \ Nx(q), and the
right figure shows the resulting slice perturbation, which coincides with the corresponding
classical T-junction extension.

Remark. When applied in the two-dimensional case, the above definitions may yield perturbed regions
that are larger than the T-junction extensions from [8, 9] (see Fig. 8). However, this occurs only in
meshes that are not analysis-suitable, and the 2D version of Definition 5.2 is in fact equivalent to the
classical definition of analysis-suitability.

Theorem 5.3. Ap,m ⊆ ASp for all m ≥ 2.

Proof. We prove the claim by induction over admissible subdivisions. Assume K ∈ G ∈ Ap,m∩ASp and
let Ĝ B subdiv(G,K) ∈ Ap,m be an admissible subdivision of G. We have to show that Ĝ ∈ ASp. We
assume without loss of generality that `(K) = 0 mod 3. Hence subdividing K adds m − 1 faces to the
mesh, which are x-orthogonal. Set K C [x, x+x̃]×[y, y+ỹ]×[z, z+z̃] and ∼Ξ B {x+

j
m x̃ | j ∈ {1, . . . ,m−1}},

then the skeletons of Ĝ are given by

Ξ̂x = Ξx ∪ ∼Ξ × [y, y + ỹ] × [z, z + z̃], Ξ̂y = Ξy, Ξ̂z = Ξz.

Let v̂ ∈ N̂A \ NA be a new active node. Using the local quasi-uniformity from Lemma 3.5, it can be
verified that for all r ∈ R such that v̂ ∈ N̂y(r) follows Ry(r) ∩ supp Bv̂ = ∅. Consequently, R̂y = Ry and
analogously R̂z = Rz. Moreover, R̂x(q) = Rx(q) for all q < ∼Ξ. It remains to characterize

R̂x(ξ) = Sx(ξ) ∩
⋃

v∈N̂x(ξ)

supp Bv ∩
⋃

v∈N̂A\N̂x(ξ)

supp Bv

for any ξ ∈ ∼Ξ. With
N̂x(ξ) = Nx(ξ) ∪ N̂A \ NA

and N̂A \ N̂x(ξ) = NA \ N̂x(ξ) = NA \ Nx(ξ),
(2)
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Sx(q)

q

y

x

NA \ Nx(q)

Nx(q)

Rx(q)

⋃

v∈Nx(q)

supp Bv

⋃

v∈NA\Nx(q)

supp Bv

Figure 8: 2D example for the construction of the slice perturbation Rx(q) in a mesh that is not analysis-
suitable. The left figure illustrates the construction ofNx(q) and its complementNA \ Nx(q),
and the right figure shows the resulting slice perturbation, which is strictly larger than the
corresponding classical T-junction extension.

it follows

R̂x(ξ) = Sx(ξ) ∩
⋃

v∈N̂x(ξ)

supp Bv ∩
⋃

v∈N̂A\N̂x(ξ)

supp Bv,

(2)
= Sx(ξ) ∩

( ⋃

v∈Nx(ξ)

supp Bv ∪
⋃

v∈N̂A\NA

supp Bv
)
∩

⋃

v∈NA\Nx(ξ)

supp Bv

= Rx(ξ) ∪
(
Sx(ξ) ∩

⋃

v̂∈N̂A\NA

supp Bv̂

︸                      ︷︷                      ︸
Σ

∩
⋃

v∈NA\Nx(ξ)

supp Bv
)
.

We will prove below that Σ∩ R̂z = Σ∩ R̂y = ∅. See Figures 9 and 10 for an example with `(K) = 3 and
m = 2. Assume for contradiction that there is s ∈ R with R̂z(s)∩ Σ , ∅. Then there exist v ∈ N̂z(s) and
w ∈ N̂A \ N̂z(s) such that

Sz(s) ∩ supp Bv ∩ supp Bw ∩ Σ , ∅. (3)

Since the subdivision of K is admissible, we know that all elements in Gp,m(K) are at least of level `(K).
This implies that all those elements are of equal or smaller size than K. Denote mid(K) C (σ, ν, τ) and
ε B m−`(K)/3

2 . It follows
Σ ⊆ ⋃Gp,m(K), (4)

and with
N̂A \ NA ⊂ [σ − ε, σ + ε] × [ν − ε, ν + ε] × [τ − ε, τ + ε],

we get more precisely

Σ ⊆ {ξ} × [
ν − ε(p2 + 2), ν + ε(p2 + 2)

