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Abstract

We present a new general class of methods for the computation of high-dimensional integrals.
The quadrature schemes result by truncation and discretization of the anchored-ANOVA decom-
position. They are designed to exploit low effective dimensions and include sparse grid methods
as special case. To derive bounds for the resulting modelling and discretization errors, we in-
troduce effective dimensions for the anchored-ANOVA decomposition. We show that the new
methods can be applied in a locally-adaptive and dimension-adaptive way and demonstrate their
efficiency by numerical experiments with high-dimensional integrals from finance.
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1. Introduction

High-dimensional integrals appear in various mathematical models from physics, chemistry
and finance. Their large number of dimensions arises, e.g., from small time steps in time dis-
cretizations and/or a large number of state variables. Examples from finance are option pricing,
bond valuation or the pricing of collateral mortgage backed securities. In most cases, the arising
integrals cannot be calculated analytically and numerical methods must be applied. Here, one of
the key prerequisites is that the curse of dimension can be avoided at least to some extent. The
curse of dimension states that the cost to compute an approximation with a prescribed accuracy
ε depends exponentially on the dimension d of the problem. It is one of the main obstacles for a
conventional numerical treatment of high dimensional problems, see, e.g., Griebel (2006). Clas-
sical quadrature methods for the computation of multivariate integrals (e.g. based on product
rules) which use n function evaluations achieve an accuracy of

ε(n) = O(n−r/d)

for functions with bounded derivatives up to order r, see, e.g., Davis and Rabinowitz (1984). For
fixed r, their convergence rates thus decrease exponentially with increasing dimension. On the
positive side, the case r = d indicates that the problem of a high dimension can sometimes be
compensated by, e.g., a high degree of smoothness. Also other aspects such as the concentration

Preprint submitted to Journal of Complexity January 27, 2010



of measure phenomenon1 or the superposition theorem of Kolmogorov2 show that there is some
chance to treat high-dimensional problems despite the curse of dimension.

Furthermore, the curse of dimension can be approached from the point of numerical com-
plexity theory. There it is shown that for some integration problems even the best algorithm of a
specific algorithm class cannot avoid the curse of dimension. Such problems are therefore called
intractable, see, e.g. Traub et al. (1988). However, application problems are often in different
or smaller problem classes and thus may be tractable. In addition, there may exist algorithms
from other settings which are able to break the curse of dimension. Randomised algorithms (e.g.
Monte Carlo methods) form one such class of algorithms. For square integrable functions, the
expected mean square error of the Monte Carlo method with n samples is

ε(n) = O(n−1/2)

and is thus independent of the dimension.3 Nevertheless, the convergence rate is quite low and
a high accuracy is only achievable with tremendously many function evaluations. Determinis-
tic numerical integration schemes, such as quasi-Monte Carlo methods (see, e.g., Glasserman
(2003)) and sparse grids (see, e.g., Bungartz and Griebel (2004); Gerstner and Griebel (1998,
2003); Griebel (2006); Novak and Ritter (1996); Smolyak (1963)) are alternatives to the Monte
Carlo method, which can attain faster rates of convergence. The error of quasi-Monte Carlo
methods can be shown to be

ε(n) = O(n−1(log n)d)

for integrands of bounded variation and thus decreases with the number of function evaluations
n asymptotically faster than the expected mean square error of the Monte Carlo method. Sparse
grids as introduced in Smolyak (1963) achieve

ε(n) = O(n−r(log n)(d−1)(r+1))

for integrands which have bounded mixed partial derivatives of order r and can thus also make
use of higher smoothness of the integrand. The convergence rates of quasi-Monte Carlo and
sparse grid methods still exhibit a logarithmic dependence on the dimension, however. Further-
more, the implicit constants depend on d and often increase exponentially with the dimension.
For problems with higher dimensions the asymptotic advantages of the deterministic numerical
methods over the Monte Carlo method might thus not pay off for practical sample sizes n.4

However, for many problems of finance, numerical experiments show that quasi-Monte Carlo
methods converge nearly independent of the dimension and are faster and more accurate than
Monte Carlo, see, e.g., Caflisch et al. (1997); Paskov and Traub (1995). For sufficiently smooth
integrands, similar results have been observed for sparse grid methods, see Gerstner and Griebel
(1998, 2003). One explanation of this success is based on the analysis of variance (ANOVA)
decomposition of the integrands. There it turns out that in many finance applications the impor-
tance of each dimension is naturally weighted by certain hidden weights where with the increase

1The concentration of measure phenomenon says that every Lipschitz function on a sufficiently high dimensional
domain is well approximated by a constant function.

2The theorem of Kolmogorov shows that every continuous function of several variables can be represented by the
superposition of continuous functions with only one variable.

3The probabilistic error of a Monte Carlo estimate with n samples is σ2( f )/
√

n. Here, the term n−1/2 describes the
convergence rate and the variance σ2( f ) can be considered as the constant of the Monte Carlo method.

4Note however that the constants of the Monte Carlo method depend on the variance of the integrand, which can
exponentially grow with the dimension. In this case also Monte Carlo integration is intractable.
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of dimension the lower-order terms continue to play a significant role and the higher-order terms
tend to be negligible, see, e.g., Caflisch et al. (1997); Wang and Sloan (2005). Moreover, often
coordinate transformations, such as the Brownian bridge, see Moskowitz and Caflisch (1996), the
PCA-construction, see Acworth et al. (1998), or the LT-construction, see Imai and Tan (2006),
can be used to enforce the importance of the first few dimensions. The integrands are thus of
so called low effective dimension and can be well approximated by a sum of low-dimensional
functions. In Caflisch et al. (1997), two notions of effective dimension have been introduced, the
truncation and the superposition dimension. Quasi-Monte Carlo methods profit from a low su-
perposition dimension by their well-distributed low dimensional projections and from a low trun-
cation dimension by the fact that their points are usually more uniformly distributed in smaller
dimensions than in higher ones. Sparse grid methods can exploit low truncation and low su-
perposition dimension in a very general way by a dimension-adaptive grid refinement. If the
weights decay sufficiently fast with increasing dimension and if the integrands are of bounded
mixed regularity then tractability of the deterministic algorithms can be proved, see Sloan and
Woźniakowski (1998). A further argument given in Griebel et al. (2008); Liu and Owen (2006)
states that the lower order terms in the ANOVA decomposition are in certain cases smoother than
the original function. This may explain the high convergence rates of the deterministic methods
despite the fact that application problems do usually not fulfill the smoothness assumptions on
bounded mixed regularity.

While the classical ANOVA decomposition is very useful to analyse the importance of differ-
ent dimensions and their interactions of a high-dimensional function it cannot be used as a tool for
the design of new integration schemes since already the first term in the decomposition requires
to integrate the function. In this article, we present a new general class of quadrature meth-
ods for the computation of high-dimensional integrals, which is based on the anchored-ANOVA
decomposition. The anchored-ANOVA decomposition has the advantage that its sub-terms are
much cheaper to compute than the terms of the classical ANOVA decomposition since instead
of integrals only point evaluations are required. The new quadrature methods, which we refer
to as dimension-wise quadrature methods, are defined in two steps: First, the anchored-ANOVA
decomposition is truncated either a priori based on function space weights or in an dimension-
adaptive fashion, which automatically detects the important terms of the decomposition. This
truncation introduces a modeling error which can be shown to be small, however, if the inte-
grand is of low effective dimension. Then, the integrals of the kept terms are computed using
appropriate low-dimensional quadrature rules which may be different from term to term and may
refine the approximation in a locally-adaptive way. This introduces a discretization error which,
however, only depends on the superposition dimension of the integrand and not on the nominal
dimension d, if we correctly balance the costs of the quadrature methods with the importance
of the corresponding anchored-ANOVA terms. We further show that the new method includes
the class of generalised sparse grid methods, see Gerstner and Griebel (1998); Hegland (2003);
Plaskota (2000); Wasilkowski and Woźniakowski (1999), as special case which results if we use
particular tensor product methods for the integration of the sub-terms. This allows us to inter-
twine the truncation of the anchored-ANOVA series and the subsequent discretization and to
balance modelling and discretization error in an optimal way. We demonstrate this approach in
more detail for integrands from weighted tensor product Sobolev spaces.

We also present dimension-wise quadrature methods which are not of sparse grid form. Here
we use the CUHRE method Bernsten et al. (1991) for the integration of the low-order anchored
ANOVA terms and quasi-Monte Carlo methods for the higher order terms. This way, we obtain
mixed CUHRE/QMC methods which are to our knowledge the first numerical quadrature methods
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which can profit from low effective dimension by dimension-adaptivity and can at the same time
resolve low regularity by local adaptivity to some extent. Numerical experiments with a test
function from finance with discontinuous first derivatives demonstrates the efficiency of this new
approach.

We provide several more numerical experiments based on several application problems from
finance with up to 512 dimension. The results show that our dimension-wise quadrature methods
can profit significantly more than quasi-Monte Carlo methods from coordinate transformation,
which reduce the effective dimension, such as the LT-construction. Dimension-adaptive sparse
grid methods based on univariate Gauss-Hermite formulas can in addition optimally profit from
smoothness by addressing the arising integrals directly on Rd. By exploiting both low effective
dimension and smoothness, these methods can outperform quasi-Monte Carlo methods by sev-
eral orders of magnitude even in hundreds of dimensions as our numerical results demonstrate.

The remainder of this article is organised as follows: In Section 2, we recall two differ-
ent dimension-wise decompositions of multivariate functions, the classical ANOVA and the
anchored-ANOVA decomposition, and give corresponding notions of effective dimensions. In
Section 3, we then use the anchored-ANOVA to define a new general class of methods for multi-
variate integration. In Section 4, we discuss its relation to sparse grid methods. In Section 5, we
then specify the components of our general approach to balance error and costs for integrands
of particular weighted tensor product Sobolev spaces. In Section 6, we show that the methods
can be applied in a dimension-adaptive way. In Section 7, we present numerical results with
applications from finance. The article finally closes in Section 8 with concluding remarks.

2. Dimension-wise Decompositions

In this section, we introduce the classical ANOVA and the anchored-ANOVA of a multi-
variate function f . Based on these decomposition, we then define different notions of effective
dimensions of f . To this end, let Ω ⊆ R be a domain and let

dµ(x) =

d∏
j=1

dµ j(x j) (1)

denote a d-dimensional product measure defined on Borel subsets of Ωd. Here, x = (x1, . . . , xd)
and µ j, j = 1, . . . , d, are probability measures on Borel subsets of Ω. Let V (d) denote the Hilbert
space of all functions f : Ωd → R with the inner product

( f , g) :=
∫

Ωd
f (x)g(x) dµ(x).

For a given set u ⊆ D, where D := {1, . . . , d} denotes the set of coordinate indices, the measure
µ induces projections Pu : V (d) → V (|u|) by

Pu f (xu) :=
∫

Ωd−|u|
f (x)dµD\u(x). (2)

Here, xu denotes the |u|-dimensional vector containing those components of x whose indices
belong to the set u and dµD\u(x) :=

∏
j<u dµ j(x j). The projections define a decomposition of
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f ∈ V (d) into a finite sum according to

f (x1, . . . , xd) = f0 +

d∑
i=1

fi(xi) +

d∑
i, j=1
i< j

fi, j(xi, x j) + . . . + f1,...,d(x1, . . . , xd)

which is often written in the more compact notation

f (x) =
∑
u⊆D

fu(xu). (3)

The 2d terms fu describe the dependence of the function f on the dimensions j ∈ u with respect
to the measure µ. They are recursively defined by

fu(xu) := Pu f (xu) −
∑
v⊂u

fv(xv) (4)

and can also be given explicitly by

fu(xu) =
∑
v⊆u

(−1)|u|−|v|Pv f (xv), (5)

see Kuo et al. (2008). The resulting decomposition (3) is unique for a fixed measure µ and
orthogonal in the sense that

( fu, fv)L2 = 0 (6)

for u , v, see, e.g., Griebel (2006); Rabitz and Alis (1999).

