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We present an efficient adaptive refinement procedure that preserves analysis-

suitability of the T-mesh, this is, the linear independence of the T-spline blending

functions. We prove analysis-suitability of the overlays and boundedness of their

cardinalities, nestedness of the generated T-spline spaces, and linear computa-

tional complexity of the refinement procedure in terms of the number of marked

and generated mesh elements.
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1 Introduction

T-splines [1] have been introduced as a free-form geometric technology and are one of the most

promising features in the Isogeometric Analysis (IGA) framework introduced by Hughes, Cot-

trell and Basilevs [2, 3]. At present, the main interest in IGA is in finding discrete function

spaces that integrate well into CAD applications and, at the same time, can be used for Finite

Element Analysis. Throughout the last years, hierarchical B-Splines [4, 5] and LR-Splines

[6, 7] have arisen as alternative approaches to T-Splines for the establishment of an adaptive

B-Spline technology. While none of these strategies has outperformed the other competing

approaches until today, this paper aims to push forward and motivate the T-Spline technology.

Since T-splines can be locally refined [8], they potentially link the powerful geometric con-

cept of Non-Uniform Rational B-Splines (NURBS) to meshes with T-junctions (referred as

“hanging nodes” in the Finite Element context) and, hence, the well-established framework

of adaptive mesh refinement. However, in [9], it was shown that T-meshes can induce linear
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dependent T-spline blending functions. This prohibits the use of T-splines as a basis for analyt-

ical purposes such as solving a partial differential equation. In particular, the mesh refinement

algorithm presented in [8] does not preserve analysis-suitability in general. This insight mo-

tivated the research on T-meshes that guarantee the linear independence of the corresponding

T-spline blending functions, referred to as analysis-suitable T-meshes. Analysis-suitability

has been characterized in terms of topological mesh properties in 2d [10] and, in an alterna-

tive approach, through the equivalent concept of Dual-Compatibility [11], which allows for

generalization to three-dimensional meshes.

A refinement procedure that preserves the analysis-suitability of two-dimensional T-meshes

was finally presented in [12]. The procedure first refines the marked elements, producing a

mesh that is not analysis-suitable in general, and then computes a refinement which is analysis-

suitable and generates a T-spline space that is a superspace of the previous one. This second

refinement involves heuristic local estimates on how much refinement is needed to achieve the

desired properties. Hence, the reliable theoretical analysis of the algorithm is very difficult

and so is the analysis of corresponding automatic mesh refinement algorithms driven by a

posteriori error estimators. Such analysis is currently available only for triangular meshes

[13, 14, 15], but is necessary to reliably point out the advantages of adaptive mesh refinement.

In this paper, we present a new refinement algorithm which provides

1. the preservation of analysis-suitability and nestedness of the generated T-spline spaces,

2. a bounded cardinality of the overlay (which is the coarsest common refinement of two

meshes),

3. linear computational complexity of the refinement procedure in the sense that there is

a constant bound, depending only on the polynomial degree of the T-spline blending

functions, on the ratio between the number of generated elements in the fine mesh and

the number of marked elements in all refinement steps.

This paper is organized as follows. We define the refinement algorithm along with a class of

admissible meshes in Section 2. In Section 3, we prove that all admissible meshes are analysis-

suitable. Section 4 proves essential properties of the overlay of two admissible meshes, and in

Section 5 we prove nestedness of the T-spline spaces corresponding to admissible refinements.

Section 6 shows linear complexity of the refinement procedure, and conclusions and an out-

look to future work are finally given in Section 7. The Sections 3, 4 and 6 independently rely

on the definitions and results of Section 2, Section 5 also makes use of the definitions from

Section 4.

2 Adaptive mesh refinement

This section defines the new refinement algorithm and characterizes the class of meshes which

is generated by this algorithm. The initial mesh is assumed to have a very simple structure. In

the context of IGA, the partitioned rectangular domain is referred to as index domain. This is,

we assume that the physical domain (on which, e.g., a PDE is to be solved) is obtained by a
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continuous map from the active region (cf. Section 3), which is a subset of the index domain.

Throughout this paper, we focus on the mesh refinement only, and therefore we will only

consider the index domain. For the parametrization and refinement of the T-spline blending

functions, we refer to [12].

Definition 2.1 (Initial mesh, element). Given positive numbers M,N ∈ N, the initial mesh G0

is a tensor product mesh consisting of closed squares (also denoted elements) with side length

1, i.e.,

G0 ≔

{

[m − 1,m] × [n − 1, n] | m ∈ {1, . . . ,M}, n ∈ {1, . . . ,N}
}

.

The domain partitioned by G0 is denoted by Ω ≔
⋃G0.

The key property of the refinement algorithm will be that refinement of an element K is

allowed only if elements in a certain neighbourhood are sufficiently fine. The size of this

neighbourhood, which is denoted (p, q)-patch and defined through the definitions below, de-

pends on the size of K and the polynomial bi-degree (p, q) of the T-spline blending functions.

Definition 2.2 (Level). The level of an element K is defined by

ℓ(K) ≔ − log2 |K|,

where |K| denotes the volume of K. This implies that all elements of the initial mesh have

level zero and that the bisection of an element K yields two elements of level ℓ(K) + 1.

Definition 2.3 (Vector-valued distance). Given x ∈ Ω and an element K, we define their

distance as the componentwise absolute value of the difference between x and the midpoint of

K,

Dist(K, x) ≔ abs
(

mid(K) − x
) ∈ R2.

For two elements K1,K2, we define the shorthand notation

Dist(K1,K2) ≔ abs
(

mid(K1) −mid(K2)
)

.

Definition 2.4. Given an element K and polynomial degrees p and q, the (p, q)-patch is defined

by

Gp,q(K) ≔
{

K′ ∈ G | Dist(K′,K) ≤ Dp,q(ℓ(K))
}

,

where

Dp,q(k) =






2−k/2
(⌊ p

2

⌋

+
1
2
,
⌈q

2

⌉

+
1
2

)

if k is even,

2−(k+1)/2
(⌈ p

2

⌉

+
1
2
, 2
⌊ q

2

⌋

+ 1
)

if k is odd.

Note as a technical detail that this definition does not require that K ∈ G.

Remark. In a uniform even-leveled mesh,
⋃Gp,q(K) is obtained by extending K by a face

extension length (cf. Definition 3.4) above and below and by an edge extension length to the

left and to the right. In a uniform odd-leveled mesh,
⋃Gp,q(K) is obtained by extending K

by a face extension length to the left and to the right and by an edge extension length above

and below. The (p, q)-patch will be used to enforce a local quasi-uniformity of the mesh.

Throughout the rest of this paper, we assume p, q ≥ 2. This guarantees that neighboring

elements of K (elements that share an edge or vertex with K) are always in Gp,q(K), and that

nested elements Ǩ ⊆ K̂ have nested (p, q)-patches Gp,q(Ǩ) ⊆ Gp,q(K̂).
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Figure 1: Example of the patch Gp,q(K) in a uniform mesh and in a non-uniform mesh for even

ℓ(K) and p = q = 5. K is marked in blue, and Gp,q(K) is highlighted in light blue.

In the subsequent definitions, we will give a detailed description of the elementary bisection

steps and then present the new refinement algorithm.