] × [
τ − ε(p3 + 2), τ + ε(p3 + 2)

]
. (5)
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The second-order patch Gp,m(Gp,m(K)) B
⋃

K′∈Gp,m(K) Gp,m(K′) consists of elements that may be larger
in z-direction, but are of same or smaller size than K in x- and y-direction. For w = (w1,w2,w3),
Equation (3) implies supp Bw ∩ Σ , ∅, and we conclude from (5) that

(w1,w2) ∈ [
ξ − ε(p1 + 1), ξ + ε(p1 + 1)

] × [
ν − ε(2p2 + 3), ν + ε(2p2 + 3)

]
(6)

We assume that there is no element in G with level higher than `(K) + 1. This is an eligible assump-
tion, since every admissible mesh can be reproduced by a sequence of level-increasing admissible
subdivisions; see [11, Proposition 4.3] for a detailed construction. This assumption implies that the
z-orthogonal skeleton Ξz is a subset of the z-orthogonal skeleton of a uniform (`(K) + 1)-leveled mesh,

Ξz(G) ⊆ Ξz(Gu|`(K)+1), (7)

and with min `(Gp,m(K)) = `(K), we have even equality on the patch Gp,m(K),

Ξz
(Gp,m(K)

)
= Ξz

(Gp,m
u|`(K)(K)

)
= Ξz

(Gp,m
u|`(K)+1(K)

)
, (8)

using the notation Ξz
(Gp,m(K)

)
B Ξz(G) ∩ ⋃Gp,m(K). Since v ∈ N̂z(s), we know that N̂z(s) , ∅,

which means that there are elements in G that have z-orthogonal faces at the z-coordinate s, i.e.,
Sz(s) ∩ Ξz(G) , ∅. With (7) we get Sz(s) ∩ Ξz(Gu|`(K)+1) , ∅. Since Gu|`(K)+1 is a tensor-product
mesh, its z-orthogonal skeleton consists of global domain slices, which yields Sz(s) ⊆ Ξz(Gu|`(K)+1).
The restriction to the patch Gp,m(K) yields

Sz(s) ∩⋃Gp,m(K) ⊆ Ξz
(Gp,m

u|`(K)+1(K)
) (8)

= Ξz
(Gp,m(K)

) ⊆ Ξz(G). (9)

Equation (3) implies that Sz(s) ∩ Σ , ∅, and with (4) we get that Sz(s) ∩⋃Gp,m(K) , ∅. Hence

Sz(s) ∩⋃Gp,m(K) ⊇ Sz(s) ∩ Up,m(K)

=
[
ξ − ε(2p1 + 3), ξ + ε(2p1 + 3)

] × [
ν − ε(2p2 + 3), ν + ε(2p2 + 3)

] × {s}. (10)

Since w < N̂z(s), we know by definition that (w1,w2, s) < Ξz. Then it follows from (9) that (w1,w2, s) <
Sz(s) ∩⋃Gp,m(K), and hence

(w1,w2) <
[
ξ − ε(2p1 + 3), ξ + ε(2p1 + 3)

] × [
ν − ε(2p2 + 3), ν + ε(2p2 + 3)

]
(11)

in contradiction to (6). This proves that R̂z ∩ Σ = ∅. Similar arguments prove that Σ ∩ Ry = ∅, which
concludes the proof. �

6. Dual-Compatibility

This section recalls the concept of Dual-Compatibility, which is a sufficient criterion for linear inde-
pendence of the T-spline functions, based on dual functionals. We follow the ideas of [10] for the
definitions and for the proof of linear independence. In addition, we prove that all analysis-suitable
(and hence all admissible) meshes are dual-compatible and thereby generalize a 2D result from [9].

Proposition 6.1 (Dual functional, [13, Theorem 4.41]). Given the local index vector X = (x1, . . . , xp+2),
there exists an L2-functional λX with supp λX = supp NX such that for any X̃ = (x̃1, . . . , x̃p+2) satisfying

∀ x ∈ {x1, . . . , xp+2} : x̃1 ≤ x ≤ x̃p+2 ⇒ x ∈ {x̃1, . . . , x̃p+2}
and ∀ x̃ ∈ {x̃1, . . . , x̃p+2} : x1 ≤ x̃ ≤ xp+2 ⇒ x̃ ∈ {x1, . . . , xp+2},

(12)

follows λX(NX̃) = δXX̃ .