2.1. Classical ANOVA Decomposition

For Ω = [0, 1] and the example of the Lebesgue measure dµ(x) = dx in (1), the space V (d) is
the space of square integrable functions and the projections are given by

Pu f (xu) =

∫
[0,1]d−|u|

f (x) dxD\u.

The decomposition (3) then corresponds to the well-known analysis of variance (ANOVA) de-
composition which is used in statistics to identify important variables and important interactions
between variables in high-dimensional models. Recently, it has extensively been used for the
analysis of QMC methods, see, e.g., Caflisch et al. (1997); Lemieux and Owen (2002); Liu and
Owen (2006); Sobol (2001) and the references cited therein.

Here, the orthogonality (6) implies that the variance of the function f can be written as

σ2( f ) =
∑
u⊆D
u,∅

σ2( fu), (7)

where σ2( fu) denotes the variance of the term fu. The values σ2( fu)/σ2( f ), called global sensi-
tivity indices in Sobol (1993, 2001), can then be used to measure the relative importance of the
term fu with respect to the function f . Based on the ANOVA decomposition, different notions of
effective dimensions have been introduced in Caflisch et al. (1997). For the proportion α ∈ (0, 1],
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the effective dimension in the truncation sense (the truncation dimension) of the function f is de-
fined as the smallest integer dt, such that∑

u⊆{1,...,dt}
u,∅

σ2( fu) ≥ α σ2( f ). (8)

Here, often the proportion α = 0.99 is used. The effective dimension in the superposition sense
(the superposition dimension) is defined as the smallest integer ds, such that∑

|u|≤ds
u,∅

σ2( fu) ≥ α σ2( f ). (9)

If the variables are ordered according to their importance, the truncation dimension dt roughly
describes the number of important variables of the function f . The superposition dimension ds

roughly describes the highest order of important interactions between variables.
The following two lemmas relate the effective dimensions to approximation errors. The

second lemma is taken from Sobol (1993).

Lemma 1. Let dt denote the truncation dimension of the function f with proportion α and let
fdt (x) :=

∑
u⊆{1,...,dt}

fu(xu). Then

‖ f − fdt‖
2
L2
≤ (1 − α)σ2( f ).

Proof. Note that σ2( fu) = ‖ fu‖2L2
for u , ∅ since

∫
[0,1]|u| fu(xu) dxu = 0 for u , ∅. From (3), one

obtains
‖ f − fdt‖

2
L2

= ‖
∑

u*{1,...,dt}

fu‖2L2
=

∑
u*{1,...,dt}

‖ fu‖2L2

=
∑
u⊆D

σ2( fu) −
∑

u⊆{1,...,dt}

σ2( fu) ≤ (1 − α)σ2( f ),

where the second equality holds by orthogonality and where the inequality follows from (7) and
(8).

Lemma 2. Let ds denote the superposition dimension of the function f with proportion α and
let fds (x) :=

∑
|u|≤ds

fu(xu). Then

‖ f − fds‖
2
L2
≤ (1 − α)σ2( f ).

Proof. Similar to Lemma 1 we compute

‖ f − fds‖
2
L2

= ‖
∑
|u|>ds

fu‖2L2
=

∑
|u|>ds

‖ fu‖2L2
=

∑
|u|>ds

σ2( fu) ≤ (1 − α)σ2( f )

using orthogonality, (3), (7) and (9).

For integration, we immediately obtain as corollary the error bound

|I f − I ftr| ≤ ‖ f − ftr‖L1 ≤ ‖ f − ftr‖L2 ≤
√

1 − ασ( f ) (10)
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either if the function ftr := fdt as in Lemma 1 or if ftr := fds as in Lemma 2 and if α is the
proportion corresponding to dt and ds, respectively. One can see that quadrature methods produce
small errors if α is close to one and if the methods can compute I ftr efficiently.

Quasi-random points are usually more uniformly distributed in smaller dimensions than in
higher ones such that we can expect that I fdt is well approximated for small dt. Moreover,
quasi-random points usually have very well distributed low dimensional projections such that we
can expect that I fds is efficiently computed for small ds. Hence, the bound (10) partly explains
the success of quasi-Monte Carlo methods for high-dimensional integrals with functions of low
truncation dimension or low superposition dimension. The bound (10) also partly explains the
success of sparse grid methods for high-dimensional integrals with functions of low effective
dimension since these methods can compute I ftr very efficiently for small ds or small dt with the
help of a dimension-adaptive grid refinement.

Remark 1. We can also choose Ω = R and the Gaussian measure dµ(x) = ϕd(x)dx in (1) where

ϕd(x) := e−xT x/2/(2π)d/2 (11)

denotes the standard Gaussian density in d dimensions. This induces projections

Pu f (xu) =

∫
Rd−|u|

f (x)ϕd−|u|(xu) dxD\u.

Then, by (3), a corresponding decomposition of the function f on Rd results, which we refer to as
ANOVA decomposition with Gaussian weight. Based on this decomposition, effective dimensions
for the ANOVA decomposition with Gaussian weight can be defined as in (8) and (9).

2.2. Anchored-ANOVA Decomposition
For Ω = [0, 1] and the example of the Dirac measure located at a fixed anchor point a ∈

[0, 1]d, i.e. dµ(x) = δ(x − a)dx, we obtain from (2) the projections

Pu f (xu) = f (x)|x=a\xu

where we use the notation f (x)|x=a\xi = f (a1, . . . , ai−1, xi, ai+1, . . . , ad) with its obvious generali-
sation to a\xu. The terms of the anchored-ANOVA decomposition are thus related to the terms
of the classical ANOVA decomposition in the sense that all integrals are replaced by point eval-
uations at a fixed anchor point a ∈ [0, 1]d. This approach is considered in Rabitz and Alis (1999)
under the name CUT-HDMR. The decomposition expresses f as superposition of its values on
lines, faces, hyperplanes, etc., which intersect the anchor point a and are parallel to the coor-
dinate axes. It is closely related to the multivariate Taylor expansion and to anchored Sobolev
spaces, see Griebel (2006) and the references cited therein.

While the classical ANOVA decomposition is very useful to analyse the importance of dif-
ferent dimensions and of their interactions it cannot be used as a tool for the design of new
integration schemes since already the constant term in the classical ANOVA decomposition re-
quires to compute the integral. The anchored-ANOVA decomposition has the advantage that
its sub-terms are much cheaper to compute since instead of integrals only point evaluations at
the anchor point a ∈ [0, 1]d are required. We will use this property in Section 3 to design new
quadrature methods for high-dimensional functions.

We next define a new notion of effective dimension which is based on the anchored-ANOVA
decomposition. While the effective dimensions in the classical case are based on the L2-norm,
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we now introduce effective dimensions for the anchored case, which are based on the operator
|I(·)| and, since |I( f )| = |

∫
[0,1]d f (x) dx| ≤ ‖ f ‖L1 , which are thus related to the L1-norm. While

the effective dimensions in the classical case directly lead to error bounds for approximation (see
Lemma 1 and Lemma 2), we will use the effective dimensions in the anchored case to derive
error bounds for integration (see Lemma 3 and Lemma 4).5 To this end, let

σ̂( f ) :=
∑
u⊆D
u,∅

|I fu| ≤
∑
u⊆D
u,∅

‖ fu‖L1 (12)

be the sum of the absolute values of the integrals of all anchored-ANOVA terms. Then, analogous
to (8), for the proportion α ∈ (0, 1], the truncation dimension in the anchored case is defined as
the smallest integer dt, such that ∑

u⊆{1,...,dt}
u,∅

|I fu| ≥ α σ̂( f ), (13)

whereas, analogous to (9), the superposition dimension in the anchored case is defined as the
smallest integer ds, such that ∑

|u|≤ds
u,∅

|I fu| ≥ α σ̂( f ). (14)

As in the classical case, these notions describe roughly the number of important dimensions
and the order of important interactions, respectively. Compared to the classical case, the effec-
tive dimensions in the anchored case have the following advantages: They are directly related
to integration errors as we show below and they can easily be determined by dimension-wise
integration methods as we will explain in Section 3 in more detail. We also have a direct re-
lation of the effective dimensions in the anchored case to sparse grid methods as we will show
in Section 4. As |I(·)| is not a norm, it may happen, however, that the effective dimensions in
the anchored case fail to detect some important dimensions and interactions.6 This may be the
case if f is a function of varying sign. For instance, let a = (1/2, 1/2) and consider the function
f (x1, x2) = ex1 − e0.5 + x2 −

1
2 . Then we obtain f2(x2) = x2 −

1
2 such that σ2( f2) > 0 but |I f2| = 0

which misleadingly indicates independence of x2. This effect which we have not yet observed in
practical applications from finance, though, is closely related to the early determination problem
of dimension-adaptive sparse grid methods which is discussed in Gerstner and Griebel (2003).

To compute the effective dimensions in the anchored case, we use multivariate quadrature
methods to compute approximations qu ≈ I fu. By summation of the computed values qu, u ⊆ D,
we estimate σ̂( f ) and the effective dimensions dt and ds according to (12), (13) and (14).

The following two estimates relate effective dimensions in the anchored case and integration
errors.

Lemma 3. Let dt denote the truncation dimension of the function f in the anchored case with
proportion α and let fdt (x) :=

∑
u⊆{1,...,dt}

fu(xu). Then

|I f − I fdt | ≤ (1 − α) σ̂( f ).

5The approximation error of the truncated anchored ANOVA decomposition is studied in Sobol (2003); Wang (2008).
There also the impact of the choice of the anchor point is investigated.

6It is also possible to base the definition on the L1-norm. Then this drawback disappears. Nevertheless we here stick
to the operator |I(·)| to exploit a more direct relation to dimension-adaptive sparse grid methods.
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Proof. We obtain

|I f − I fdt | = |
∑

u*{1,...,dt}

I fu| ≤
∑

u*{1,...,dt}

|I fu| =
∑
u⊆D

|I fu| −
∑

u⊆{1,...,dt}

|I fu| ≤ (1 − α) σ̂( f )

where the first equality results from (3) and from the definition of the function fdt . The last
inequality follows from (12) and (13).

Lemma 4. Let ds denote the superposition dimension of the function f in the anchored case with
proportion α and let fds (x) :=

∑
|u|≤ds

fu(xu). Then

|I f − I fds | ≤ (1 − α) σ̂( f ).

Proof. Similar to Lemma 3 we obtain

|I f − I fds | = |
∑
|u|>ds

I fu| ≤
∑
|u|>ds

|I fu| ≤ (1 − α) σ̂( f )

using (12) and (14) for the last inequality.

Remark 2. We can also choose Ω = R and the measure dµ(x) = δ(x − a)ϕd(x)dx with a fixed
anchor point a ∈ Rd, where ϕd is the Gaussian density (11). This example induces projections

Pu f (xu) =
(
f (x)ϕd−|u|(xu)

)
|x=a\xu

and, by (3), a corresponding decomposition of functions f : Rd → R which we refer to as
anchored-ANOVA decomposition with Gaussian weight. Based on this decomposition, effective
dimensions for the anchored-ANOVA decomposition with Gaussian weight can be defined as in
(13) and (14).