Definition 2.5 (Bisection of an element). Given an arbitrary element K = [µ, µ+ µ̃]× [ν, ν+ ν̃],

where µ, ν, µ̃, ν̃ ∈ R and µ̃, ν̃ > 0, we define the operators

bisectx(K) ≔
{

[µ, µ +
µ̃

2
] × [ν, ν + ν̃], [µ +

µ̃

2
, µ + µ̃] × [ν, ν + ν̃]

}

and bisecty(K) ≔
{

[µ, µ + µ̃] × [ν, ν + ν̃
2
], [µ, µ + µ̃] × [ν + ν̃

2
, ν + ν̃]

}

.

Note that bisectx adds an edge in y-direction, while bisecty adds an edge in x-direction.

Definition 2.6 (Bisection). Given a mesh G and an element K ∈ G, we denote by bisect(G,K)

the mesh that results from a level-dependent bisection of K,

bisect(G,K) ≔ G \ {K} ∪ child(K),

with child(K) ≔






bisectx(K) if ℓ(K) is even,

bisecty(K) if ℓ(K) is odd.

Definition 2.7 (Multiple bisections). We introduce the shorthand notation bisect(G,M) for

the bisection of several elementsM = {K1, . . . ,KJ} ⊆ G, defined by successive bisections in

an arbitrary order,

bisect(G,M) ≔ bisect(bisect(. . . bisect(G,K1), . . . ),KJ).

We will now define the new refinement algorithm through the bisection of a superset clos
p,q

G (M)

of the marked elementsM. In the remaining part of this section, we characterize the class of

meshes generated by this refinement algorithm.

Algorithm 2.8 (Closure). Given a meshG and a set of marked elementsM ⊆ G to be bisected,

the closure clos
p,q

G (M) ofM is computed as follows.
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→ → →

Figure 2: First refinement example. The patch Gp,q(K) (highlighted in light blue) is as fine as

K. Consequently, Algorithm 2.8 stops after the first iteration.

∼M ≔M
repeat

for all K ∈ ∼M do∼M ≔ ∼M∪ {K′ ∈ Gp,q(K) | ℓ(K′) < ℓ(K)
}

end for

until
∼M stops growing

return clos
p,q

G (M) =
∼M

Algorithm 2.9 (Refinement). Given a mesh G and a set of marked elements M ⊆ G to be

bisected, refp,q(G,M) is defined by

ref p,q(G,M) ≔ bisect(G, clos
p,q

G (M)).

Example 2.10. The Figures 2, 3 and 4 illustrate three successive applications of Algorithm 2.9

with p = q = 3. In each case, only one element K is marked. In the first case, the patch of

K is as fine as K and hence no additional refinement is necessary. In the second case, one

additional iteration of Algorithm 2.8 is needed to compute clos
p,q

G ({K}). In the third case, the

Algorithm stops after three iterations.

In the subsequent definitions, we introduce a class of admissible meshes. We will then

prove that Algorithm 2.9 preserves admissibility.

Definition 2.11 ((p, q)-admissible bisections). Given a mesh G and an element K ∈ G, the

bisection of K is called (p, q)-admissible if all K′ ∈ Gp,q(K) satisfy ℓ(K′) ≥ ℓ(K).

In the case of several elementsM = {K1, . . . ,KJ} ⊆ G, the bisection bisect(G,M) is (p, q)-

admissible if there is an order (σ(1), . . . , σ(J)) (this is, if there is a permutation σ of {1, . . . , J})
such that

bisect(G,M) = bisect(bisect(. . . bisect(G,Kσ(1)), . . . ),Kσ(J))

is a concatenation of (p, q)-admissible bisections.

Definition 2.12 (Admissible mesh). A refinement G of G0 is (p, q)-admissible if there is a

sequence of meshes G1, . . . ,GJ = G and markingsM j ⊆ G j for j = 0, . . . , J − 1, such that

G j+1 = bisect(G j,M j) is an (p, q)-admissible bisection for all j = 0, . . . , J − 1. The set of

all (p, q)-admissible meshes, which is the initial mesh and its (p, q)-admissible refinements, is

denoted by Ap,q. For the sake of legibility, we write ‘admissible’ instead of ‘(p, q)-admissible’

throughout the rest of this paper.
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→ →

→ → →

Figure 3: Second refinement example. The patch Gp,q(K) contains elements that are coarser

than K. These are marked by Algorithm 2.8. Then the algorithm checks their patches

for even coarser elements, which do not exist. Hence Algorithm 2.8 stops after two

iterations.

→ → →

→ → → →

Figure 4: Third refinement example. As in Figure 3, Algorithm 2.8 marks coarser elements

in the patch of the initially marked K. In this case, the computation of clos
p,q

G ({K})
involves three iterations of the algorithm.

6



Remark. This definition refers to the understanding of ‘admissible meshes’ in FE analysis. It

does not match the definitions of admissible meshes from [16, 17].

Proposition 2.13. Any admissible mesh G and any set of marked elements M ⊆ G satisfy

ref p,q(G,M) ∈ Ap,q.

The proof of Proposition 2.13 given at the end of this section relies on the subsequent

results.

Lemma 2.14 (local quasi-uniformity). Given K ∈ G ∈ Ap,q, any K′ ∈ Gp,q(K) satisfies ℓ(K′) ≥
ℓ(K) − 1.

Proof. For ℓ(K) = 0, the assertion is always true. For ℓ(K) > 0, consider the parent K̂ of K

(i.e., the unique element K̂ ∈ ⋃Ap,q with K ∈ child(K̂)). Since K results from the bisection of

K̂, we also have that

d(K) ≔ Dist(K, K̂) =






(2−(ℓ(K̂)+4)/2, 0) if ℓ(K̂) is even,

(0, 2−(ℓ(K̂)+3)/2) if ℓ(K̂) is odd.

=






(0, 2−(ℓ(K)+2)/2) if ℓ(K) even,

(2−(ℓ(K)+3)/2, 0) if ℓ(K) odd.

Since G is admissible, there are admissible meshes G0, . . . ,GJ = G and some j ∈ {0, . . . , J−1}
such that K ∈ G j+1 = bisect(G j, {K̂}). The admissibility G j+1 ∈ Ap,q implies that any K′ ∈
Gp,q

j
(K̂) satisfies ℓ(K′) ≥ ℓ(K̂) = ℓ(K) − 1. Since levels do not decrease during refinement, we

get

ℓ(K) − 1 ≤ min
{

ℓ(K′) | K′ ∈ G j and Dist(K̂,K′) ≤ Dp,q(ℓ(K̂))
}

≤ min
{

ℓ(K′) | K′ ∈ G and Dist(K̂,K′) ≤ Dp,q(ℓ(K̂))
}

= min
{

ℓ(K′) | K′ ∈ G and Dist(K̂,K′) ≤ Dp,q(ℓ(K) − 1)
}

≤ min
{

ℓ(K′) | K′ ∈ G and Dist(K,K′) + d(K) ≤ Dp,q(ℓ(K) − 1)
}

. (1)

One easily computes Dp,q(ℓ(K) − 1) − d(K) > Dp,q(ℓ(K)), which concludes the proof. �

Corollary 2.15. Let K ∈ G ∈ Ap,q and

U
p,q

(K) ≔ {x ∈ Ω | Dist(K, x) ≤ Dp,q(ℓ(K))},
then

Gp,q(K) = {K′ ∈ G | |K′ ∩ U
p,q

(K)| > 0}.