12
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Figure 9: yz-view on the slice Sx(ξ). The numbers denote element levels, and the element in the center
with level 4 is a child of K. The patch Ĝp,m(K) is highlighted in blue, and the second-order
patch Ĝp,m(Ĝp,m(K)) is indicated by a thick blue line.

Proof. Following [13], we construct a dual functional on the same local knot vector X which we denote
by λX : L2([0, 1]

) → R. For details, see [13, Theorem 4.34, 4.37, and 4.41]. Let y j = cos
( p− j+1

p+1 π
)

for
j = 0, . . . , p + 1. Using divided differences, the perfect B-spline of order p + 1 is defined by

B∗p+1(x) B (p + 1) (−1)p+1[y0, . . . , yp+1
]
((x − •)+)p

and satisfies (amongst other things)
∫ 1
−1 B∗p+1(x) dx = 1 as depicted in Figure 11. Set

GX(x) B
∫ 2x−x1−xp+2

xp+2−x1

−1
B∗p+1(t) dt for x1 ≤ x ≤ xp+2

and
φX(x) = 1

p! (x − x2) · · · (x − xp+1
)
.
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Figure 10: yz-view on the slice Sx(ξ). Rx is indicated by red areas. Ry is depicted by horizontal red
lines, Rz are vertical red lines. At the same time, the squared red area in the center coincides
with Σ.

We define the dual functional by

λX( f ) =

∫ xp+2

x1

f Dp+1(GX φX) dx for all f ∈ L2([0, 1]
)
. (13)

Note in particular that for all f ∈ L2(R) with f |[x1,xp+2] = 0 follows λX( f ) = 0. If (12) holds then the
claim follows by construction, see [13, Theorem 4.41]. �

We say that two index vectors verifying (12) overlap. In order to define the set of T-spline blending
functions of which we desire linear independence, we construct local index vectors for each active
node.

Definition 6.2. We define the functional λv by

λv(Bw) B λxxx(v)(Nxxx(w)) · λyyy(v)(Nyyy(w)) · λzzz(v)(Nzzz(w))

using the one-dimensional functional λX defined in (13).

Definition 6.3. We say that a couple of nodes v,w ∈ N partially overlap if their index vectors overlap
in at least two out of three dimensions; this is, if (at least) two of the pairs

(
xxx(v),xxx(w)

)
,
(
yyy(v),yyy(w)

)
,
(
zzz(v),zzz(w)

)

14
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Figure 11: Plot of the perfect B-splines B∗4 (solid), B∗6 (dotted), B∗10 (dashed) and the corresponding
antiderivatives.

overlap in the sense of Proposition 6.1.

Definition 6.4. A mesh G is dual-compatible (DC) if any two active nodes v,w ∈ NA with
∣∣∣supp Bv ∩

supp Bw
∣∣∣ > 0 partially overlap. The set of dual-compatible meshes is denoted by DCp.

Remark. The above Definition 6.3 fulfills the definition of partial overlap given in [10, Def. 7.1],
which is not equivalent. The definition given in [10] is more general, and the corresponding mesh
classes are nested in the sense DCp ⊆ DCp

[10]. However, we do have equivalence of these definitions in
the two-dimensional setting.

The following lemma states that the perturbed regions from Definition 5.1 indicate non-overlapping
knot vectors, and it is applied in the proof of Theroem 6.6 below.

Lemma 6.5. Let q ∈ [0, X̃] and v1, v2 ∈ NA. If v1 ∈ Nx(q) = v2 and Sx(q) ∩ supp Bv1 ∩ supp Bv2 , ∅,
then xxx(v1) and xxx(v2) do not overlap in the sense of (12).

This holds analogously for Ny(r), r ∈ [0, Ỹ] and Nz(s), s ∈ [0, Z̃].