3. Dimension-wise Quadrature Methods

Next, we use the anchored-ANOVA decomposition to define a new class of methods for the
computation of high-dimensional integrals

I f :=
∫

[0,1]d
f (x) dx (15)

on the unit cube and for integrals

Iϕ f :=
∫

Rd
f (z)ϕd(z) dz (16)

on Rd with the Gaussian weight function ϕd from (11). Note that these two domains typically
appear in high-dimensional applications.
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3.1. Truncation and Discretization
In the following, we develop our new class of quadrature methods. We start with Ω = [0, 1]

and take µ as the Dirac measure with anchor point a ∈ [0, 1]d. Then, (2) and (4) imply

fu(xu) = Pu f (xu) −
∑
v⊂u

fv(xv) where Pu f (xu) = f (x)|x=a\xu . (17)

Applying the integral operator to the anchored-ANOVA decomposition (3), the d-dimensional
integral is decomposed, by linearity, into the finite sum

I f =
∑
u⊆D

I fu = f (a) +

d∑
i=1

I fi +

d∑
i, j=1
j< j

I fi, j + . . . + I f1,...,d (18)

which contains
(

d
j

)
many j-dimensional integrals for j = 0, . . . , d. Starting with the decomposi-

tion (18) we now define a general class of quadrature methods for the approximation of I f . We
proceed as follows:

1. Truncation: We take only a subset S of all indices u ⊆ D and thus truncate the sum in
(18). Here, we assume that the set S satisfies the admissibility condition7

u ∈ S and v ⊂ u =⇒ v ∈ S. (19)

For example, the set Sds := {u ⊆ D : |u| ≤ ds} or the set Sdt := {u ⊆ {1, . . . , dt}} could be
used to take into account the superposition and the truncation dimension of the function f ,
respectively. Alternatively, dimension-wise adaptive methods can be applied to build up
an appropriate index set S. This will be later discussed in more detail.

2. Discretization: For each u ∈ S, we compute approximations to I fu. To this end, we choose
|u|-dimensional quadrature rules Qu. Starting with q∅ = f (a) we recursively compute

qu := Qu(Pu f ) −
∑
v⊂u

qv. (20)

Then, qu is an approximation to I fu due to the recursive representation (17) of fu. Observe
that we avoid to compute and integrate the functions fu explicitly. Instead we numerically
integrate Pu f and correct the resulting value by the (previously computed) values qv using
(17). The admissibility condition ensures that we can run over the set S by starting with
u = ∅ and proceeding with indices u for which the values qv, v ⊂ u, have already be
computed in previous steps. Note that we allow for arbitrary quadrature methods Qu in
(20) which can be different for each u. Specific choices for Qu will be discussed later.

Altogether, this defines a quadrature formula AS f for the approximation of I f which is given
by

AS f :=
∑
u∈S

qu (21)

7Note that this condition is closely related to the admissibility condition (30) for sparse grid indices in Section 4.1.
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and which we refer to as dimension-wise quadrature method in the following. Note that the
method AS f requires

n =
∑
u∈S

nu

evaluations of the function f , where nu denotes the number of function evaluations of Qu.

Remark 3. Dimension-wise quadrature methods for integrals on Rd with Gaussian weight can
be constructed analogously to (21). To this end, we set Ω = R and use the measure dµ(x) =

δ(x − a)ϕd(x)dx such that the anchored-ANOVA decomposition with Gaussian weighted results.
Then, we select as above a suitable index set S and appropriate quadrature rules Qu to integrate
the resulting functions Pu f . Since now f : Rd → R, either quadrature rules for unbounded
domains, e.g. Gauss-Hermite rules, or transformations of the resulting integrals to the unit cube
must be used.

3.2. Error and Costs
We first consider the case of arbitrary quadrature methods Qu. By construction, we then have

the error bound

|I f − AS f | = |
∑
u⊆D

I fu −
∑
u∈S

qu| ≤
∑
u∈S

|I fu − qu| +
∑
u<S

|I fu|. (22)

This shows how the error of the method (21) depends on the quadrature rules Qu (which deter-
mine qu) and on the choice of the index set S. Here, the second term describes the modelling
error which is introduced by the truncation of the anchored-ANOVA series whereas the first
term describes the discretization error which results from the subsequent discretization of the
remaining subspaces.

In the following, we aim to balance costs and accuracies by relating the cost of the quadrature
method Qu to the importance of the anchored-ANOVA term fu. We first relate the accuracy of
the methods Qu to the accuracy of the method AS f .

To this end, we fix α ∈ (0, 1] and assume that ds and dt, the corresponding superposition and
truncation dimensions in the anchored case, are known. With help of these effective dimensions
we define the index set

Sdt ,ds := {u ⊆ {1, . . . , dt} : |u| ≤ ds}. (23)

We now have the following lemma.

Lemma 5. Let S = Sdt ,ds . For ε > 0, let furthermore Qu be such that |I(Pu f )−Qu(Pu f )| ≤ ε(|u|)
with ε( j) := ε/(e dds

t

(
dt
j

)
) for all u ∈ S. Then, it holds

|I f − AS f | ≤ ε + 2(1 − α) σ̂( f ).

Proof. Starting with |I f−AS f | ≤ |I f−I fdt ,ds |+|I fdt ,ds−AS f |with the function fdt ,ds :=
∑

u∈Sdt ,ds
fu,

we observe that the modelling error is bounded by

|I f − I fdt ,ds | = |
∑

u<Sdt ,ds

I fu| ≤
∑
|u|>ds

|I fu| +
∑

u1{1,...,dt}

|I fu| ≤ 2(1 − α) σ̂( f ),

see the proofs of Lemma 3 and 4. From (5) and (20), we have the explicit representation

I fu − qu =
∑
v⊆u

(−1)|u|−|v| (I(Pv f ) − Qv(Pv f )) . (24)
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Since |I(Pv f ) − Qv(Pv f )| ≤ ε(|v|) for all v ⊆ u, we obtain for all u with |u| ≤ dt that

|I fu − qu| ≤
∑
v⊆u

ε(|v|) =

|u|∑
j=1

(
|u|
j

)
ε( j) ≤

|u|∑
j=1

(
dt

j

)
ε( j),

where we used that there are
(
|u|
j

)
many sets v ⊆ u which satisfy |v| = j. Using the definition of

ε( j), we can bound the discretization error by

|I fdt ,ds − ASdt ,ds
f | ≤

∑
u∈Sdt ,ds

|I fu − qu| ≤

ds∑
k=1

(
dt

k

) k∑
j=1

(
dt

j

)
ε( j) ≤

ds∑
k=1

(
dt

k

) k∑
j=1

ε

e dds
t

=
ε

e dds
t

ds∑
k=1

(
dt

k

)
k ≤

ε

e dds
t

ds∑
k=1

dds
t

k!
k =

ε

e

ds∑
k=1

1
(k − 1)!

≤ ε,

which concludes the proof.

We next relate the error |I f − AS f | to the cost n =
∑

u∈S nu of the method AS f . Furthermore,
we aim to balance the cost nu of the methods Qu with their accuracy. Here, we restrict ourselves
to the case that all employed methods Qu are based on a univariate quadrature formula Um with
m points, which converges for f ∈ Cr([0, 1]) with rate m−r. An examples for such a univariate
formula with r = 1 is the trapezoidal rule. For arbitrary r, Gauss rules can be used.

Theorem 6 (Error versus cost). If we chooseS = Sdt ,ds and Qu to be the |u|-dimensional tensor
product of the rule Um with m := bn1/dsc then

|I f − AS f | ≤ c(dt, ds) n−r/ds + 2(1 − α) σ̂( f )

for all f ∈ Cr([0, 1]d). Here, the constant c(dt, ds) depends on the effective dimensions dt and ds

in the anchored case, but not on the nominal dimension d.

Proof. We have the same modelling error as in Lemma 5, i.e.,

|I f − AS f | ≤ |I fdt ,ds − AS f | + 2(1 − α) σ̂( f )

with the function fdt ,ds :=
∑

u∈Sdt ,ds
fu. Since f ∈ Cr([0, 1]d) also fu ∈ Cr([0, 1]|u|) for all u ⊆ D.

Consequently, Qu converge with rate r/|u|. By definition, Qu requires nu = bn|u|/dsc function
evaluations such that

|I(Pu f ) − Qu(Pu f )| ≤ c(|u|) n−r/|u|
u ≤ c(|u|) n−r/ds

for a constant c(|u|) > 0 which depends on the order |u|.8 With the help of (24) we estimate

|I fdt ,ds − ASdt ,ds
f | ≤

∑
u∈Sdt ,ds

|I fu − qu| ≤
∑

u∈Sdt ,ds

∑
v⊆u
|I(Pv f ) − Qv(Pv f )|

≤
∑

u∈Sdt ,ds

∑
v⊆u

c(|v|) n−r/ds =

ds∑
k=1

(
dt

k

) k∑
j=1

(
k
j

)
c( j) n−r/ds = c(dt, ds) n−r/ds

8Note that the constant c(|u|) depends on the norm of Pu f and thus also on the smoothness parameter r.
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with the constant

c(dt, ds) :=
ds∑

k=1

(
dt

k

) k∑
j=1

(
k
j

)
c( j) ≤ c̄(ds)

ds∑
k=1

(
dt

k

)
2k ≤ c̄(ds)

ds∑
k=1

dt
ds

k!
2k ≤ c̄(ds)(e2 − 1) dt

ds ,

where c̄(ds) := max j=1,...,ds c( j). This completes the proof.

Note that the first term in the error bound describes the discretization error which depends on
n whereas the second term corresponds to the modeling error which depends on the proportion α.
Note furthermore that the cost to obtain a prescribed discretization error does not exponentially
depend on the nominal dimension d, but only on the superposition dimension ds in the anchored
case.

3.3. A Priori Construction using Function Space Weights
In applications, the effective dimensions of f are usually unknown. These dimensions can

also not be computed since this would be at least as expensive as the integration of f . In general
it is thus difficult to determine the set Sdt ,ds in (23).

To overcome this obstacle, we here assume that the integrand is contained in some function
class that is defined by certain function space weights γu ≥ 0, which describe the importance
of the term fu of the anchored-ANOVA decomposition. Using this a priori information, we then
determine the index set S by including those indices u which correspond to the largest weights
γu. In the following, we use the set

Sγ := {u ⊆ D : γu > ε}

which includes all indices u for which γu is larger than some threshold ε. It is known (see, e.g.
Wang and Sloan (2005)) that many functions f in practise are of low effective dimension either
in the truncation or in the superposition sense. For these two classes of functions we can hope to
determine the index set Sγ of the most important terms by the following approaches to define the
weights: order-dependent weights for functions f with low superposition dimension and product
weights for functions f with low truncation dimension.

• Order-dependent Weights: We define the order-dependent weights γu = 1/|u|. Then, the
indices are added according to their order |u|. Note that by construction, the admissibility
condition (19) is always satisfied. The weights are the larger the lower the order of the
anchored-Anova term. If the function f has a small superposition dimension then we can
hope that the resulting index set Sγ includes the most important terms.

• Product Weights: As in Sloan and Woźniakowski (1998), we assume that the dimensions
are ordered according to their importance which is modulated by a sequence of weights

γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0.

Using the weights γi, we then assign the product weight

γu :=
∏
j∈u

γ j (25)

to the index u ⊆ D. The weights γi can here either be input parameters of the algorithm
similar to the CBC construction of lattice rules Sloan et al. (2002) or they can be derived

13



from the first order terms f j of the anchored-ANOVA decomposition. In the latter case
they are defined by

γ j :=
|q j|

|q∅|
=
|Q j(P j f ) − f (a)|

| f (a)|

for j = 1, . . . , d, see (20). The weights γu are the larger the lower the dimensions that are
associated with their index set u. In this way we can hope that the resulting index set Sγ
includes the most important terms if the function f has a small truncation dimension.

We will use these weights and the resulting index sets Sγ in our numerical experiments in
Section 7. Note that also more general weights can be used in our construction as long as the
admissibility condition (19) is satisfied. Nevertheless, we here only shifted the problem of the
choice of S to the problem of determining the weights γu. In Section 6, we will consider a
different approach. There, we will determine the index set S a posteriori in a dimension-adaptive
way.

4. Sparse Grids Quadrature

In this section, we use tensor product methods Qu for the approximation of the integrals
I fu in (18). This allows us to intertwine the truncation of the anchored-ANOVA series and the
subsequent discretization and allows to balance modelling and discretization error in an optimal
way. We will demonstrate this in Section 5 for integrands from weighted tensor product Sobolev
spaces in more detail.