Proof. This is a consequence of Lemma 2.14 in the strong version (1) that involves a bigger

patch of K. �

Proof of Proposition 2.13. Given the mesh G ∈ Ap,q and marked elements M ⊆ G to be

bisected, we have to show that there is a sequence of meshes that are subsequent admissible
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bisections, with G being the first and ref p,q(G,M) the last mesh in that sequence. Set
∼M ≔

clos
p,q

G (M) and

L ≔ max ℓ(
∼M), L ≔ min ℓ(

∼M)

M j ≔
{

K ∈ ∼M | ℓ(K) = j
}

for j = L, . . . , L

GL ≔ G, G j+1 ≔ bisect(G j,M j) for j = L, . . . , L. (2)

It follows that ref p,q(G,M) = GL+1. We will show by induction over j that all bisections in (2)

are admissible.

For the first step j = L, we know {K′ ∈ ∼M | ℓ(K′) < L} = ∅, and by construction of
∼M that

for each K ∈ ∼ML holds {K′ ∈ Gp,q(K) | ℓ(K′) < ℓ(K)} ⊆ ∼M. Together with ℓ(K) = L follows

for any K ∈ ∼ML that there is no K′ ∈ Gp,q(K) with ℓ(K′) < ℓ(K). This is, the bisections of all

K ∈ ∼ML are admissible independently of their order and hence bisect(GL,
∼ML) is admissible.

Consider an arbitrary step j ∈ {L, . . . , L} and assume that GL, . . . ,G j are admissible meshes.

Assume for contradiction that there is K ∈ M j of which the bisection is not admissible, i.e.,

there exists K′ ∈ Gp,q

j
(K) with ℓ(K′) < ℓ(K) and consequently K′ <

∼M, because K′ has not

been bisected yet. It follows from the closure Algorithm 2.8 that K′ < G. Hence, there is

K̂ ∈ G such that K′ ⊂ K̂. We have ℓ(K̂) < ℓ(K′) < ℓ(K), which implies ℓ(K̂) < ℓ(K) − 1. Note

that K ∈ G becauseM j ⊆
∼M ⊆ G. Moreover, from K′ ⊂ K̂ and K′ ∈ Gp,q

j
(K) it follows with

Corollary 2.15 that K̂ ∈ Gp,q(K). Together with ℓ(K̂) < ℓ(K) − 1, Lemma 2.14 implies that G
is not admissible, which contradicts the assumption. �

3 Analysis-Suitability

In this section, we give a brief review on the concept of Analysis-Suitability, using the notation

from [16]. We prove that all admissible meshes (in the sense of Definition 2.12) are analysis-

suitable and hence provide linearly independent T-spline blending functions. In this paper, we

omit the definition of the T-spline blending functions and details on their linear independence.

We refer the reader to [10, 11] and, in particular for the case of non-cubic T-splines, [16].

Definition 3.1 (Active nodes). Consider an admissible mesh G ∈ Ap,q. The set of vertices

(nodes) of G is denoted by N . We define the active region

AR ≔ [⌈ p

2

⌉

,M − ⌈ p

2

⌉] × [⌈q

2

⌉

,N − ⌈q

2

⌉]

and the set of active nodes NA ≔ N ∩AR.

To each active node T , we associate local index vectors xxx(T ) and yyy(T ) that are defined

below, depending on the mesh in the neighbourhood of T . These local index vectors are used

to construct a tensor-product B-spline BT , referred to as T-spline blending function.

Definition 3.2 (Skeleton). We denote by hSk (resp. vSk) the horizontal (resp. vertical) skele-

ton, which is the union of all horizontal (resp. vertical) edges. Note that hSk ∩ vSk = N .
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Definition 3.3 (Global index sets). For any y in the closed interval
[⌈ q

2

⌉

,N − ⌈q

2

⌉]

, we set

XXX(y) ≔
{

z ∈ [0,M] | (z, y) ∈ vSk
}

,

and for any x ∈ [⌈ p

2

⌉

,M − ⌈ p

2

⌉]

,

YYY(x) ≔
{

z ∈ [0,N] | (x, z) ∈ hSk
}

.

Note that in an admissible mesh, the entries
{

0, . . . ,
⌈ p

2

⌉ − 1, M − ⌈ p

2

⌉

+ 1, . . . ,M
}

are always

included in XXX(y) (and analogously for YYY(x)).

Definition 3.4 (T-junction extension [16, Section 2.1]). We denote by T ⊂ NA the set of all

active nodes with valence three (i.e., active nodes that are endpoints of exactly three edges)

and refer to them as T-junctions. Following the literature [10, 11], we adopt the notation

⊥,⊤, ⊢, ⊣ to indicate the four possible orientations of the T-junctions. T-junctions of type ⊣
and ⊢ (⊥,⊤, respectively) and their extensions are called horizontal (vertical, resp.). For the

sake of simplicity, let us consider a T-junction T = (t1, t2) ∈ T of type ⊣. Clearly, t1 is one of

the entries of XXX(t2). We extract from XXX(t2) the p + 1 consecutive indices i−⌊p/2⌋, . . . , i⌈p/2⌉ such

that i0 = t1. We denote

extp,q
e (T ) ≔

[

i−⌊p/2⌋, i0

] × {t2}, ext
p,q

f
(T ) ≔

]

i0, i⌈p/2⌉
] × {t2},

extp,q(T ) ≔ ext
p,q

f
(T ) ∪ extp,q

e (T ),

where ext
p,q
e (T ) is denoted edge-extension, ext

p,q

f
(T ) is denoted face-extension and extp,q(T ) is

just the extension of the T-junction T .

Definition 3.5 (Analysis-Suitability [16, Definition 2.5]). A mesh is analysis-suitable if hori-

zontal T-junction extensions do not intersect vertical T-junction extensions.

The main result of this section is the following theorem.

Theorem 3.6. All admissible meshes (in the sense of Definition 2.12) are analysis-suitable.

Proof. We prove the theorem by induction over admissible bisections. We know that the

initial meshG0 is analysis-suitable because it is a tensor-product mesh without any T-junctions.

Consider a sequence G0, . . . ,GJ of successive admissible bisections such that G0, . . . ,GJ−1 are

analysis-suitable. Without loss of generality we shall assume that elements are refined in

ascending order with respect to their level, i.e., for G j+1 = bisect(G j,K j), we assume that

0 = ℓ(K0) ≤ · · · ≤ ℓ(KJ−1). There is such a sequence for any admissible mesh; see the proof

of Proposition 4.3. We have to show that GJ is analysis-suitable as well.