Proof. Let v1 = (x1, y1, z1). From v1 ∈ Nx(q) and Definition 5.1, we conclude that (q, y1, z1) ∈ Ξx,
and hence q ∈ XXX(y1, z1). Let xxx(v1) = (x1

1, . . . , x
p1+2
1 ) be the local x-direction knot vector associ-

ated to v1, then supp Bv1 ∩ Sx(q) , ∅ implies that x1
1 ≤ q ≤ xp1+2

1 . This and q ∈ XXX(y1, z1) yield
q ∈ xxx(v1). Let v2 = (x2, y2, z2). From v2 < Nx(q), we get (q, y2, z2) < Ξx, hence q < XXX(y2, z2),
and in particular q < xxx(v2). Let xxx(v2) = (x1

2, . . . , x
p1+2
2 ) be the local knot vector associated to v2, then

supp Bv2 ∩ Sx(q) , ∅ implies that x1
2 ≤ q ≤ xp1+2

2 . Together with xxx(v1) 3 q < xxx(v2), we see that v1 and
v2 do not overlap. �

Theorem 6.6. ASp = DCp.
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Proof. “⊆”. Assume for contradiction a mesh G which is not DC, hence there exist active nodes
v,w ∈ NA with

∣∣∣supp Bv ∩ supp Bw
∣∣∣ > 0 that do not overlap in two dimensions, without loss of gener-

ality x and y. We will show that there exist two slice perturbations Rx(q) and Ry(r) with nonempty
intersection. We denote v = (v1, v2, v3), w = (w1,w2,w3) and xxx(v) = (xv

1, . . . , x
v
p1+2). The elements of

yyy(v),xxx(w),yyy(w) are denoted analogously. Moreover we define

xm B max(xv
1, x

w
1 ), xM B min(xv

p1+2, x
w
p1+2)

ym B max(yv
1, y

w
1 ), yM B min(yv

p2+2, y
w
p2+2)

zm B max(zv
1, z

w
1 ), zM B min(zv

p3+2, z
w
p3+2)

and note that

supp Bv ∩ supp Bw = [xm, xM] × [ym, yM] × [zm, zM].

Since xxx(v) and xxx(w) do not overlap, there exists q ∈ [xm, xM] with either xxx(v) 3 q < xxx(w) or xxx(v) = q ∈ xxx(w).
Without loss of generality we assume xxx(v) 3 q < xxx(w). Since xxx(v) ⊆ XXX(v2, v3), it follows by definition
that (q, v2, v3) ∈ Ξx and hence v ∈ Nx(q). Since q < xxx(w) and hence (q,w2,w3) < Ξx, it follows that
w < Nx(q). Then

Rx(q) = Sx(q) ∩
⋃

v′∈Nx(q)

supp Bv′ ∩
⋃

v′∈NArNx(q)

supp Bv′

⊇ Sx(q) ∩ supp Bv ∩ supp Bw

= {q} × [ym, yM] × [zm, zM].

Analogously, we have

Ry(r) ⊇ [xm, xM] × {r} × [zm, zM]

and hence

Rx(q) ∩ Ry(r) ⊇ {q} × {r} × [zm, zM] , ∅,

which means that the mesh G is not analysis-suitable.

“⊇”. Assume for contradiction that the mesh is not analysis-suitable, and w.l.o.g. that there is
v = (q, r, s) ∈ R3 such that Rx ∩ Ry ⊇ {v} , ∅. Definition 5.1 implies that there exist v1, v2, v3, v4 ∈ NA

with v1 ∈ Nx(q) = v2 and v3 ∈ Ny(r) = v4 such that

v ∈ Sx(q) ∩ Sy(r) ∩ supp Bv1 ∩ supp Bv2 ∩ supp Bv3 ∩ supp Bv4 .

Lemma 6.5 yields that xxx(v1) and xxx(v2) do not overlap, and that yyy(v3) and yyy(v4) do not overlap.
Case 1. If v1 ∈ Ny(r) = v2, or v1 < Ny(r) 3 v2, then v1 and v2 do not partially overlap.
Case 2. If v1 ∈ Ny(r) and v4 < Nx(q), then v1 and v4 do not partially overlap.
Case 3. If v1 < Ny(r) and v3 < Nx(q), then v1 and v3 do not partially overlap.
Case 4. If v2 ∈ Ny(r) and v4 ∈ Nx(q), then v2 and v4 do not partially overlap.
Case 5. If v2 < Ny(r) and v3 ∈ Nx(q), then v2 and v3 do not partially overlap.
In all cases (see the table in Fig. 12), the mesh is not dual-compatible. This concludes the proof. �
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v1 ∈ Ny(r) v2 ∈ Ny(r) v3 ∈ Ny(r) v4 ∈ Ny(r) case(s)
true true true true 4
true true true false 2
true true false true 4
true true false false 2
true false true true 1, 5
true false true false 1, 2, 5
true false false true 1
true false false false 1, 2
false true true true 1, 4
false true true false 1
false true false true 1, 3, 4
false true false false 1, 3
false false true true 5
false false true false 5
false false false true 3
false false false false 3

Figure 12: The five cases considered in the proof of Theorem 6.6 cover all possible configurations.