4.1. Generalised Sparse Grids
For a univariate function f : [0, 1]→ R and a sequence of non-decreasing integers mk, k ∈ N,

let

Umk f :=
mk∑
i=1

wi,k f (xi,k) (26)

denote a sequence of univariate quadrature rules with mk points xi,k and weights wi,k, which
converges pointwise to I f for k → ∞. We assume m1 = 1 and U1 f = f (1/2) and define the
difference quadrature formulae

∆k := Umk − Umk−1 with Um0 := 0 (27)

for k ≥ 1.
Now let f : [0, 1]d → R be a multivariate function. Then, the d-dimensional integral I f can

be represented by the infinite telescoping sum

I f =
∑
k∈Nd

∆k f (28)

which collects the products of each possible combination of the univariate difference formulae.
Here, k ∈ Nd denotes a multi-index with k j > 0 and

∆k f :=
(
∆k1 ⊗ . . . ⊗ ∆kd

)
f . (29)

A specific class of quadrature methods for the approximation of I f is then obtained by a
truncation of the sum (28) using an appropriate index set I ⊂ Nd, which can be regarded as a

14



refinement of the index set S ⊆ D from Section 3.1. To ensure the validity of the telescoping
sum expansion the index set I has to satisfy the admissibility condition

k ∈ I and l ≤ k =⇒ l ∈ I, (30)

where l ≤ k is defined by l j ≤ k j for j = 1, . . . , d. In this way, the generalised sparse grid method

SGI f :=
∑
k∈I

∆k f (31)

is obtained, see, e.g., Gerstner and Griebel (1998); Hegland (2003); Plaskota (2000); Wasilkowski
and Woźniakowski (1999). Different ways to truncate the sum then correspond to different
quadrature methods. Examples are the classical sparse grid construction from Smolyak (1963),
often denoted as Smolyak method, which is, on level ` ∈ N, recovered with the index set

I =
{
k ∈ Nd : |k|1 ≤ ` + d − 1

}
(32)

where |k|1 :=
∑d

j=1 k j, or product methods, which correspond on level ` to index sets of the form

I =
{
k ∈ Nd : |k|∞ ≤ `

}
(33)

where |k|∞ := max{k j : j = 1, . . . , d}.

Remark 4. Sparse grid methods can directly be applied to the numerical computation of inte-
grals on Rd with Gaussian weight. To this end, only the sequence of univariate quadrature rules
Umk must be replaced by quadrature formulas for functions f : R → R on unbounded domains,
such as Gauss-Hermite rules, see, e.g., Novak et al. (1998).

4.2. Relation to Dimension-wise Quadrature Methods
There is a close relation of the sparse grid approach and the anchored-ANOVA decomposi-

tion. The sparse grid approach (31) can indeed be interpreted as a refinement of the anchored-
ANOVA decomposition by first expanding each term of the decomposition into an infinite basis
and then truncating this expansion appropriately.9 It can thus be regarded as special case of the
method (21) where the set S and the rules Qu are chosen in a systematic way to exploit smooth-
ness of the integrand. We now show this in more detail. To this end, we always use the anchor
a = (1/2, . . . , 1/2). We start with the following lemma.

Lemma 7. Let fu and Pu f be as in (17) and

Nu :=
{
k ∈ Nd : k j > 1 if and only if j ∈ u

}
. (34)

Then, ∆k f = ∆k(Pu f ) if k ∈ Nv with v ⊆ u. Moreover, ∆k f = ∆k fu if k ∈ Nu.

Proof. The proof follows from the fact that the projection Pu and the the operator ∆1 are defined
in a way such that f is evaluated at the same anchor point. Indeed, if k ∈ Nv and v ⊆ u then
k j = 1 for all j < u and thus ∆k f = ∆k(Pu f ) since ∆k = ∆k1 ⊗ . . . ⊗ ∆kd and ∆1 f = P∅ f = f (1/2)

9Note the close relation to Lemieux and Owen (2002).
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for all univariate functions f . To show the second assertion, let k ∈ Nu. Then, we obtain from
(4) that

∆k(Pu f ) = ∆k fu +
∑
v⊂u
∆k fv.

Since fv(xv)|x j=1/2 = 0 for all j ∈ v, which is a direct consequence of the orthogonality (6), we
conclude ∆k fv = 0 for all v ⊂ u and k ∈ Nu. This proves ∆k f = ∆k(Pu f ) = ∆k fu for all k ∈ Nu.

By Lemma 7 and (28) we obtain

I f =
∑
u⊆D

∑
k∈Nu

∆k f

since Nd is the disjoint union of the setsNu, u ⊆ D. By (18), we also have I f =
∑

u⊆D I fu, which
yield a decomposition

I fu =
∑
k∈Nu

∆k f

of the integrals of the anchored-ANOVA terms into an infinite sum. Next, we truncate this sum.
To this end, we select index sets Iu ⊂ Nu for all u ⊆ D, which satisfy the condition (30), and
use

qu :=
∑
k∈Iu

∆k f (35)

as approximation to I fu. The corresponding method (21) with S = D can then be represented as

AS f =
∑
u⊆D

qu =
∑
k∈I

∆k f

with the index set I =
⋃

u⊆D Iu. We see that in this way both, the modelling and the discretiza-
tion error is expressed10 in terms of the values ∆k f . We further see that the resulting method AS f
coincides with the generalised sparse grid approach (31). To this end, we define

Iu :=
{
k ∈ I : k j > 1 if and only if j ∈ u

}
= I ∩ Nu. (36)

Theorem 8. The dimension-wise quadrature method (21) with anchor a = ( 1
2 , . . . ,

1
2 ), the index

set S = D and the quadrature methods

Qu f :=
∑
v⊆u

∑
k∈Iv

∆k f (37)

coincides with the generalised sparse grid method (31).

Proof. We have to show that (20) holds with qu as in (35) and Qu as in (37). In fact,

Qu(Pu f ) −
∑

v⊂u qv =
∑
v⊆u

∑
k∈Iv

∆k(Pu f ) −
∑
v⊂u

∑
k∈Iv

∆k f

=
∑
k∈Iu

∆k(Pu f ) +
∑
v⊂u

∑
k∈Iv

(∆k(Pu f ) − ∆k f ) =
∑
k∈Iu

∆k f = qu

where we twice used Lemma 7.

10Modelling errors are here represented by the case Iu = ∅ for any u ⊆ D.
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Remark 5. Similar to Theorem 8, we see that generalised sparse grid methods for integrals on
Rd with Gaussian weight (e.g. sparse grids based on Gauss-Hermite rules) are special cases of
the dimension-wise quadrature method for integrals with Gaussian weight, see Remark 3. Both
methods result from a discretization of the terms of the anchored-ANOVA decomposition with
Gaussian weights using the anchor a = (0, . . . , 0), see Remark 2.

5. Optimal Sparse Grids in Weighted Spaces

In Section 4, we introduced the index set I ⊂ Nd as a refinement of the index set S ⊆ D and
specified the quadrature rules Qu such that the general approach (21) corresponds to the class of
generalised sparse grid methods. Now we determine the index set I which balances the resulting
modelling and discretization errors in an optimal way for integrands from weighted tensor prod-
uct Sobolev spaces, see, e.g., Sloan and Woźniakowski (1998); Wasilkowski and Woźniakowski
(1999). To this end, we partly proceed as in Bungartz and Griebel (2004); Wasilkowski and
Woźniakowski (1999).

For reasons of simplicity, we restrict ourselves to the case that the univariate quadrature rules
Umk in (26) are given by the trapezoidal rule with m1 = 1, U1 f = f (0) and mi = 1 + 2i−2 points
for i ≥ 2. Our analysis is based on the univariate function space

H1
γ([0, 1]) := { f : [0, 1]→ R : ‖ f ‖1,γ < ∞}

with the norm
‖ f ‖21,γ := f (0)2 + γ−1‖ f ′‖2L2

, (38)

where γ ∈ (0, 1] denotes a weight. In the multivariate case we consider a given sequence of
weights

1 = γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0

and assign to each set u ⊆ D the product weight γu from (25). We then define the tensor product
space 11

H1,mix
γ ([0, 1]d) :=

d⊗
j=1

H1
γ j

([0, 1])

with the norm
‖ f ‖21,γ :=

∑
u∈D

γ−1
u ‖ fu‖

2
1,mix

with

‖ fu‖21,mix :=
∫

[0,1]|u|

∣∣∣∣∣∣ ∂|u|∂xu
f (xu, 0)

∣∣∣∣∣∣2 dxu,

where fu denote the sub-terms of the anchored-ANOVA decomposition anchored at the origin.12

11Note that H1,mix
γ ([0, 1]d) is the reproducing kernel Hilbert space to the product kernel K(x, y) =

∏d
j=1 k(x j, y j),

where k(x, y) := 1 + γmin{x, y} is the reproducing kernel of the space H1
γ([0, 1]).

12It is also possible to anchor the space H1
γ([0, 1]) at the point 1/2.
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5.1. Cost-Benefit Ratio

For the space Hmix
γ ([0, 1]d) we next determine the index set I of the generalised sparse grid

method SGI, which has the best possible cost-benefit ratio. To this end, we first associate each
index k ∈ Nd with a local cost value, namely the number of function evaluations nk required by
∆k f . Since the methods Umi are nested and since mi ≤ 2i−1, we have

nk =

d∏
j=1

mk j ≤ 2|k−1|1 =: ck.

For the global costs of (31) we thus have the bound∑
k∈I

nk ≤
∑
k∈I

ck =: nI. (39)

We now consider the error of the method SGI. To this end, note that

|I f − SGI f | = |
∑
k∈Nd

∆k f −
∑
k∈I

∆k f | ≤
∑

k∈Nd\I

|∆k f |. (40)

To derive bounds for ∆k f , we associate to each index k ∈ Nd the product weight

γk :=
∏

j=1,...,d
k j>1

γ j,

where the product is taken over all j for which k j > 1 holds.

Lemma 9. It holds
|∆k f | ≤ bk‖ f ‖1,γ (41)

where
bk := 2−|k−1|1γ1/2

k . (42)

Proof. We first consider the univariate case and show that

|∆i f | ≤ γ1/22−i+1‖ f ‖1,γ (43)

for i ≥ 2. In fact, by (38) we have

‖ f ′‖2L2
=

√
γ(‖ f ‖21,γ − f (0)2) ≤ γ1/2‖ f ‖1,γ.

Therefore,
|∆i f | = |Umi f − Umi−1 f | ≤ 2−i+1‖ f ′‖2L2

≤ γ1/22−i+1‖ f ‖1,γ

for i ≥ 2, where a proof of the first inequality can be found in Wasilkowski and Woźniakowski
(1999). For i = 1, we have |∆i f | = |Um1 f | = | f (0)| ≤ ‖ f ‖1,γ. Using the tensor product structure
∆k =

⊗d
i=1 ∆ki we obtain the assertion.
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Motivated by (41), we refer to bk in the following as the local benefit associated with the
index k ∈ Nd. The global benefit of the method (31) is then given by

BI :=
∑
k∈I

bk. (44)

This leads to the restricted optimization problem

max
nI=w

BI, w ∈ N

to maximize the global benefit BI for fixed global costs nI. Using the argument from Bungartz
and Griebel (2004), this global optimization problem can be reduced to the problem of ordering
the local cost-benefit ratios

cbrk := bk/ck = 2−2|k−1|1γ1/2
k (45)

associated with the index k according to their size. The optimal index set I then contains all
indices whose local cost-benefit ratios are larger than or equal to some constant value. Here, we
use the value

cbrk̄ := 2−2(`−1) (46)

as threshold, which is associated with the index k̄ = (`, 1, . . . , 1).

Theorem 10 (Optimal sparse grids in the weighted case). The optimal index set in the
weighted case is given by

I`,γ := {k ∈ Nd : |k|1 + σk ≤ ` + d − 1} (47)

where
σk :=

∑
j=1,...,d

k j>1

σ j with σ j := − log2(γ j)/4.

Proof. Using
γ1/2

k = 2
∑

j∈Dk log2(γ j)/2 = 2−2σk withDk := { j ∈ D : k j > 1}

we obtain from (45) that
cbrk = 2−2(|k−1|1+σk).