We denote K ≔ KJ−1 = [µ, µ + µ̃] × [ν, ν + ν̃] ∈ GJ−1, and we assume without loss of

generality that ℓ(K) is even. The assumption that elements are refined in ascending order with

respect to their level implies that no element finer than K has been bisected yet, i.e.,

max ℓ(GJ) = ℓ(K) + 1. (3)

Denote by

Gu|k ≔ {K′ ∈
⋃

Ap,q | ℓ(K′) = k} ∈ Ap,q (4)

9



the k-th uniform refinement of G0. Then Gu|ℓ(K)+1 is a refinement of GJ, in particular

hSk(GJ) ⊆ hSk(Gu|ℓ(K)+1) = hSk(Gu|ℓ(K)), (5)

since ℓ(K) is even. Since GJ is admissible, all elements in Gp,q

J
(K) are at least of level ℓ(K)

and hence

hSk(GJ) ∩ U
p,q

(K) ⊇ hSk(Gu|ℓ(K)) ∩ U
p,q

(K). (6)

and

∀ K̃ ∈ Gp,q

J
(K) : size(ℓ(K̃)) ≤ size(ℓ(K)) (7)

with the level-dependent size

size(ℓ(K)) ≔ (µ̃, ν̃) =






(2−ℓ(K)/2, 2−ℓ(K)/2) if ℓ(K) even,

(2−(ℓ(K)+1)/2, 2−(ℓ(K)−1)/2) if ℓ(K) odd.
(8)

Together, (5) and (6) read

hSk(GJ) ∩ U
p,q

(K) = hSk(Gu|ℓ(K)) ∩ U
p,q

(K). (9)

Consider a T-junction T ∈ TJ \ TJ−1 that is generated by the bisection of K. Then T is a

vertical T-junction on the boundary of K, and with (7) follows

extp,q(T ) ⊆ {µ + µ̃/2} × [ν − 2−ℓ(K)/2⌈ q

2

⌉

, ν + ν̃ + 2−ℓ(K)/2⌈q

2

⌉]

.

Consider an arbitrary horizontal T-junction T̃ = (t1, t2) ∈ T . We will prove that extp,q(T̃ ) does

not intersect extp,q(T ). From (5) we conclude that extp,q(T̃ ) ⊆ hSk(Gu|ℓ(K)), and (9) implies

that the vertex T̃ is not in the interior of the (p, q)-patch of K and not on its top or bottom

boundary, i.e.

T̃ <
]

µ − 2−ℓ(K)/2⌊ p

2

⌋

, µ + µ̃ + 2−ℓ(K)/2⌊ p

2

⌋[ × [ν − 2−ℓ(K)/2⌈ q

2

⌉

, ν + ν̃ + 2−ℓ(K)/2⌈q

2

⌉]

.

See Figure 5 for a sketch. Assume without loss of generality that T̃ is on the left side of K,

this is,

t1 ≤ µ − 2−ℓ(K)/2⌊ p

2

⌋

. (10)

If type(T̃ ) = ⊢, then the edge-extension ext
p,q
e (T̃ ) points towards K in the sense that

∀ (x, t2) ∈ extp,q(T̃ ) : x − t1 ≤ 2−ℓ(K)/2⌊ p

2

⌋ (10)

≤ µ − t1

⇔ ∀ (x, t2) ∈ extp,q(T̃ ) : x ≤ µ < µ + µ̃/2.

This means that extp,q(T̃ ) does not intersect extp,q(T ). See Figure 6a for an illustration.

If type(T̃ ) = ⊣, then there is an odd-level element K′ on the right side of T̃ , and two finer

even-level elements on the left side. Since there are no elements in GJ with a level higher than

ℓ(K) + 1, which is odd, the two elements on the left side of T̃ have at most level ℓ(K), and

hence ℓ(K′) ≤ ℓ(K) − 1. Consequently, K′ < Gp,q

J
(K), and the length of the intersection of the

face extension ext
p,q

f
(T̃ ) with the (p, q)-patch of K is at most 2−ℓ(K)/2

(⌈ p

2

⌉ − 1
) ≤ 2−ℓ(K)/2

⌊ p

2

⌋

.

This leads to the same result as the previous case and is illustrated in Figure 6b. Since T̃ was

chosen arbitrary, GJ is analysis-suitable. This concludes the proof. �

10



K

int U
p,q

(K)

Figure 5: Example of the (p, q)-patch in a uniform mesh for p = q = 5. The horizontal T-

junction T̃ may be on a solid red line or outside of U
p,q

(K), but not in the interior of

U
p,q

(K) (shaded area) or on the dashed blue lines, which are open at their endpoints.

K

(a)

K

(b)

Figure 6: In both cases, the T-junction extension extp,q(T̃ ) (thick red line) does not intersect

the set
{

µ + µ̃/2
} × [ν − 2−ℓ(K)/2

⌈ q

2

⌉

, ν + ν̃ + 2−ℓ(K)/2
⌈ q

2

⌉]

(dotted blue line), which

includes extp,q(T ). The patch Gp,q

J
(K) is shaded in light blue.

Corollary 3.7. All admissible meshes provide T-spline blending functions that are non-negative,

linearly indepent, and form a partition of unity [16, 18]. Moreover, on each element K ∈ G ∈
Ap,q, there are not more than 2(p + 1)(q + 1) T-spline basis functions that have support on K

[18, Proposition 7.6].

This means that on each element, each T-Spline function communicates only with a finite

number of other T-spline functions, independent of the total number of functions. This is an

important requirement for sparsity of the linear system to be solved in Finite Element Analysis,

in the sense that every row and every column of a corresponding stiffness or mass matrix is a

sparse vector.
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4 Overlay

This section discusses the coarsest common refinement of two meshes G1,G2 ∈ Ap,q, called

overlay and denoted by G1 ⊗ G2. We prove that the overlay of two admissible meshes is also

admissible and has bounded cardinality in terms of the involved meshes. This is a classical

result in the context of adaptive simplicial meshes and will be crucial for further analysis of

adaptive algorithms (cf. Assumption (2.10) in [13]).

Definition 4.1 (Overlay). We define the operator Min⊆ which yields all minimal elements of

a set that is partially ordered by “⊆”,

Min⊆(M) ≔
{

K ∈ M | ∀K′ ∈ M : K′ ⊆ K ⇒ K′ = K
}

.

The overlay of G1,G2 ∈ Ap,q is defined by

G1 ⊗ G2 ≔ Min⊆
(G1 ∪ G2

)

.

Proposition 4.2. G1 ⊗ G2 is the coarsest refinement of G1 and G2 in the sense that for any

Ĝ being a refinement of G1 and G2, and G1 ⊗ G2 being a refinement of Ĝ, it follows that

Ĝ = G1 ⊗ G2.

Proof. G1 is a refinement of G2 if and only if for each K1 ∈ G1, there is K2 ∈ G2 with

K1 ⊆ K2, which is equivalent to G1 = G1 ⊗ G2. Given that G1 ⊗ Ĝ = Ĝ = G2 ⊗ Ĝ and

G1 ⊗ G2 = (G1 ⊗ G2) ⊗ Ĝ, we have

G1 ⊗ G2 = (G1 ⊗ G2) ⊗ Ĝ = Min⊆(G1 ⊗ G2 ∪ Ĝ)

= Min⊆(Min⊆(G1 ∪ G2) ∪ Ĝ) = Min⊆(G1 ∪ G2 ∪ Ĝ)

= Min⊆(G1 ∪Min⊆(G2 ∪ Ĝ)) = Min⊆(G1 ∪ G2 ⊗ Ĝ)

= Min⊆(G1 ∪ Ĝ) = G1 ⊗ Ĝ = Ĝ. �

Proposition 4.3. For any admissible meshes G1,G2 ∈ Ap,q, the overlay G1 ⊗G2 is also admis-

sible.