Theorem 6.7. Let G be a DC T-mesh. Then the set of functionals {λv | v ∈ NA} is a set of dual
functionals for the set {Bv | v ∈ NA}.

The proof below follows the ideas of [9, Proposition 5.1] and [10, Proposition 7.3].

Proof. Let v,w ∈ NA. We need to show that

λv(Bw) = δvw, (14)

with δ representing the Kronecker symbol.
If supp Bv and supp Bw are disjoint (or have an intersection of empty interior), then at least one of

the pairs

(
supp(Nxxx(v)), supp(Nxxx(w))

)
,
(
supp(Nyyy(v)), supp(Nyyy(w))

)
,
(
supp(Nzzz(v)), supp(Nzzz(w))

)

has an intersection with empty interior. Assume w.l.o.g. that
∣∣∣supp(Nxxx(v)) ∩ supp(Nxxx(w))

∣∣∣ = 0, then

λv(Bw) = λxxx(v)(Nxxx(w))︸       ︷︷       ︸
0

·λyyy(v)(Nyyy(w)) · λzzz(v)(Nzzz(w)) = 0.

Assume that supp Bv and supp Bw have an intersection with nonempty interior. Since the mesh G is
DC, the two nodes overlap in at least two dimensions. Without loss of generality we may assume the
index vectors

(
xxx(v),xxx(w)

)
and

(
yyy(v),yyy(w)

)
overlap. Proposition 6.1 yields

λxxx(v)(Nxxx(w)) = δv1w1 and λyyy(v)(Nyyy(w)) = δv2w2 .

The above identities immediately prove (14) if v1 , w1 or v2 , w2. If on the contrary, v1 = w1
and v2 , w2, then v and w are aligned in z-direction, this is, zzz(v) and zzz(w) are both vectors of p + 2

17



consecutive indices from the same index setNz(v1, v2) = Nx(w1,w2). Hence v and w must overlap also
in z-direction. Again, Proposition 6.1 yields

λzzz(v)(Nzzz(w)) = δv3w3 ,

which concludes the proof. �

Corollary 6.8 ([10, Proposition 7.4]). Let G be a DC T-mesh. Then the set {Bv | v ∈ NA} is linear
independent.

Proof. Assume ∑

v∈NA

cvBv = 0

for some coefficients {cv}v∈NA ⊆ R. Then, for any w ∈ NA, applying λw to the sum, using linearity and
Theorem 6.7, we get

cw = λw
( ∑

v∈NA

cvBv
)

= 0. �

7. Linear Complexity

This section is devoted to a complexity estimate in the style of a famous estimate for the Newest Vertex
Bisection on triangular meshes given by Binev, Dahmen and DeVore [14] and, in an alternative version,
by Stevenson [15]. Linear Complexity of the refinement procedure is an inevitable criterion for optimal
convergence rates in the Adaptive Finite Element Method (see e.g. [14, 15, 16] and [17, Conclusions]).
The estimate and its proof follow our own work [11, 18], which we generalize now to three dimensions
and m-graded refinement. The estimate reads as follows.

Theorem 7.1. Any sequence of admissible meshes G0,G1, . . . ,GJ with

G j = refp,m(G j−1,M j−1), M j−1 ⊆ G j−1 for j ∈ {1, . . . , J}

satisfies

|GJ \ G0| ≤ Cp,m

J−1∑

j=0

|M j| ,

with Cp,m = m1/3

1−m−1/3

(
4d1 + 1

) (
4d2 + m1/3) (4d3 + m2/3) and d1, d2, d3 from Lemma 7.2 below.