The comparison with (46) shows that cbrk ≥ cbrk̄ if and only if −2(|k − 1|1 + σk) ≥ −2(` − 1),
i.e., if |k| − d + σk ≤ ` − 1, which proves the assertion.

The resulting sparse grid method with the index set I`,γ is then given by

SG`,γ f :=
∑

k∈I`,γ

∆k f . (48)

Note that the method SG`,γ is the classical sparse grid approach (32) in the unweighted case
γ j = 1, j = 1, . . . , d.
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(a) γ = (1, 1) (b) γ = (1, 2−8) (c) γ = (2−8, 2−8)

Figure 1: Optimal index sets I`,γ on the level ` = 7.

Example 1. For illustration, the resulting optimal index sets I`,γ on level ` = 7 are shown in
Figure 1 for d = 2 and different choices of the weights γ = (γ1, γ2). There, the local cost-benefit
ratios of the indices k = (k1, k2), ki ∈ {1, . . . , 8}, i = 1, 2, are color-coded. In addition the indices
k which belong to I`,γ with ` = 7 are marked with a dot.

One can see that the index sets I`,γ can be represented by I`,γ =
⋃

u⊂{1,2} Iu, i.e., the disjoint
union of the four subsets

I∅ = {(1, 1)},
I1 = {(k1, 1) : k1 > 1 and k1 < b1},

I2 = {(1, k2) : k2 > 1 and k2 < b2},

I12 = {(k1, k2) : k1, k2 > 1 and |k|1 < b12},

(49)

with b1, b2, b12 ∈ N which depend on the weights γ1 and γ2, the dimension d and on the level `.
Note that all four subsets correspond to index sets of classical sparse grid methods. In general
2d subsets are required; one for each ANOVA subterm. We will use this decomposition of the
index set in the next two sections to derive cost and error bounds for the generalized sparse grid
method SG`,γ from the known cost and error bounds in the unweighted case.

5.2. Cost Analysis

In the following, we use n(d, `,γ) to denote the number of function evaluations of the method
SG`,γ. To analyse these costs we first recall the well-known cost bound for classical sparse grids,
see, e.g., Bungartz and Griebel (2004); Wasilkowski and Woźniakowski (1995). In this case, we
omit the index γ and write n(d, `) := n(d, `, 1).

Lemma 11 (Costs of classical sparse grids). Let mi ≤ 2i−1. Then

n(d, `) ≤ 2`
(
` + d − 2

d − 1

)
.

In the following, we will also consider sparse grid methods that start with m1 = 2 points on
their lowest level ` = 1 instead of m1 = 1 as in the case of Lemma 11. The index set of such a
sparse grid method with level ` and dimension d can be written in the form

Ī = {k ∈ (N \ {1})d : |k|1 ≤ ` + 2d − 1}. (50)
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As a corollary of Lemma 11, we see that if mi ≤ 2i then the number of points in such a sparse
grid satisfies

n̄(d, `) ≤ 2d+`

(
` + d − 2

d − 1

)
. (51)

We now present a generalised cost bound for the weighted case. The cost bound results from
the insight that the sparse grid method SG`,γ can be represented by the combination of 2d many
classical sparse grids (one for each anchored-ANOVA term). Here and in the following, we
define that

(
n
d

)
:= 0 for n < d and that

(
x
d

)
:=

(
bxc
d

)
for x ∈ R .

Theorem 12 (Costs of weighted sparse grids). Let mi ≤ 2i−1. Then

n(d, `,γ) ≤ 2`
∑
u⊆D

γu
1/4

(
` + log2(γu)/4 − 2

|u| − 1

)
.

Proof. We start with the remark that the index set I`,γ from (47) can be represented by I`,γ =⋃
u⊆D Iu as the disjoint union of the sets

Iu = {k ∈ Nd : |k|1 + σk ≤ ` + d − 1 and k j > 1 if and only if j ∈ u},

see also (47). Thus,
n(d, `,γ) ≤

∑
k∈I`,γ

nk =
∑
u⊆D

∑
k∈Iu

nk. (52)

Let l ∈ (N \ {1})|u| denote the vector that collects all components of k ∈ Iu that are larger than
one. We then can write

Iu = {l ∈ (N \ {1})|u| : |l|1 + d − |u| + σu ≤ ` + d − 1}

= {l ∈ (N \ {1})|u| : |l|1 ≤ ` − σu − |u| + 2|u| − 1},

where σu =
∑

j∈u σ j. By comparison with (50), we see that Iu is the index set of a |u|-
dimensional classical sparse grid starting with m1 = 2 points and with level ` − σu − |u|. Hence
by (51), ∑

k∈Iu

nk = n̄(|u|, ` − σu − |u|) ≤ 2`−σu

(
` − σu − 2
|u| − 1

)
. (53)

Using σu = − log2(γu)/4 and 2−σu = γ1/4
u we obtain the assertion by combining (52) and (53).

Note that Theorem 12 recovers Lemma 11 in the unweighted case γ j = 1, j = 1, . . . , d. This
can be seen as follows: We have

n(d, `, 1) ≤ 2`
∑
u⊆D

(
` − 2
|u| − 1

)
= 2`

d∑
j=1

(
d
j

)(
` − 2
j − 1

)
and use

d∑
j=1

(
d
j

)(
` − 2
j − 1

)
=

d∑
j=1

(
d

d − j

)(
` − 2
j − 1

)
=

d−1∑
j=0

(
d

d − 1 − j

)(
` − 2

j

)
=

(
d + ` − 2

d − 1

)
where we applied the Vandermonde’s identity for the last equality.
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5.3. Error Analysis
We now consider the error of the method SG`,γ. To this end, we start with an error bound for

classical sparse grids, see, e.g., Bungartz and Griebel (2004). In the unweighted case, we again
omit the index γ and write ‖ f ‖1 := ‖ f ‖1,1.

Lemma 13 (Error of classical sparse grids). Let SG` denote the classical sparse grid method
with the index set (32) and let ` ≥ d − 1. Then

|I f − SG` f | ≤
∑

k∈Nd\I

2−|k−1|1‖ f ‖1 ≤ 2−`A(d, `)‖ f ‖1

where

A(d, `) := 2d
(
` + d − 1

d − 1

)
.

If SG` denotes the classical sparse grid method with the index set Ī from (50) that starts with
m1 = 2 points and if ` ≥ d − 1, then we obtain as a corollary of Lemma 13 that

|I f − SG` f | ≤
∑

k∈(N\{1})d\Ī

2−|k−1|1‖ f ‖1 ≤ 2−d−`A(d, `)‖ f ‖1. (54)

We now present an error bound for the weighted case. To derive this bound, we again use the
fact that the error of the sparse grid method SG`,γ can be bounded by the sum of the errors of 2d

many classical sparse grids (one for each anchored-ANOVA term).

Theorem 14 (Error of weighted sparse grids). Let ` ≥ d − log2(γ{1,...,d})/4 − 1. Then

|I f − SG`,γ f | ≤ 2−`
∑
u⊆D

γu
1/4 2|u|

(
` + log2(γu)/4 − 1

|u| − 1

)
‖ f ‖1,γ.

Proof. We start with
|I f − SG`,γ f | ≤

∑
k∈Nd\I`,γ

bk‖ f ‖1,γ (55)

which follows from (40) and (41). Note that

Nd \ I`,γ =
⋃
u⊆D

(Nu \ Iu)

with Nu as in (34) and Iu as in the proof of Theorem 12. By (42), we thus have∑
k∈Nd\I`,γ

bk‖ f ‖1,γ =
∑
u⊆D

γ1/2
u

∑
k∈Nu\Iu

2−|k−1|1‖ f ‖1,γ (56)

with γu =
∏

j∈u γ j = 2−4σu . As in the proof of Theorem 12, we see that Iu corresponds to the
index set of a |u|-dimensional classical sparse grid starting with m1 = 2 points and with level
` − σu − |u|. By (54) we then obtain∑

k∈Nu\Iu

2−|k−1|1 ≤ 2−`+σu A(|u|, ` − σu − |u|). (57)
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If ` ≥ d − log2(γ{1,...,d})/4 − 1, it holds ` − σu ≥ |u| − 1 for all u ⊆ D and thus

A(|u|, ` − σu − |u|) = 2|u|
(
` − σu − 1
|u| − 1

)
(58)

by the definition of A(d, `), see Lemma 13. Using σu = − log2(γu)/4 and γ1/2
u 2σu = γ1/4

u , we
finally obtain the assertion by combining (55) - (58).

Note that Theorem 14 recovers Lemma 13 in the unweighted case γ j = 1, j = 1, . . . , d. We
see this from

|I f − SG`,1 f | ≤ 2−`
∑
u⊆D

2|u|
(
` − 1
|u| − 1

)
‖ f ‖1,1 = 2−` 2d

d∑
j=1

(
d
j

)(
` − 1
j − 1

)
‖ f ‖1,1

= 2−` 2d
(
` + d − 1

d − 1

)
‖ f ‖1,1 = 2−`A(d, `)‖ f ‖1.

Here, the second equality follows from the Vandermonde’s identity.

5.4. Analysis of Error versus Cost

Using the results of Section 5.2 and Section 5.3, we now represent the error of the method
SG`,γ as a function of its costs n = n(d, `,γ). We again start with the classical case.

Lemma 15 (Error versus cost of classical sparse grids). For f ∈ Hmix
1 ([0, 1]d) and ` ≥ d − 1

it holds
|I f − SG` f | = O(n−1(log2 n)2(d−1))

where n denotes the number of points used by the method SG`.

Proof. Note that A(d, `) = O(`d−1) in Lemma 13. By Lemma 13 we can thus estimate

|I f − SG` f | = O
(
2−``d−1

)
= O

(
`2(d−1)

2``d−1

)
= O

(
(log2 n)2(d−1)

n

)
.

Here, we used ` ≤ log2(n) and n = O(2``d−1) where the latter bound can be derived with the help
of Lemma 11.

We now generalise this result such that also the weighted case is covered.

Theorem 16 (Error versus cost of weighted sparse grids). Let ` ≥ d − log2(γ{1,...,d})/4 − 1.
Then

|I f − SG`,γ f | ≤ n−1 2d B(d, `,γ)2 ‖ f ‖1,γ (59)

where

B(d, `,γ) :=
d∑

j=1

γ1/4
{1,..., j}

(
d
j

)(
` + log2(γ{1,..., j})/4 − 1

j − 1

)
.
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Proof. We first show that
n(d, `,γ) ≤ 2`B(d, `,γ). (60)

To this end, note that γ{1,..., j} =
∏ j

i=1 γi ≥ γu for all u with |u| = j since the weights are ordered
according to their size. Thus, by Lemma 12,

n(d, `,γ) ≤ 2`
d∑

j=1

∑
|u|= j

γu
1/4

(
` + log2(γu)/4 − 2

|u| − 1

)
≤ 2`

d∑
j=1

(
d
j

)
γ1/4
{1,..., j}

(
` + log2(γ{1,..., j})/4 − 1

j − 1

)

where we use the fact that
(

n
d

)
is monotone increasing in n. Similarly, we derive

|I f − SG`,γ f | ≤ 2−` 2d B(d, `,γ) ‖ f ‖1,γ (61)

from Lemma 14. From (61) and (60) with n = n(d, `,γ) we conclude that

|I f − SG`,γ f | ≤
2d B(d, `,γ)2

2` B(d, `,γ)
‖ f ‖1,γ ≤ 2d B(d, `,γ)2 n−1 ‖ f ‖1,γ

which proves the theorem.

We now comment on Theorem 16:

• In the unweighted case γ j = 1, j = 1, . . . , d, we obtain B(d, `,γ) = A(d, `) = O((log2 n)d−1).
Theorem 16 is thus a generalisation of the classical case in Lemma 15.

• Theorem 16 shows that the method SG`,γ converges with rate n−1 which is independent of
the dimension. The error bound still depends on the value B(d, `,γ), however. In general,
we see that B(d, `,γ) = O(`d−1). Expressed in n, the value B(d, `,γ) thus introduces a
logarithmic dependence on n and an exponential dependence on the dimension d.