Proof. Consider the set of admissible elements which are coarser than elements of the overlay,

M ≔ {K ∈ ⋃Ap,q | ∃K′ ∈ G1 ⊗ G2 : K′ $ K
}

.

Then G1 ⊗G2 is the coarsest partition of Ω into elements from
⋃

Ap,q that refines all elements

occuring inM. Note also thatM satisfies

∀ K,K′ ∈ ⋃Ap,q : K ∈ M ∧ K ⊆ K′ ⇒ K′ ∈ M. (11)

For j = 0, . . . , J = max ℓ(M) and Ḡ0 ≔ G0, set

M j ≔ {K ∈ M | ℓ(K) = j}
and Ḡ j+1 ≔ bisect(Ḡ j,M j). (12)

12



Claim 1. For all j ∈ {0, . . . , J} holdsM j ⊆ Ḡ j. This is shown by induction over j. For j = 0,

the claim is true because all admissible elements with zero level are in G0. Assume the claim

to be true for 0, . . . , j − 1 and assume for contradiction that there exists K ∈ M j \ Ḡ j.

Since K has not been bisected yet, Ḡ j does not contain any K′ with K′ ⊂ K. Consequently,

there exists K′ ∈ Ḡ j with K ⊂ K′ and hence ℓ(K′) < ℓ(K) = j. From (11) follows K′ ∈
Mℓ(K′) ∈ M, and ℓ(K′) < j implies that K′ has been refined in a previous step. This yields

K′ < Ḡ j, which is the desired contradiction.

Claim 2. For all j ∈ {0, . . . , J}, the bisection (12) is admissible. Consider K ∈ M j for an

arbitrary j. By definition ofM, there exists K′ ∈ G1 ⊗ G2 ⊆ G1 ∪ G2 with K′ $ K. Without

loss of generality, we assume K′ ∈ G1. Since G1 ∈ Ap,q, there is a sequence of admissible

meshes G0 = G1|0,G1|1, . . . ,G1|I = G1 and i ∈ {0, . . . ,I−1} such that G1|i+1 = bisect(G1|i, {K}).
The fact that G1|i+1 ∈ Ap,q (and that levels do not decrease during refinement) implies

min ℓ(Gp,q

1
(K)) ≥ min ℓ(Gp,q

1|i (K)) ≥ ℓ(K) = j. (13)

Assume for contradiction that there is K̃ ∈ Gp,q

j
(K) with ℓ(K̃) < ℓ(K) = j. This implies K̃ <M

(otherwise K̃ would have been bisected in a previous step). Moreover, (13) and Corollary 2.15

yield that there is K̃′ ∈ Gp,q

1
(K) with K̃′ ⊂ K̃ and hence K̃ ∈ M in contradiction to K̃ < M

from before. This proves Claim 2.

The proven claims showM j = Ḡ j \ Ḡ j+1 for all j = 0, . . . , J and hence for the admissible

mesh ḠJ+1 that there is no coarser partition of Ω into elements from
⋃

Ap,q that refines all

elements inM. This property defines a unique partition and hence

G1 ⊗ G2 = ḠJ+1 ∈ Ap,q. �

Lemma 4.4. For all G1,G2 ∈ Ap,q holds

# (G1 ⊗ G2) + #G0 ≤ #G1 + #G2 .

Proof. By definition, the overlay is a subset of the union of the two involved meshes, i.e.,

G1 ⊗ G2 = Min⊆(G1 ∪ G2) ⊆ G1 ∪ G2 . (14)

Define the shorthand notation G(K) ≔ {K′ ∈ G | K′ ⊆ K}. To prove the lemma, it suffices to

show

∀ K ∈ G0, #(G1 ⊗ G2)(K) + 1 ≤ #G1(K) + #G2(K) .

Case 1. G1(K) ⊆ (G1 ⊗ G2)(K). This implies equality and hence

#(G1 ⊗ G2)(K) + 1 = #G1(K) + 1 ≤ #G1(K) + #G2(K) .

Case 2. There exists K′ ∈ G1(K) \ (G1 ⊗ G2)(K). Then (G1 ⊗ G2)(K) = (G1 ⊗ G2)(K) \ {K′}
and hence

#(G1 ⊗ G2)(K) = #
(

(G1 ⊗ G2)(K) \ {K′})
(14)

≤ #
(

(G1 ∪ G2)(K) \ {K′})

≤ #(G1 \ {K}) + #G2(K) = #G1(K) − 1 + #G2(K).

�
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5 Nestedness

This section investigates the nesting behavior of the T-spline spaces corresponding to admis-

sible meshes. In order to prove that nested admissible meshes induce nested spline spaces,

we make use of Theorem 6.1 from [17]. Before presenting the Theorem, we briefly introduce

necessary notations.

Definition 5.1 (Refinement relation). For any partitions G1,G2 of Ω, we introduce the refine-

ment relation “�”, which is defined using the overlay (see Section 4),

G1 � G2 ⇔ G1 ⊗ G2 = G2.

Corollary 5.2. Denote the skeleton of a mesh G by Sk(G) ≔ hSk(G) ∪ vSk(G). Then for

rectangular partitions G1,G2 of Ω holds the equivalence

G1 � G2 ⇔ Sk(G1) ⊆ Sk(G2).

Definition 5.3 (extended mesh). Given a rectangular partition G of Ω, denote by extp,q(G) the

union of all T-junction extensions in the mesh G. Then the extended mesh Gext is defined as

the unique rectangular partition of Ω such that

Sk(Gext) = Sk(G) ∪ extp,q(G).

Definition 5.4 (mesh perturbation). Given a partition G of Ω into axis-aligned rectangles, we

define by Ptb(G) the set of all continuous and invertible mappings δ : Ω → Ω such that the

corners (0, 0), (M, 0), (M,N), (0,N) are fixed points of δ and

δ(G) =
{

δ(K) | K ∈ G}

is also a partition of Ω into axis-aligned rectangles.

This definition differs from the definition of pertubations given in [17], which we found

difficult to reproduce in a formal manner. The subsequent Proposition 5.5 shows that our

definition includes the understanding of perturbations from [17].

Remark. For δ ∈ Ptb(G), the perturbed mesh δ(G) has the skeleton Sk(δ(G)) = δ(Sk(G)).

Hence, global index vectors can be defined according to Definition 3.3, and since all T-

junctions in δ(G) are of axis-parallel types (⊢,⊥, ⊣, or ⊤), we can also apply Definition 3.4

for T-junction extensions in the perturbed mesh. Note in particular that the perturbation δ does

not in general map T-junction extensions to the corresponding extensions in the perturbed

mesh, i.e., if T is a T-junction in G, then

ext
p,q

δ(G)
(δ(T )) , δ(ext

p,q

G (T )).

Proposition 5.5. For any rectangular partition G of Ω, there is some δ∗ ∈ Ptb(G) such that

any two T-junction face extensions in δ∗(G) are disjoint.

In the context of [17], this means that δ∗(G) has no crossing vertices and no overlap vertices.

14



Proof. If all T-junction extensions in G are pairwise disjoint, then δ∗ is the identity map.