Lemma 7.2. Given M ⊆ G ∈ Ap,m and K ∈ refp,m(G,M) \ G, there exists K′ ∈ M such that
`(K) ≤ `(K′) + 1 and

Dist(K,K′) ≤ m−`(K)/3(d1, d2, d3),

with “≤” understood componentwise and constants

d1 B 1
1−m−1/3

(
p1 + 3+m1/3

2 + m1/3−1
m2

)
,

d2 B m1/3

1−m−1/3

(
p2 + 3+m1/3

2 + m1/3−1
m2

)
,

d3 B m2/3

1−m−1/3

(
p3 + 3+m1/3

2 + m1/3−1
m2

)
.

The proof is given in Appendix A.3.
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Proof of Theorem 7.1.
(1) For K ∈ ⋃

Ap,m and K̃ ∈ M BM0 ∪ · · · ∪MJ−1, define λ(K, K̃) by

λ(K, K̃) B


m(`(K)−`(K̃))/3 if `(K) ≤ `(K̃) + 1 and Dist(K, K̃) ≤ 2m−`(K)/3(d1, d2, d3),

0 otherwise.

(2) Main idea of the proof.

|GJ \ G0| =
∑

K∈GJ\G0

1
(3)≤

∑

K∈GJ\G0

∑

K̃∈M
λ(K, K̃)

(4)≤
∑

K̃∈M
Cp,m = Cp,m

J−1∑

j=0

|M j|.

(3) Each K ∈ GJ \ G0 satisfies ∑

K̃∈M
λ(K, K̃) ≥ 1.

Consider K ∈ GJ\G0. Set j1 < J such that K ∈ G j1+1\G j1 . Lemma 7.2 states the existence of K1 ∈ M j1
with Dist(K,K1) ≤ m−`(K)/3(d1, d2, d3) and `(K) ≤ `(K1) + 1. Hence λ(K,K1) = m`(K)−`(K1) > 0. The
repeated use of Lemma 7.2 yields j1 > j2 > j3 > . . . and K2,K3, . . . with Ki−1 ∈ G ji+1 \ G ji and
Ki ∈ M ji such that

Dist(Ki−1,Ki) ≤ m−`(Ki−1)/3(d1, d2, d3) and `(Ki−1) ≤ `(Ki) + 1. (15)

We repeat applying Lemma 7.2 as λ(K,Ki) > 0 and `(Ki) > 0, and we stop at the first index L with
λ(K,KL) = 0 or `(KL) = 0. If `(KL) = 0 and λ(K,KL) > 0, then

∑

K̃∈M
λ(K, K̃) ≥ λ(K,KL) = m(`(K)−`(KL))/3 ≥ m1/3.

If λ(K,KL) = 0 because `(K) > `(KL) + 1, then (15) yields `(KL−1) ≤ `(KL) + 1 < `(K) and hence
∑

K̃∈M
λ(K, K̃) ≥ λ(K,KL−1) = m(`(K)−`(KL−1))/3 > m1/3.

If λ(K,KL) = 0 because Dist(K,KL) > 2m−`(K)/3(d1, d2, d3), then a triangle inequality shows

2m−`(K)/3(d1, d2, d3) < Dist(K,K1) +

L−1∑

i=1

Dist(Ki,Ki+1)

≤ m−`(K)/3(d1, d2, d3) +

L−1∑

i=1

m−`(Ki)/3(d1, d2, d3),

and hence m−`(K)/3 ≤
L−1∑

i=1

m−`(Ki)/3. The proof is concluded with

1 ≤
L−1∑

i=1

m(`(K)−`(Ki))/3 =

L−1∑

i=1

λ(K,Ki) ≤
∑

K̃∈M
λ(K, K̃).
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(4) For all j ∈ {0, . . . , J − 1} and K̃ ∈ M j holds
∑

K∈GJ\G0

λ(K, K̃) ≤ m1/3

1−m−1/3

(
4d1 + 1

) (
4d2 + m1/3) (4d3 + m2/3) = Cp,m .

This is shown as follows. By definition of λ, we have
∑

K∈GJ\G0

λ(K, K̃) ≤
∑

K∈⋃Ap,m\G0

λ(K, K̃)

=

`(K̃)+1∑

j=1

m( j−`(K̃))/3 #
{
K ∈ ⋃

Ap,m | `(K) = j and Dist(K, K̃) ≤ 2m− j/3(d1, d2, d3)
}

︸                                                                           ︷︷                                                                           ︸
B

.