• The value B(d, `,γ) is decreasing with the size of the weights γ j, j = 1, . . . , d, however.
Moreover, the level

`∗ := d − log2(γ{1,..., j})/4 (62)

grows with decreasing weights, see also Example 2. It describes the level where the asymp-
totic regime in the error bound of Theorem 16 starts and thus gives the point where the
logarithmic factor `d−1 appears in the complexity.

• If the weights decay sufficiently fast such that

sup
d

d∑
j=1

γ1/2
j < ∞ (63)

then the general results of Wasilkowski and Woźniakowski (1999) indicate that B(d, `,γ)
and hence also the method SG`,γ depends only polynomially on the dimension.

• Note that the error bound (59) also depends on the norm ‖ f ‖1,γ of the integrand. This
norm may grow exponentially fast for increasing d which can cause problems in higher
dimensions. Note that this effect is not included in the notion of tractability in Sloan and
Woźniakowski (1998); Wasilkowski and Woźniakowski (1999) since only functions with
norm ‖ f ‖1,γ ≤ 1 are addressed there.
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Example 2. As in Wasilkowski and Woźniakowski (1999), we consider the family of weights

γ j = j−α, with α ≥ 0.

This example with α = 2 is motivated by the fact that in many application problems from finance
the high nominal dimension arises from the discretization of an underlying continuous time pro-
cess. The corresponding integrals can thus be written as an approximation to some infinite-
dimensional integrals with respect to the Wiener measure.13 In these cases, the integrands are
contained in some weighted function spaces whose weights are related to the eigenvalues of the
covariance operator of the Wiener measure. These eigenvalues, sorted by their magnitude, are
decaying proportionally to j−2, where j is the number of the eigenvalue.

For γ j = j−α, we obtain γ{1,..., j} = ( j!)−α and `∗ = d + α/4 log2(d!). We thus can compute
the level `∗ in (62) for different exponents α and different dimensions d. The results are shown
in Table 2. For instance, let d = 360 and α = 2. Then, one can see that the asymptotic log-factor
`d−1 in the error bound from Theorem 16 does not appear as long as ` < `∗ = 1633. In the
unweighted case, the level `∗ = 361 is significantly smaller.

Table 1: The values `∗ := d + α/4 log2(d!) for α ∈ {0, 1, 2, 3} and different values d.
α \ d 1 3 5 10 50 100 360 1024

0 1 4 6 11 51 101 361 1025
1 1 4 8 16 105 232 997 3217
2 1 5 9 22 158 363 1633 5409
3 1 6 11 27 212 495 2268 7601

If α > 2 holds, then the condition (63) is satisfied and we can use the general results of
Wasilkowski and Woźniakowski (1999) to see that the ε-cost of the method SG`,γ is independent
of the dimension. In this case the number of function evaluations n(ε) to obtain an accuracy of ε
can be bounded by

n(ε) ≤ c ε−max{1, 2
α−1 }

for integrands from the unit ball ‖ f ‖γ ≤ 1, where the constant c is independent of d and ε. It
is known, see Plaskota and Wasilkowski (2001), that the ε-exponent in this bound cannot be
improved using generalised sparse grid methods. It is optimal for α ≥ 3 but far from optimal for
α ≈ 1.

6. Dimension-adaptivity

In Section 3.3, we shifted the problem of the choice of the index set S to the problem of
determining the weights γu. In Section 5.1, we then determined optimal index sets for sparse
grid methods in weighted tensor product Sobolev spaces. In practise, however, the weights are
usually unknown and can also not be computed as this would be more expensive than computing
the integral.

In these cases adaptive algorithms are required which can estimate the weights a posteriori
during the actual calculation of the integral. This way appropriate index sets can be constructed

13See, e.g., Linetsky (1998) and the references listed there.
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automatically for a given function f without any a priori information on the dimension structure
of the integrand being required.

In the following we determine the index set S in a dimension-adaptive fashion. To estimate
the importance of the term I( fu) we define γu := |qu| ≈ I( fu) with qu from (20). Furthermore, we
denote by A the subset of all indices u ∈ D \ S which satisfy the admissibility condition (19)
with respect to the set S. With help of the weights γu, we then heuristically build up the index
set S in a general and automatic way by the following Greedy-approach: We start with the initial
set S = {∅} and add step by step the index u ∈ A with the largest weight γu to S until the largest
weight is below some threshold ε, see Algorithm 6.1.

Note that in the first step of Algorithm 6.1 we still have the flexibility to choose the quadrature
rules Qu for the computation of qu. They can be different for each u and can be tailored to the
dimension and smoothness of the terms fu, e.g., by the use of local adaptivity. Furthermore, note
that in the first step of Algorithm 6.1 the values qu have to be computed for all u ∈ A for which
qu has not yet been computed in previous steps. In high dimensions d, this may result in a certain
overhead since not all of these values significantly contribute to the integral value.

Similarly as in Section 4, we now restrict ourselves to tensor product methods Qu for the ap-
proximation of the integrals I fu in (18). Then, the truncation and discretization of the anchored-
ANOVA series can be intertwined if we use the refined index set I instead of the finite set S. In
this case, we see, as a corollary of Theorem 8, that our dimension-adaptive approach corresponds
to the dimension-adaptive sparse grid method as introduced in Gerstner and Griebel (2003).

This method finds the index set I in a dimension-adaptive way with the help of the error
indicators |∆k f |. Starting with the smallest index set I = {(1, . . . , 1)}, those admissible indices
k are added step by step to I which are expected to provide the largest error reduction. The
resulting dimension-adaptive construction of the index set14 is shown in Algorithm 6.2. There,
A denotes the subset of all indices k ∈ Nd \I which satisfy the admissibility condition (30) with
respect to the set I. Altogether, the algorithm allows for an adaptive detection of the important
dimensions and heuristically constructs optimal index sets I in the sense of Bungartz and Griebel
(2004). Note that this is closely related to best N-term approximation DeVore (1998).

Remember that the ε-cost analysis in Section 5 was also based on the values ∆k f , which
are used here for the error estimation. We can thus expect that dimension-adaptive sparse grid
methods correctly identify the optimal index sets I`,γ from (47) provided no early determination
problems occur. In this case, the results of Section 5 can also be used to show that dimension-
adaptive sparse grid methods can avoid the curse of dimension in weighted function spaces whose
weights decay sufficiently fast.

For comparison recall that Algorithm 6.1 can be based on two separate types of adaptiv-
ity. The important anchored-ANOVA terms I fu are found in a dimension-adaptive fashion with
help of the weights γu and are approximated by qu using possibly locally adaptive methods. In
Algorithm 6.2 the calculation of the contributions ∆k is more restrictive since the telescoping
sum expansion has to hold. The algorithm is already completely determined by the choice of
the univariate quadrature rule Umk . While Algorithm 6.1 has the advantage that low regularity
of low order anchored-ANOVA terms can be resolved by local adaptivity, Algorithm 6.2 has the
advantage that modelling and discretization errors are simultaneously taken into account and can
thus be balanced in an optimal way.

14Note that in Gerstner and Griebel (2003) more sophisticated stopping criterions are used than |∆k f | ≤ ε.
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Algorithm 6.1: Dimension-adaptive constructions of the index set S.
Initialise: Let S = {∅}, q∅ := f (a) and s = f (a).

repeat
1) Compute the values qu from (20) for all u ∈ A for which qu has not yet

been computed and set s = s + qu.
2) Move the index u ∈ A with the largest weight γu = |qu| fromA to S.

until γu ≤ ε ;

Set AS f = s.

Algorithm 6.2: Dimension-adaptive sparse grid construction of the index set I.
Initialise: Let I = {(1, . . . , 1)} and s = ∆(1,...,1) f .

repeat
1) Compute the values ∆k f from (29) for all k ∈ A for which ∆k f has not yet

been computed and set s = s + ∆k f .
2) Move the index k ∈ A with the largest weight |∆k f | fromA to I.

until |∆k f | ≤ ε ;

Set S GI f = s.

7. Numerical Results

In this section, we use multivariate integrals from finance (corresponding to Asian options,
zero coupon bonds and collateralized mortgage obligations) to investigate the performance of
sparse grids and other dimension-wise quadrature methods of the form (21). We first describe the
setting of our numerical experiments. Then we compare the convergence behaviour of different
numerical methods and relate the results to the effective dimensions of our model problems in
the classical and in the anchored case.15

7.1. Setting

The model problems considered in our numerical experiments all lead to high-dimensional
integrals of the form

Id :=
1

(2π)d/2
√

det(C)

∫
Rd

f (W) e−
1
2 WT C−1W dW, (64)

15The effective dimensions in the anchored case can directly be derived from the qu values, see Section 2.2. In the
worst case 2d many integrals are needed to compute σ̂( f ) with sufficient precision. In practice, however, often many of
the terms |I fu | are very small or zero, in particular if |u| is large. Then Algorithm 6.1 can be used to compute σ̂( f ) even
in high dimensions, which we demonstrate in Section 7.3 and Section 7.4 using examples with d = 256 and d = 512.
In the numerical experiments in Section 7 we apply Algorithm 6.1 with the threshold ε = 10−6 f (a). For the derivation
of the truncation dimensions in the classical case, we use the algorithm from Wang and Fang (2003). It requires the
computation of several integrals with up to 2d − 1 dimensions. For their approximation we used 216 Sobol quasi-Monte
Carlo points. To compute the superposition dimension the recursive method described in Wang and Sloan (2005) can be
used. Because of cancellation problems and costs which are exponential in the superposition dimension, the computation
of the superposition dimension is only feasible for moderately high dimensional function.
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where W ∈ Rd, C ∈ Rd×d and f : Rd → R. In our examples, the integral value Id describes
the price of a financial derivative. The vector W relates to the path of an underlying stochastic
process, C to the covariance matrix of the process and f to the payoff function of the financial
contract. Using the factorization C = AAT with A ∈ Rd×d and the substitution W = Az the
integral is transformed into the integral

Id :=
∫

Rd
f (Az)ϕd(z) dz (65)

with standard Gaussian weight ϕd. It is well known that the matrix A can be chosen in many dif-
ferent ways. Here we consider the following methods, which are usually interpreted as different
generating methods of the path of a Brownian motion Imai and Tan (2006).

• In the random walk (RW) construction the path of the Brownian motion is generated se-
quentially in time. Here A is the Cholesky matrix of C.

• In the Brownian bridge (BB) construction, see Moskowitz and Caflisch (1996), the path is
constructed in a hierarchical way. This has the effect that more importance is placed on
the leading variables. The corresponding matrix A is given in Wang (2006) explicitly.

• In the principal component (PCA) construction Acworth et al. (1998) the matrix A results
from the eigenvalue decomposition of C. This construction maximizes the concentration
of the total variance in the leading dimensions. The corresponding matrix A can be found
in Glasserman (2003).

• The linear transformation (LT) construction, see Imai and Tan (2006), aims to identify
the matrix A which minimizes the effective truncation dimension of the integrand in the
classical ANOVA sense. While BB and PCA do not respect the particular structure of the
function f , the LT-construction in addition takes the gradient of f at a certain anchor point
into account. The corresponding matrix A is constructed column by column from a Gram-
Schmidt like local minimization, which involves f . For details see Imai and Tan (2006),
where this approach is referred to by LT-II.

Below we will study the efficiency of different sparse grid methods to compute the integral
(65). To this end, remember that the univariate quadrature rule Umk in the sparse grid construction
of Section 4 was left open. If a quadrature rule is used which is defined on R, then the integral
(65) can be treated with a sparse grid method directly on Rd. In our tests, we will use the
dimension-adaptive sparse grid method based on the Gauss-Hermite rule and refer to this specific
method as SGH.