If there exist T-junctions T1,T2 in G with intersecting face extensions, then T1 and T2 are

either both vertical or both horizontal T-junctions. Assume w.l.o.g. that T1 and T2 are vertical

T-junctions. Since their (vertical) face extensions overlap, both T-junctions have the same x-

coordinate t0. Let T1 = (t0, t1) and T2 = (t0, t2), and assume t1 < t2. There exists t1.5 with

t1 ≤ t1.5 ≤ t2 such that at least one of the open segments {t0} × (t1, t1.5) and {t0} × (t1.5, t2) does

not intersect with the vertical skeleton vSk(G). Assume that {t0} × (t1, t1.5) ∩ vSk(G) = ∅ and

define

Ωx=t0 ≔

{

(x, y) ∈ Ω | x = t0

}

and Gx=t0 ≔

{

K ∈ G | K ∩Ωx=t0 , ∅
}

.

Let h be the length of the shortest edge in G, and set ε ≔ h/2. We define δT1T2
by

δT1T2
(x, y) =






(x, y) if (x, y) ∈ ⋃(G \ Gx=t0)

(x − ε, y) if x = t0 and y < t1

(x + ε, y) if x = t0 and y > t1.5
(

x +
ε (2y−t1−t1.5)

t1.5−t1
, y
)

if x = t0 and t1 ≤ y ≤ t1.5

and elsewhere by horizontal linear interpolation, which is illustrated in Figure 7. The map

δT1T2
then satisfies the following properties.

1. δT1T2
is in Ptb(G).

2. The T-junction extensions of δT1T2
(T1) and δT1T2

(T2) do not intersect.

3. δT1T2
does not lead to intersecting of T-junction extensions that did not intersect in the

unperturbed mesh G.

(a) The unperturbed mesh G. (b) The perturbed mesh δT1T2
(G).

Figure 7: Example for a perturbation δT1T2
. In the shaded area, δT1T2

equals the identity map.

In the non-shaded region, we underlaid a red grid to illustrate the behavior of δT1T2
.

A straight-forward proof shows that perturbations can be concatenated in the sense that

δ1 ∈ Ptb(G), δ2 ∈ Ptb(δ1(G)) ⇒ δ2 ◦ δ1 ∈ Ptb(G).
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This allows for the subsequent conclusion of the proof. Given the mesh G0 ≔ G choose an

arbitrary pair (T0,T
′
0
) of T-junctions in G such that their face extensions intersect, and set

G1 ≔ δT0T ′
0
(G0). Then choose (T1,T

′
1
) such that T1 and T ′

1
are T-junctions with intersecting

face extensions in G1, construct δT1T ′
1

as above, accounting that h and ε may have changed.

Set G2 ≔ δT1T ′
1
(G1). Repeat this until in a mesh Gn, there are no intersecting T-junction face

extensions. Then δ∗ ≔ δTn−1T ′
n−1
◦ · · · ◦ δT0T ′

0
is in Ptb(G) and satisfies that all T-junction face

extensions in δ∗(G) are pairwise disjoint. �

Theorem 5.6 ([17, Theorem 6.1]). Given two analysis-suitable meshes G1 and G2, if for all

δ ∈ Ptb(G2) holds
(

δ(G1)
)ext � (δ(G2)

)ext
,

then the T-spline spaces corresponding to G1 and G2 are nested.

The main result of this section is the following.

Theorem 5.7. Any two meshes G1,G2 ∈ Ap,q that are nested in the sense G1 � G2 satisfy for

all δ ∈ Ptb(G2)
(

δ(G1)
)ext � (δ(G2)

)ext
.

Proof. According to Corollary 5.2, we have to show that

extp,q(δ(G1)
) ∪ Sk

(

δ(G1)
) ⊆ extp,q(δ(G2)

) ∪ Sk
(

δ(G2)
)

.

We prove this for G2 being an admissible bisection of G1. The claim then follows inductively

for all admissible refinements of G1. Let K ∈ G1 ∈ Ap,q and G2 ≔ bisect(G1,K) ∈ Ap,q. Since

“�” denotes an elementwise subset relation, it is preserved under the mapping δ. Thus, from

G1 � G2 follows δ(G1) � δ(G2) and consequently Sk
(

δ(G1)
) ⊆ Sk

(

δ(G2)
)

. It remains to prove

that

extp,q(δ(G1)
) ⊆ extp,q(δ(G2)

) ∪ Sk
(

δ(G2)
)

.

Denote by T1 and T2 the set of T-junctions in G1 and G2, respectively. Assume w.l.o.g. that

ℓ(K) is even, and consider an arbitrary T-junction T δ in the mesh δ(G1). Since δ is continuous

and invertible, there is a one-to-one correspondence between the T-junctions in G1 and δ(G1),

i.e., there is T ∈ T1 with δ(T ) = T δ, and T and T δ are of the same type (⊢,⊥, ⊣, or ⊤).

Case 1. T < K. Then T is still a T-junction after bisecting K, i.e., T ∈ T2. Consequently,

T δ is also a T-junction in δ(G2).

Case 1a. T is a vertical T-junction. Since ℓ(K) is assumed to be even, its bisection does not

affect the horizontal skeleton, i.e., hSk(G1) = hSk(G2) and hence hSk(δ(G1)) = hSk(δ(G2)).

Consquently, the T-junction extensions of T and T δ are preserved,

ext
p,q

G1
(T ) = ext

p,q

G2
(T ) and ext

p,q

δ(G1)
(T δ) = ext

p,q

δ(G2)
(T δ) ⊆ extp,q (δ(G2)

)

.

Case 1b. T is a horizontal T-junction. We will show that the corresponding T-junction

extension in the pertubed mesh is preserved, i.e.,

ext
p,q

δ(G1)
(T δ) = ext

p,q

δ(G2)
(T δ).
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Assume for contradiction that ext
p,q

δ(G1)
(T δ) , ext

p,q

δ(G2)
(T δ). The bisection of K generates a

vertical edge EK ⊇ vSk(G2) \ vSk(G1), and we denote

EδK ≔ δ(EK) ⊇ vSk(δ(G2)) \ vSk(δ(G1)).

Obviously, Eδ
K

intersects with ext
p,q

δ(G1)
(T δ), otherwise the T-junction extension would be the

same in δ(G2). Given K = [µ, µ + µ̃] × [ν, ν + ν̃], we define the half-open domain Kho ≔
]

µ, µ + µ̃
[ × [ν, ν + ν̃], which is the rectangle K without its vertical edges. Then EK ⊂ Kho and

hence Eδ
K
⊂ Kδ

ho
≔ δ(Kho). Together, we have that ext

p,q

δ(G1)
(T δ) intersects with Kδ

ho
. Since the

bisection of K is admissible, we know from the proof of Theorem 3.6 that ext
p,q

G1
(T ) does not

intersect with Kho in the unperturbed mesh G1. Define the T -environment

U (T ) ≔
⋃

K′∈G1

K′
ho
∩extp,q(T ),∅

K′,

as the union of all K′ ∈ G1 such that extp,q(T ) intersects the corresponding half-open K′
ho

. Then

U (T ) is a rectangular domain that does not intersect with Kho. Since for each K′ ⊆ U (T ), the

image δ(K′) is a rectangle and since δ is continuous, δ
(

U (T )
)

is a rectangular domain that

does not intersect with Kδ
ho

. Moreover, since all edges and vertices in U (T ) are continuously

mapped into δ
(

U (T )
)

, we have U (T δ) ⊆ δ(U (T )
)

. Together, we get that U (T δ) does not inter-

sect with Kδ
ho

, hence ext
p,q

δ(G1)
(T δ) does not intersect with Kδ

ho
, which is the desired contradiction.