Since we know by definition of the level that `(K) = j implies |K| = m− j, we know that m j |⋃ B| is an
upper bound of #B. The cuboidal set

⋃
B is the union of all admissible elements of level j having their

midpoints inside a cuboid of size

4m− j/3d1 × 4m− j/3d2 × 4m− j/3d3.

An admissible element of level j is not bigger than m− j/3 × m(1− j)/3 × m(2− j)/3. Together, we have
∣∣∣⋃ B

∣∣∣ ≤ m− j (4d1 + 1
) (

4d2 + m1/3) (4d3 + m2/3),

and hence #B ≤ (
4d1 + 1

) (
4d2 + m1/3) (4d3 + m2/3). An index substitution k B 1 − j + `(K̃) proves the

claim with
`(K̃)+1∑

j=1

m( j−`(K̃))/3 =

`(K̃)∑

k=0

m(1−k)/3 < m1/3
∞∑

k=0

m−k/3 = m1/3

1−m−1/3 . �

An experiment on Cp,m

The constant Cp,m arising from this theory is very large, however we observed much smaller ratios of
refined and marked elements in the experiment (in all cases less than Cp,m

3000 , see Figure 13). Starting from
a 5 × 5 × 5 mesh, we applied the refinement algorithm with only one corner element marked, always
sticking to the same corner. This is realistic when resolving a singularity of the solution of a discretized
PDE. The advantage of greater grading parameters could not be seen in random refinement all over the
domain.

8. Conclusions & Outlook

We have generalized the concept of Analysis-Suitability to three-dimensional T-spline meshes, and
proved that it guarantees linear independence of the T-spline blending functions. We introduced a local
refinement algorithm with adjustable mesh grading, and proved that it has linear complexity in the sense
that the overhead for preserving Analysis-Suitability is essentially bounded by the number of marked
elements. We expect that these results also generalize to even-degree and mixed-degree T-splines. In
order to achieve this, a universal definition of anchor elements is needed, based on the techniques from
[19].

Two open questions that have not been investigated in this paper address the overlay (this is, the
coarsest common refinement of two meshes) and the nesting behavior of the T-spline spaces. As in our
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Figure 13: The complexity constant Cp,m in theory (left) and experiment (right). The values of C′m were
taken from an experiment illustrated in Figure 14.

preliminary work [11], we expect that the overlay has a bounded cardinality in terms of the two overlaid
meshes, and that it is also an admissible mesh. Nestedness of T-spline spaces is not evident in general
[20], but we expect nestedness for the meshes generated by the proposed refinement algorithm. A first
step in this issue will be a characterization of three-dimensional meshes that induce nested T-spline
spaces.
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A. Minor proofs

A.1. Proof of Lemma 3.4

If K = K̂, the claim is trivially fulfilled. If otherwise K $ K̂, we consider the following two cases.
Case 1. Assume that `(K) = `(K̂) + 1. Since K = [x, x + x̃] × [y, y + ỹ] × [z, z + z̃] is the result of

successive subdivisions of a unit cube, it holds that

size(`(K)) B (x̃, ỹ, z̃) =



m−`(K)/3 (1, 1, 1) if `(K) = 0 mod 3,
m−(`(K)−1)/3( 1

m , 1, 1
)

if `(K) = 1 mod 3,
m−(`(K)−2)/3( 1

m ,
1
m , 1

)
if `(K) = 2 mod 3.

(16)

Since K results from the subdivision of K̂, we also have that

Dist(K, K̂) =



(
m−(`(K̂)+6)/3, 0, 0

)
if `(K̂) = 0 mod 3,

(
0,m−(`(K̂)+5)/3, 0

)
if `(K̂) = 1 mod 3,

(
0, 0,m−(`(K̂)+4)/3) if `(K̂) = 2 mod 3.

(17)

Recall that

Dp,m(k) B



m−k/3 (
p1 + 3

2 , p2 + 3
2 , p3 + 3

2
)

if k = 0 mod 3,

m−(k−1)/3 ( p1+3/2
m , p2 + 3

2 , p3 + 3
2
)

if k = 1 mod 3,

m−(k−2)/3 ( p1+3/2
m ,

p2+3/2
m , p3 + 3

2
)

if k = 2 mod 3.