To apply a univariate quadrature rule on [0, 1], it is necessary to transform the integral (65)
over Rd into an integral over the unit cube [0, 1]d. To this end, we use the standard component-
wise substitution z = Φ−1(x), where Φ denotes the cumulative normal distribution function.16

16The resulting transformed integrand is unbounded on the boundary of the unit cube, which is undesirable from a
numerical as well as from a theoretical point of view. Nevertheless, in combination with (quasi-) Monte Carlo methods
this transformation turns out to be very effective because it cancels the Gaussian weight. But this singular transformation
deteriorates the efficiency of quadrature methods which take advantage of higher smoothness, such as sparse grids. Here,
it is often better to avoid the transformation and the corresponding loss of regularity and to address the integral directly
on Rd .
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This yields

Id :=
∫

[0,1]d
g(x) dx (66)

with the integrand g(x) := f (AΦ−1(x)).
This way we can apply the dimension-adaptive sparse grid method based on the Gauss-

Patterson rule as univariate rule Umk , which we refer to as SGP. This method was first presented
in Gerstner and Griebel (2003). It is a special case of the method (21), compare Theorem 8.

In our tests, we will also consider different variants of the dimension-wise quadrature method
(21), which are not of sparse grid form, but which can resolve low regularity in the low-order
anchored ANOVA terms using local adaptivity. To this end, recall that we still have to specify
the quadrature rules Qu and the index set S to finalize the construction of the method (21) from
Section 3. Here we choose the Qu’s as follows: If |u| < 4, we use the locally-adaptive product
method CUHRE, see Bernsten et al. (1991); Hahn (2005), to address low regularity of the terms
Pu f . If |u| ≥ 4, we use a randomised quasi-Monte Carlo method based on Sobol point sets to lift
the dependence on the dimension. We always use the anchor point (1/2, . . . , 1/2). For the con-
struction of the index set S (i.e. for finding the most important terms of the anchored-ANOVA
decomposition) we employ the a priori constructions from Section 3.3 and the a posteriori con-
struction from Section 6. This defines the following three new quadrature methods:

• mixed CUHRE/QMC method with order-dependent weights (COW),

• mixed CUHRE/QMC method with product weights (CPW),

• mixed CUHRE/QMC method with dimension-adaptivity (CAD).

We refer to COW, CPW and CAD as mixed CUHRE/QMC methods. To our knowledge
these methods are the first numerical quadrature methods which can profit from low effective
dimension (by the selection of appropriate function space weights or by dimension-adaptivity)
and which can at the same time resolve low regularity to some extent by local adaptivity.

For comparison we also consider Monte Carlo integration (MC) and quasi-Monte Carlo in-
tegration based on Sobol point sets (QMC). These two methods are most commonly used for the
computation of high-dimensional integrals. In preliminary numerical experiments, Sobol point
sets turned out to be the most efficient representative of several quasi-Monte Carlo variants.17

7.2. Asian Options
We first consider the commonly used test problem to determine the fair value of an Asian

option with geometric average. The arising integrands are explicitly given in Wang and Fang
(2003); Wang and Sloan (2005). Here, we distinguish the two cases K = 0 and K = 100 (where
K denotes the strike price of the option) which we refer to as Asian0 and Asian100, respectively.
While we obtain a smooth integrand in the first case, the integrand has discontinuous first deriva-
tives in the latter case. We use the same parameters as in Wang and Fang (2003); Wang and Sloan
(2005) and consider the case d = 16.

17We compared Halton, Faure, Sobol low discrepancy point sets and three different lattice rules based on the CBC
construction from Sloan et al. (2002). The lattice rules yield in many cases equal or even more precise results as Sobol
points if good function space weights are used for their construction. But the selection of good weights is a priori not
always clear. It would be interesting to see if our anchored-ANOVA weights γi in (25) can successfully be used in the
CBC construction.
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Table 2: Truncation dimensions of the Asian option pricing problems.18

(a) Asian0 (d = 16)

anchored-ANOVA classical ANOVA
1−α RW BB PCA LT RW BB PCA LT
1e-1 9 2 1 1 9 2 1 1
1e-2 13 6 2 1 13 6 2 1
1e-3 15 14 3 1 15 14 3 1
1e-4 16 16 6 1 16 16 6 1

(b) Asian100 (d = 16)

anchored-ANOVA classical ANOVA
RW BB PCA LT RW BB PCA LT
10 3 1 1 10 2 1 1
10 4 2 1 14 7 2 1
10 7 3 1 15 14 3 1
13 15 5 1 16 16 6 1

Table 3: Superposition dimensions in the anchored case.18

(a) Asian0 (d = 16)

1−α RW BB PCA LT
1e-1 1 1 1 1
1e-2 1 1 1 1
1e-3 2 2 1 1
1e-4 2 2 2 1

(b) Asian100 (d = 16)

1−α RW BB PCA LT
1e-1 7 2 1 1
1e-2 8 3 1 1
1e-3 8 4 2 1
1e-4 8 4 3 1

We first show in Table 2 the truncation dimensions of the arising integral in the classical and
in the anchored case for different proportions α ∈ [0.9, 0.9999]. One can see that the truncation
dimensions in the classical case almost coincide with the truncation dimensions in the anchored
case.18 For instance, for the case K = 0 with α = 0.999 we obtain dt = 15, 14, 3, 1 using RW,
BB, PCA and LT, respectively, for the anchored case as well as for the classical one. The LT-
construction achieves the optimal result dt = 1 in both cases. One can show that this holds even
for the extreme case α = 1, i.e. this problem can be reduced by LT to one with only one nominal
dimension.

Further numerical calculations, see Table 3(a), show that the Asian0 problem is of very
low superposition dimension ds ≤ 2 independent of the employed path construction. For the
Asian100 problem, ds increases if we switch from LT to PCA, to BB and RW as can be seen in
Table 3(b).18

Next we compute the integral values using different numerical approaches (MC, QMC, COW,
CPW, CAD, SGP and SGH) and different path constructions (RW, BB, PCA, LT) as introduced
in Section 7.1. We display the convergence behaviour of these methods in Figure 3 and Figure
4. There, we show the number of function evaluations which is required by each of the different
numerical methods to obtain a fixed accuracy.

One can see that the convergence rate of the MC method is always about 0.5 as predicted
by the law of large numbers. The rate is not affected by the path construction since the total
variance stays unchanged. The convergence rate of the QMC method increases if BB, PCA or LT
is used since these path constructions concentrate the total variance in the first few dimensions.
This way QMC outperforms MC and achieves higher convergence rates of almost one, smaller
relative errors and a less oscillatory convergence behaviour.

18Note that our numerical computations for the anchored case with K = 100 and RW or BB might be inaccurate. For
these particular problems accurate results are difficult to obtain since the truncation dimension is high (hence many terms
have to be integrated) and the integrals are not smooth (hence their computation is expensive).
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From Figure 3 and Figure 4 we also observe that the impact of the path construction is con-
siderably bigger in case of the dimension-wise quadrature methods COW, CPW, CAD, SGP and
SGH. This is explained by the fact that these methods are tailored to the effective dimension
of the problem by the choice of the respective function space weights from Section 3.3, or by
the dimension-adaptive grid refinement. The convergence of these methods is thus significantly
accelerated by path constructions which reduce the effective dimension of the associated inte-
grand. For instance, in the case K = 0, compare Figure 3, one can see that the performance
of dimension-wise quadrature methods significantly improves if we switch from RW to BB, to
PCA and then to LT. While COW, CPW, CAD and SGP provide results which are similar to
or even worse than (Q)MC in case of RW, they outperform (Q)MC slightly, clearly and dras-
tically in case of BB, PCA and LT, respectively. Note here that two different regimes have to
be distinguished to describe the convergence behaviour of these methods, compare, e.g., Figure
3(d). In the preasymptotic regime, the methods COW, CPW, CAD, SGP and SGH first search
for the important dimensions and interactions, whereas, in the asymptotic regime, the important
dimensions are identified and the grid is then refined only in these directions.

Since the LT-construction reduces the problem to only one dimension, its combination with
dimension-adaptive methods is particularly efficient. We see from Figure 3(d) that the sparse
grid and the dimension-adaptive methods correctly identify the important dimension and then
only refine in this respect, which leads to an extremely rapid convergence in the asymptotic
regime.

A comparison of the convergence rates of the COW, CPW and CAD method shows that the
a priori constructions (with order-dependent weights or product weights) and the dimension-
adaptive construction of the index set S lead to very similar results. The results of COW and
CPW even coincide in most cases.

For the Asian0 problem, SGH is by far the most efficient method independent of the em-
ployed path construction. It exploits the low effective dimension by its dimension-adaptive grid
refinement and can profit from the smoothness of the integrand much better than all other ap-
proaches since it avoids the transformation to the unit cube. This way we obtain relative errors
smaller than 10−12 with only about 105, 104, 103 and 102 function evaluations in case of RW, BB,
PCA and LT, respectively, which is 7 − 10 orders of magnitude more precise than the results of
QMC.

Comparing the two cases K = 0 and K = 100, we furthermore see that the convergence
rates of the QMC method are only slightly affected by the kink in the integrand, whereas the
SG methods clearly suffer from the low degree of regularity. This drawback is to some extent
overcome by the COW, the CPW and the CAD method, which are in combination with PCA
or LT the most efficient approaches for the Asian100 problem. These methods profit from the
low effective dimension and can in addition deal with the low regularity of the integrand by local
adaptivity in the low order anchored-ANOVA terms due to the CUHRE approach. With LT, these
methods obtain relative errors smaller than 10−8 with only about 1,000 function evaluations, see
Figure 4(d), which is about 100,000 times more accurate than the results of QMC.

7.3. Zero Coupon Bonds

We now consider the problem to price zero coupon bonds using the Vasicek model. This
model problem is taken from Ninomiya and Tezuka (1996). It is also studied in Wang (2006);
Wang and Sloan (2005). We use the same parameters as in Ninomiya and Tezuka (1996) and
consider the case d = 512.
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First we again study the effective dimensions of this problem. In Table 4(a) one can see that
the effective dimensions in the classical case almost coincide with the effective dimensions in the
anchored case. For instance, for α = 0.99 we obtain dt = 420, 7, 1, 1 using RW, BB, PCA and
LT, respectively, for the anchored case and dt = 419, 7, 1, 1 for the classical one. We conjecture
that a more precise numerical computation would yield even exact equal results and we believe
that this equality holds for a wider class of functions. Note however that this does not hold in
general. We will give a counterexample in Section 7.4.

Observe that the path construction has a significant impact on the truncation dimensions. For
α close to one the dimensions dt are almost as large as the nominal dimension d = 512 if we
employ the RW approach. The dimensions dt are significantly smaller if BB, PCA or LT is used
instead. The LT-construction even obtains the optimal result dt = 1 for this problem. While it
is not surprising that such an optimal transformation exists,19 it is nevertheless interesting that
it is correctly identified by the LT-construction, which takes only the gradient of the integrand
at a certain anchor point into account. Further computations show, see Table 5(a), that the in-
tegral is of very low superposition dimension ds ≤ 2 in the anchored case and that ds is almost
independent of the path construction.

We display the convergence behaviour of the different numerical methods using the differ-
ent path generating methods for the Vasicek problem in Figure 5. We observe similar results
as for the Asian0 problem despite the fact that the nominal dimension d = 512 is significantly
higher here. With RW and BB, the methods COW, CPW and CAD provide similar results as
QMC. They partly seem to stop to converge, which happens if important contributions to the in-
tegral value are contained in anchored-ANOVA terms of higher order that are not yet identified.
For instance, in Figure 5(b) one can see that 106 function evaluations are not sufficient to find
those contributions which would reduce the relative error to be below 10−6. The dimension-wise
integration methods again clearly profit from path constructions which lead to low effective di-
mension. In combination with LT, see Figure 5(d), all these methods again correctly identify the
important dimension of the problem. This way the dependence on the dimension is completely
avoided in the asymptotic regime. There, the convergence of the methods is as fast as it is known
for univariate problems despite the high nominal dimension d = 512. SGH is again by far the
most efficient method. It outperforms (Q)MC by several orders of magnitude independent of the
employed path construction. By exploiting the low effective dimension and smoothness of the
integrand, SGH achieves in combination with PCA or LT almost machine accuracy with only
about 1,000 function evaluations.