Case 2. T ∈ K. In Section 2, we assumed that p, q ≥ 2. This implies that all neighbors of K

are in Gp,q

1
(K) and that K is in the patch of all those neighbors as well. Since G1 is admissible,

the level of a neighbor of K is either ℓ(K) or ℓ(K)+ 1. Since ℓ(K) is even, T must be a vertical

T-junction, and T δ is a vertical T-junction as well. Since T is on the boundary of K, and the

bisection of K generates a vertical edge, T is not a T-junction anymore in G2. Hence T δ is a

vertex, but not a T-junction in δ(G2). The T-junction extension extp,q(T δ) hence only exists in

δ(G1). Consider the edge extension of T δ.

Case 2a. ext
p,q
e (T δ) ⊆ vSk(δ(G2)). There is no problem with that.

Case 2b. ext
p,q
e (T δ) * vSk(δ(G2)). Then there exists some T̃ δ ∈ ext

p,q
e (T δ) which is a

T-junction in δ(G2), such that

extp,q
e (T δ) ⊂ ext

p,q

δ(G2)
(T̃ δ) ⊆ extp,q(δ(G2)).

The Cases 2a and 2b hold analogously for the face extension ext
p,q

f
(T δ). Together, we have

extp,q(T δ) ⊆ extp,q(δ(G2)) ∪ vSk(δ(G2)),

which concludes the proof. �

The combination of Theorem 5.6 and 5.7 reads as follows.

Corollary 5.8. For any two meshes G1,G2 ∈ Ap,q that are nested in the sense G1 � G2, the

corresponding T-spline spaces are also nested.
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6 Linear Complexity

This section is devoted to a complexity estimate in the style of a famous estimate for the

Newest Vertex Bisection on triangular meshes given by Binev, Dahmen and DeVore [19] and,

in an alternative version, by Stevenson [15]. The estimate reads as follows.

Theorem 6.1. Any sequence of admissible meshes G0,G1, . . . ,GJ with

G j = ref p,q(G j−1,M j−1), M j−1 ⊆ G j−1 for j ∈ {1, . . . , J}

satisfies

|GJ \ G0| ≤ Cp,q

J−1∑

j=0

|M j| ,

with Cp,q = (3 +
√

2)(4dp + 1)(4dq +
√

2) and dp, dq from Lemma 6.4 below.

Remark. Theorem 6.1 shows that, with regard to possible mesh gradings, the refinement al-

gorithm is as flexible as successive bisection without the closure step. However, this result is

non-trivial. Given a mesh G ∈ Ap,q and an element K ∈ G to be bisected, there is no uniform

bound on the number of generated elements #(ref p,q(G, {K}) \ G). This is illustrated by the

following example.

Example 6.2. Consider the case p = q = 2 and the initial mesh G0 given through M = 3 and

N = 4. Mark the element in the lower left corner of the mesh and compute the corresponding

refinement G1; repeat this step k times. Then there exists an element Kk in Gk such that

#(ref1,1(Gk,Kk) \ Gk) ≥ k. This is illustrated in Figure 8.

Figure 8: The mesh G3 and the mesh G8 from Example 6.2. The rectangles K3 and K8 are

marked blue. The closures clos1,1(G3, {K3}) and clos1,1(G8, {K8}) are marked in light

blue. Since the closure of K3 consists of 7 elements, 14 elements will be generated

if K3 is bisected. Analogously, marking K8 would cause the generation of 34 new

elements.
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Example 6.3. The large constant Cp,q is not observed in practise. For p = q = 3, we con-

structed for each J ∈ {1, . . . , 2000} a sequence G0,G1, . . . ,GJ with G j+1 = bisect(G j,K j) and

K j ∈ G j of uniform random choice. The ratio |GJ | /J was below 6 (see Figure 9), instead of

the theoretical upper bound C3,3 ≈ 12 996 from Theorem 6.1. We applied this procedure for

p, q = 2, . . . , 9. The results are listed in Figure 10. In Figure 11, we listed similar results

for J ∈ {1, . . . , 100}, always marking the element in the lower left corner. In that case, the

observed ratios are higher, but still orders of magnitude below the corresponding theoretical

bounds.
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Figure 9: Generated and marked elements for randomly refined (3, 3)-admissible meshes.

Each black dot corresponds to a sequence of random admissible refinements. The

red line depicts the highest observed ratio (≈ 5.95). The median of the observed

ratios is ≈ 4.09.

We devote the rest of this section to proving Theorem 6.1.

Lemma 6.4. GivenM ⊆ G ∈ Ap,q and K ∈ ref p,q(G,M) \ G, there exists K′ ∈ M such that

ℓ(K) ≤ ℓ(K′) + 1 and

Dist(K,K′) ≤ 2−ℓ(K)/2(dp, dq),

with “≤” understood componentwise and constants

dp ≔
1
2
+ (1 +

√
2)(p +

√
2), dq ≔

1√
2
+ (2 +

√
2)(q +

√
2).
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❍
❍

❍
❍
❍
❍

p

q
2 3 4 5 6 7 8 9

2 5 5 7 7 7 7 8 8

3 6 6 7 7 8 8 9 11

4 7 8 8 8 11 10 10 12

5 7 7 9 10 10 12 11 13

6 7 8 10 10 11 12 12 16

7 8 11 10 13 12 12 16 14

8 9 10 11 17 13 13 15 15

9 9 11 12 14 14 16 16 23

Figure 10: Maximal observed ratios of generated and marked elements for random refinement.

❍
❍
❍
❍
❍
❍

p

q
2 3 4 5 6 7 8 9

2 24 33 46 56 69 78 91 100

3 33 46 65 78 97 109 128 140

4 46 65 91 110 136 154 179 198

5 56 78 110 132 163 186 216 238

6 69 97 136 164 202 229 268 295

7 78 110 154 186 229 260 304 335

8 91 128 180 217 268 304 355 391

9 100 141 198 239 295 335 391 431

Figure 11: Maximal observed ratios of generated and marked elements when refining the

lower left corner.

Proof. The coefficient Dp,q(k) from Definition 2.4 is bounded by

Dp,q(k) ≤ ((p +
√

2) 2−1−k/2, (q +
√

2) 2−(k+1)/2) for all k ∈ N.