We rewrite (17) in the form

Dist(K, K̂) =



(
0, 0,m−(`(K)+3)/3) if `(K) = 0 mod 3,
(
m−(`(K)+5)/3, 0, 0

)
if `(K) = 1 mod 3,

(
0,m−(`(K)+4)/3, 0

)
if `(K) = 2 mod 3

(18)

and observe that Dp,m(`(K)) + Dist(K, K̂) ≤ Dp,m(`(K)− 1) = Dp,m(`(K̂)). The case 1 is concluded with

Up,m(K) = {x ∈ Ω | Dist(K, x) ≤ Dp,m(`(K))}
⊆ {x ∈ Ω | Dist(K̂, x) ≤ Dp,m(`(K)) + Dist(K, K̂)}
⊆ Up,m(K̂),
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and consequently Gp,m(K) ⊆ Gp,m(K̂).
Case 2. Consider K ⊂ K̂ with `(K) > `(K̂) + 1, then there is a sequence

K = K0 ⊂ K1 ⊂ · · · ⊂ KJ = K̂

such that K j−1 ∈ child(K j) for j = 1, . . . , L. Case 1 yields

Gp,m(K) ⊆ Gp,m(K1) ⊆ · · · ⊆ Gp,m(K̂). �

A.2. Proof of Lemma 3.5

For `(K) = 0, the assertion is always true. For `(K) > 0, consider the parent K̂ of K (i.e., the
unique element K̂ ∈ ⋃

Ap,m with K ∈ child(K̂)). Since G is admissible, there are admissible meshes
G0, . . . ,GJ = G and some j ∈ {0, . . . , J − 1} such that K ∈ G j+1 = subdiv(G j, {K̂}). The admissibility
G j+1 ∈ Ap,m implies that any K′ ∈ Gp,m

j (K̂) satisfies `(K′) ≥ `(K̂) = `(K) − 1. Since levels do not
decrease during refinement, we get

`(K) − 1 ≤ min `(Gp,m
j (K̂)) ≤ min `(Gp,m(K̂)) (19)

Lemma 3.4≤ min `(Gp,m(K)).

�

A.3. Proof of Lemma 7.2

The coefficient Dp,m(k) from Definition 2.4 is bounded by

Dp,m(k) ≤ m−k/3
(
p1 + 3

2 , m1/3(p2 + 3
2
)
, m2/3(p3 + 3

2
))

︸                                            ︷︷                                            ︸
p̃

for all k ∈ N. (20)

Recall size(k) from (16) and note that it is decreasing and bounded by

size(k) ≤ m−k/3 (
1,m1/3,m2/3). (21)

Hence for K̃ ∈ G ∈ Ap,m and K̃′ ∈ Gp,m(K̃), there is x ∈ K̃′ ∩ Up,m(K̃) and hence

Dist(K̃, K̃′) ≤ Dist(K̃, x) + Dist(K̃′, x)

≤ Dist(K̃, x) + 1
2 size(`(K̃′))

Lemma 3.5≤ Dist(K̃, x) + 1
2 size(`(K̃) − 1)

(21)≤ m−`(K̃)/3 p̃ + m−`(K̃)/3 (m1/3

2 , m2/3

2 , m
2
)

︸          ︷︷          ︸
s

≤ m−`(K̃)/3 (p̃ + s) . (22)

The existence of K ∈ refp,m(G,M) \ G means that Algorithm 2.9 subdivides K′ = KJ ,KJ−1, . . . ,K0
such that K j−1 ∈ Gp,m(K j) and `(K j−1) < `(K j) for j = J, . . . , 1, having K′ ∈ M and K ∈ child(K0),
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with ‘child’ from Definition 2.6. Lemma 3.5 yields `(K j−1) = `(K j) − 1 for j = J, . . . , 1, which yields
the estimate

Dist(K′,K0) ≤
J∑

j=1

Dist(K j,K j−1)
(22)≤

J∑

j=1

m−`(K j)/3 (p̃ + s)

=

J∑

j=1

m−(`(K0)+ j)/3 (p̃ + s) < m−`(K0)/3 (p̃ + s)
∞∑

j=1

m− j/3

=
m−1/3−`(K0)/3

1 − m−1/3 (p̃ + s) =
m−`(K)/3

1 − m−1/3 (p̃ + s).

From (18) we get
Dist(K0,K) ≤ (

m−(`(K)+5)/3,m−(`(K)+4)/3,m−(`(K)+3)/3).
This and a triangle inequality conclude the proof. �
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