To better understand the fast performance of the SGH method we look at the index set I that
is build up by Algorithm 6.2 in a dimension-adaptive way. For the visualization we consider
the two-dimensional slices through the index set I that correspond to the set of 512-dimensional
indices k of the form (k1, k2, 1, . . . , 1) and (k1, 1, . . . , 1, k2) for k1, k2 ≥ 1, respectively. The
resulting index sets are shown in Figure 2 for the example of the Brownian bridge construction. In
Figure 2 all indices k are marked with a dot that are included in the index set I which is build up
by Algorithm 6.2 if the threshold ε = 10−3 is used, compare also Figure 1. For instance, one can
see that the index (3, 1, . . . , 1) is included in I but not the index (1, . . . , 1, 3). Moreover, the values
|∆k f | are shown color-coded from 100 (dark red) to 10−16 (dark blue) for 1 ≤ k1, k2 ≤ 7. One can
see that these values are decaying rapidly for increasing k1, k2. They are already below 10−10 if
k1 > 4 or k2 > 4. With respect to the dimension 512 we see in Figure 2(b) that |∆k f | < 10−10

19This way the closed-form pricing formula is derived.
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already if k2 > 1, which reflects the low truncation dimension of the Vasicek problem with the
Brownian bridge construction. The results shown in Figure 2 indicate for this particular example
that already a rather small index set I is sufficient to capture all indices k that correspond to
significant contributions to the integral value. This explains why high precisions can be achieved
with only little costs by the dimension-adaptive SGH method.20

(a) Dimensions 1 and 2 (b) Dimensions 1 and 512

Figure 2: Two-dimensional slices through the index set I corresponding to the threshold ε = 10−3 for the Vasicek
problem with the Brownian bridge construction (d = 512).

7.4. Collateralized Mortgage Obligations

We finally deal with the problem to price a collateralized mortgage obligation (CMO). This
model problem is described in detail in Caflisch et al. (1997); Paskov and Traub (1995). There
and in several further references, it is used to study the performance of quasi-Monte Carlo meth-
ods. It is also considered in Gerstner and Griebel (1998, 2003) to demonstrate the efficiency of
SG methods. We use the same parameters as in Gerstner and Griebel (1998) and consider the
case d = 256.

We first computed the superposition dimension in the anchored case for the CMO problem.
We obtained again ds ≤ 2 for all α ∈ [0.9, 0.9999] and all path constructions, see Table 5(b).
The truncation dimensions dt of this problem are shown in Table 4(b). It is striking that the path
construction has only a small impact on the truncation dimension in the anchored case, i.e., the
advantage of BB, PCA and LT compared to RW is not so clear for the CMO problem. For α = 0.9
we have dt = 123 in case of RW and LT. This truncation dimension is reduced to dt = 18 and
dt = 13 if BB and PCA is used, respectively. For higher accuracy requirements, however, i.e. for
α ≥ 0.99, significantly less or even no reduction at all is achieved with these constructions. Note
that for the CMO problem the effective dimensions in the classical case clearly differ from the
truncation dimensions in the anchored case. There BB, PCA and LT lead to significant dimension
reductions. LT even reduces the problem to the truncation dimension one in the classical case.

We next study the convergence behaviour of the different numerical methods for this problem.
The respective numerical results are illustrated in Figure 6. One can see that the QMC method
converges faster, less oscillatory and superior to MC if we switch from RW to BB, PCA or LT.

20Note that the results shown in Figure 2 also indicate that Algorithm 6.2 indeed correctly identifies the most important
contributions to the integral value.
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Table 4: Truncation dimensions of the Vasicek and CMO problem.

(a) Vasicek problem (d = 512)

anchored-ANOVA classical ANOVA
1−α RW BB PCA LT RW BB PCA LT
1e-1 302 2 1 1 305 2 1 1
1e-2 420 7 1 1 419 7 1 1
1e-3 471 16 2 1 471 16 2 1
1e-4 494 59 5 1 494 52 5 1

(b) CMO problem (d = 256)

anchored-ANOVA classical ANOVA
RW BB PCA LT RW BB PCA LT
123 18 13 123 60 5 2 1
191 134 108 191 110 10 5 1
225 192 235 225 158 36 11 1
242 229 254 242 181 80 23 1

Table 5: Superposition dimensions in the anchored case.

(a) Vasicek problem (d = 512)

1−α RW BB PCA LT
1e-1 1 1 1 1
1e-2 1 1 1 1
1e-3 1 1 1 1
1e-4 2 2 1 1

(b) CMO problem (d = 256)

1−α RW BB PCA LT
1e-1 1 1 1 1
1e-2 2 2 1 2
1e-3 2 2 2 2
1e-4 2 2 2 2

SGP performs similar to QMC in case of BB and PCA and slightly worse in case of RW and LT.
The mixed CUHRE/QMC methods COW, CPW and CAD attain the best results in combination
with PCA. In this case they outperform (Q)MC and SGP. One can finally see that SGH combined
with BB or PCA is by far the most efficient method for the CMO problem. It achieves the highest
convergence rate and the most precise results. With 104 function evaluations SGH obtains a
relative error which is about 100 times smaller than the relative error of the QMC method.

We next discuss the relation of the convergence behaviour of the numerical methods to the
effective dimension of the CMO problem. We already showed that the path construction affects
both the performance of the numerical methods (except for MC) and the truncation dimension
of the integral. Since the truncation dimension in the classical case differs from the truncation
dimension in the anchored case for this problem, it is interesting to see which of these two notions
better predicts the convergence behaviour of the numerical methods. Remember that LT does not
lead to an improved convergence of the dimension-wise quadrature methods compared to RW.
This observation cannot be explained by the effective dimension in the classical case since LT
obtains the optimal result dt = 1 for the CMO problem. The observation is, however, in clear
correspondence with the fact that LT provides no reduction of the truncation dimension in the
anchored case. This indicates that the performance of the dimension-wise quadrature methods
depends on the truncation dimension in the anchored case, but not on the truncation dimension in
the classical case. Note that the QMC method converges faster and less oscillatory with LT than
with RW. This indicates that the convergence behaviour of the QMC method is rather related to
the effective dimension dt in the classical case than to the anchored one.

The different effective dimensions in the anchored and in the classical case are related to the
fact that in the anchored-ANOVA decomposition the contributions I fu are of different sign for
different u in the CMO problem. Summing the contributions thus leads to cancellation effects
which are not seen in the anchored case since the absolute values |I fu| are taken into account
there. Nevertheless, also the error indicator of dimension-adaptive sparse grid methods and of
other dimension-wise integration methods is based on the absolute values |∆k| and |qu|, respec-
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tively, see Algorithm 6.2 and Algorithm 6.1. These methods can thus also not profit from such
cancellation effects and their convergence behaviour therefore rather depends on the effective
dimensions in the anchored case than on the effective dimension in the classical case.

Note finally that the truncation dimension dt in the anchored case explains the impact of the
path construction but not the high performance of the SGH methods since dt is high for this
problem. The fast convergence is explained by the low superposition dimension ds ≤ 2 and by
the smoothness of the integrand.

8. Concluding Remarks

In this article, we introduced a new general class of methods for the computation of high-
dimensional integrals, which we referred to as dimension-wise quadrature methods. Our starting
point was the anchored-ANOVA decomposition, which has (compared to the classical ANOVA
decomposition) the advantage that only a finite number of function values is required for its com-
putation. Our new methods then resulted from truncation of the anchored-ANOVA decomposi-
tion and from integration of the remaining terms using appropriate low-dimensional quadrature
rules.

We discussed a priori (using function space weights) and a posteriori (using dimension-adap-
tivity) approaches for the truncation and derived bounds for the resulting modelling error. To
this end, we introduced a the new notion of effective dimensions in the anchored case. We
showed that the presented analysis also applies to sparse grid methods as they can be regarded
as special cases of our general approach. We explained that sparse grid methods intertwine the
truncation of the anchored-ANOVA series and the subsequent discretization which allows to
balance modelling and discretization error in an optimal way.

We also presented dimension-wise quadrature methods which are not of sparse grid form but
use the CUHRE method for the integration of the low-order anchored ANOVA terms and quasi-
Monte Carlo for the higher order ones. This way, we obtained mixed CUHRE/QMC methods
which are to our knowledge the first numerical quadrature methods which can profit from low
effective dimension by dimension-adaptivity and can at the same time deal with low regularity by
local adaptivity. A correct balancing of modeling and discretization errors is then more difficult.
Numerical experiments for the Asian option as a test function from finance with discontinuous
first derivatives demonstrate, however, that this disadvantage is more than compensated by the
benefits of the local adaptivity. The numerical results showed the superiority of our new method
to (quasi-) Monte Carlo methods and sparse grid methods for this model problem.

We considered further application problems from finance which lead to the integration of
smooth functions with up to 512 dimensions. For these model problems the dimension-adaptive
sparse grid method based on the Gauss-Hermite rule turned out to be most efficient. This method
profits from the low effective dimension of the integral by its dimension-adaptive grid refinement
and optimally exploits the smoothness of the integrand since it avoids the singular transformation
to the unit cube. This way (quasi-) Monte Carlo methods were outperformed by several orders of
magnitude even in hundreds of dimensions. We finally analysed the effective dimensions of our
application problems in the classical and in the anchored case and showed that the results mainly
explain the behaviour of our numerical quadrature methods.

Of course, our results could be extended into various directions. For instance, it would be
interesting to identify the function classes for which the effective dimension in the anchored
case coincides with the effective dimension in the classical case. We indicated that the pricing

35



problems of Asian options or zero coupon bonds belong to such a function class, but not the
CMO problem. Note further that we always used the center of the integration domain as anchor
point. Of course also other choices are possible. It would be of interest to analyse the impact of
the anchor point in more detail and to understand how the anchor may be choosen best, see also
Sobol (2003) or Wang (2008). Other possible areas for future research include improvements
of our dimension-wise quadrature methods that are not of sparse grid form by, e.g., a more
sophisticated balancing of modeling and discretization errors. For applications from finance,
our mixed CUHRE/QMC methods can be further improved if, instead of the CUHRE method, a
different locally adaptive method is employed which treats the integrals directly on Rd such that
the singular transformation to the unit cube can be avoided. The local error estimator of such a
method could for example be based on Genz-Keister points, see Genz and Keister (1996).

Note furthermore that our dimension-wise approach can not only be used for integration
but also for the representation and approximation of high-dimensional functions in the sense of
Rabitz and Alis (1999). In this context, it would be interesting to study the efficient computation
of further quantities, which can not be formulated as expected values or integrals, but which
are also important for financial institutions, such as quantiles. Quasi-Monte Carlo methods can
compute also quantiles very efficiently as shown by Papageorgiou and Paskov (1995) using the
example of Value at Risk calculations. To our knowledge, it is not yet known if similar or even
better results can be obtained with dimension-wise quadrature methods based on sparse grids.
We finally remark that most of our methods and results are not restricted to applications from
finance, but can also be used in other application areas such as chemistry or physics.

Acknowledgement The authors thank Ian Sloan from the University of New South Wales and
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(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 3: Convergence behaviour of the different methods for the Asian0 problem (d = 16).
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(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 4: Convergence behaviour of the different methods for the Asian100 problem (d = 16).

(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 5: Convergence behaviour of the different methods for the Vasicek problem (d = 512).
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(a) Random walk (b) Brownian bridge

(c) Principal components (d) Linear transformation

Figure 6: Convergence behaviour of the different methods for the CMO problem (d = 256).
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G. Wasilkowski, H. Woźniakowski, Weighted tensor product algorithms for linear multivariate problems, J. Complexity

15 (1999) 402–447.
J. Bernsten, T. Espelid, A. Genz, Algorithm 698: DCUHRE – An adaptive multidimensional integration routine for a

vector of integrals, ACM Transactions on Mathematical Software 17 (1991) 452–456.
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