Hence for K̃ ∈ G ∈ Ap,q, any K̃′ ∈ Gp,q(K̃) satisfies

Dist(K̃, K̃′) ≤ 2−ℓ(K̃)/2
(

p+
√

2

2
,

q√
2
+ 1
)

. (15)

The existence of K ∈ refp,q(G,M) \Gmeans that Algorithm 2.9 bisects K′ = KJ,KJ−1, . . . ,K0

such that K j−1 ∈ Gp,q(K j) and ℓ(K j−1) < ℓ(K j) for j = J, . . . , 1, having K′ ∈ M and K ∈
child(K0), with ‘child’ from Definition 2.6. Lemma 2.14 yields ℓ(K j−1) = ℓ(K j) − 1 for j =
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J, . . . , 1, which allows for the estimate

Dist(K′,K0) ≤
J∑

j=1

Dist(K j,K j−1)
(15)

≤
J∑

j=1

2−ℓ(K j)/2
(

p+
√

2

2
,

q√
2
+ 1
)

=

J∑

j=1

2−(ℓ(K0)+ j)/2
(

p+
√

2

2
,

q√
2
+ 1
)

< 2−ℓ(K0)/2
(

p+
√

2

2
,

q√
2
+ 1
)
∞∑

j=1

2− j/2

= (1 +
√

2) 2−ℓ(K0)/2
(

p+
√

2

2
,

q√
2
+ 1
)

= (2 + 2
√

2) 2−ℓ(K)/2
(

p+
√

2

2
,

q√
2
+ 1
)

.

The estimate Dist(K0,K) ≤ 2−2−ℓ(K0)/2
(

1,
√

2
)

and a triangle inequality conclude the proof. �

Proof of Theorem 6.1.

(1) For K ∈ ⋃Ap,q and K̃ ∈ M ≔M0 ∪ · · · ∪MJ−1, define λ(K, K̃) by

λ(K, K̃) ≔






2(ℓ(K)−ℓ(K̃))/2 if ℓ(K) ≤ ℓ(K̃) + 1 and Dist(K, K̃) ≤ 21−ℓ(K)/2(dp, dq),

0 otherwise.

(2) Main idea of the proof.

|GJ \ G0| =
∑

K∈GJ\G0

1
(4)

≤
∑

K∈GJ\G0

∑

K̃∈M

λ(K, K̃)

(3)

≤
∑

K̃∈M

Cp,q = Cp,q

J−1∑

j=0

|M j|.

(3) For all j ∈ {0, . . . , J − 1} and K̃ ∈ M j holds
∑

K∈GJ\G0

λ(K, K̃) ≤ (3 +
√

2)(4dp + 1)(4dq +

√
2) = Cp,q .

This is shown as follows. By definition of λ, we have
∑

K∈GJ\G0

λ(K, K̃) ≤
∑

K∈⋃Ap,q\G0

λ(K, K̃)

=

ℓ(K̃)+1∑

j=1

2( j−ℓ(K̃))/2 #
{

K ∈ ⋃Ap,q | ℓ(K) = j and Dist(K, K̃) ≤ 21− j/2(dp, dq)
}

︸                                                                    ︷︷                                                                    ︸

B

.

Since we know by definition of the level that ℓ(K) = j implies |K| = 2− j, we know that 2 j |⋃ B|
is an upper bound of #B. The rectangular set

⋃

B is the union of all admissible elements of

level j having their midpoints inside an rectangle of size

22− j/2dp × 22− j/2dq.
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An admissible element of level j is not bigger than 2− j/2 × 2(1− j)/2. Together, we have

|⋃ B| ≤ 2− j(4dp + 1)(4dq +

√
2),

and hence #B ≤ (4dp + 1)(4dq +
√

2). The claim is shown with

ℓ(K̃)+1∑

j=1

2( j−ℓ(K̃))/2
=

1∑

j=1−ℓ(K̃)

2 j/2 <
√

2 +

∞∑

j=0

2− j/2
=

2
√

2−1√
2−1
= 3 +

√
2.

(4) Each K ∈ GJ \ G0 satisfies
∑

K̃∈M

λ(K, K̃) ≥ 1.

Consider K ∈ GJ \ G0. Set j1 < J such that K ∈ G j1+1 \ G j1 . Lemma 6.4 states the existence

of K1 ∈ M j1 with Dist(K,K1) ≤ 2−ℓ(K)/2(dp, dq) and ℓ(K) ≤ ℓ(K1) + 1. Hence λ(K,K1) =

2ℓ(K)−ℓ(K1) > 0. The repeated use of Lemma 6.4 yields j1 > j2 > j3 > . . . and K2,K3, . . . with

Ki−1 ∈ G ji+1 \ G ji and Ki ∈ M ji such that

Dist(Ki−1,Ki) ≤ 2−ℓ(Ki−1)/2(dp, dq) and ℓ(Ki−1) ≤ ℓ(Ki) + 1. (16)

We repeat applying Lemma 6.4 as λ(K,Ki) > 0 and ℓ(Ki) > 0, and we stop at the first index L

with λ(K,KL) = 0 or ℓ(KL) = 0. If ℓ(KL) = 0 and λ(K,KL) > 0, then

∑

K̃∈M

λ(K, K̃) ≥ λ(K,KL) = 2(ℓ(K)−ℓ(KL))/2 ≥
√

2.

If λ(K,KL) = 0 because ℓ(K) > ℓ(KL) + 1, then (16) yields ℓ(KL−1) ≤ ℓ(KL) + 1 < ℓ(K) and

hence ∑

K̃∈M

λ(K, K̃) ≥ λ(K,KL−1) = 2(ℓ(K)−ℓ(KL−1))/2 ≥
√

2.

If λ(K,KL) = 0 because Dist(K,KL) > 21−ℓ(K)/2(dp, dq), then a triangle inequality shows

21−ℓ(K)/2(dp, dq) < Dist(K,K1) +

L−1∑

i=1

Dist(Ki,Ki+1) ≤ 2−ℓ(K)/2(dp, dq) +

L−1∑

i=1

2−ℓ(Ki)/2(dp, dq),

and hence 2−ℓ(K)/2 ≤
L−1∑

i=1

2−ℓ(Ki)/2. The proof is concluded with

1 ≤
L−1∑

i=1

2(ℓ(K)−ℓ(Ki))/2 =

L−1∑

i=1

λ(K,Ki) ≤
∑

K̃∈M

λ(K, K̃).
�

7 Conclusion

We presented an adaptive refinement algorithm for a subclass of analysis-suitable T-meshes

that produces nested T-spline spaces, and we proved theoretical properties that are crucial

for the analysis of adaptive schemes driven by a posteriori error estimators. As an example,
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compare the assumptions (2.9) and (2.10) in [13] to Theorem 6.1 and Lemma 4.4, respectively.

The presented refinement algorithm can be extended to the three-dimensional case, which

is our current work. The factor Cp,q from the complexity estimate is affine in each of the

parameters p, q and increases exponentially with growing dimension. We aim to apply the

proposed algorithm to proof the rate-optimality of an adaptive algorithm for the numerical

solution of second-order linear elliptic problems using T-splines as ansatz functions. Similar

results have been proven for simple FE discretizations of the Poisson model problem in 2007

by Stevenson [15], in 2008 by Cascon, Kreuzer, Nochetto and Siebert [14], and recently for a

wide range of discretizations and model problems by Carstensen, Feischl, Page and Praetorius

[13].
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arbitrary degree: definition, linear independence and approximation properties, Math.

Models Methods Appl. Sci. 23 (2013), no. 11, 1979–2003.

[17] X. Li and M. A. Scott, Analysis-suitable t-splines: Characterization, refineability, and

approximation, Math. Models Methods Appl. Sci. 24 (2014), no. 06, 1141–1164.

[18] L. B. da Veiga, A. Buffa, G. Sangalli, and R. Vàzquez, Mathematical analysis of varia-
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