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DIMENSIONALITY REDUCTION OF HIGH-DIMENSIONAL DATA
WITH A NON-LINEAR PRINCIPAL COMPONENT ALIGNED

GENERATIVE TOPOGRAPHIC MAPPING

M. GRIEBEL∗ AND A. HULLMANN∗

Abstract. Most high-dimensional real-life data exhibit some dependencies such that data points
do not populate the whole data space but lie approximately on a lower-dimensional manifold. A major
problem in many data mining applications is the detection of such a manifold and the expression of the
given data in terms of a moderate number of latent variables. We present a method which is derived
from the generative topographic mapping (GTM) and can be seen as a non-linear generalization of
the Principal Component Analysis (PCA). It can detect certain non-linearities in the data but does
not suffer from the curse of dimension with respect to the latent space dimension as the original
GTM and thus allows for higher embedding dimensions. We provide experiments that show that our
approach leads to an improved data reconstruction compared to the purely linear PCA and that it
can furthermore be used for classification.

Key words. dimensionality reduction, generative topographic mapping, principal component
analysis, density estimation, additive model, classification
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1. Introduction. Many high-dimensional data exhibit some correlation struc-
ture, which means that they do not populate the whole data space and thus possibly
have a lower intrinsic dimension. Then, a suitable low-dimensional projection of the
data allows for a more compact description, a better visualization and a more effi-
cient processing. Figure 1.1 shows the Swiss roll as an example, a typical synthetic
dataset [18], and its two-dimensional embedding.
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Fig. 1.1. The Swiss roll (left) and the two-dimensional embedding (right). The point colors are
for visualization purposes only

One common approach to dimensionality reduction is to express the high-dimen-
sional data in terms of latent variables. Here, the Principal Component Analysis
(PCA) [13], which is based on the diagonalization of the data covariance matrix, is
the best-known method. However, it is by construction a linear method and as such
it is not capable of modeling non-linear lower-dimensional dependencies. Figure 1.2
shows that the topological structure of the Swiss roll dataset is not preserved under the
embedding into two dimensions, which means that points originally far apart on the
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Fig. 1.2. The reconstructed Swiss roll with a two-dimensional PCA model (left) and the two-
dimensional embedding (right)

manifold are close-by in the two-dimensional projection. Moreover, the reconstructed
structure does not at all look similar to the original Swiss roll.

That is why various non-linear methods have been developed. Some common ap-
proaches are multidimensional scaling (MDS), curvilinear component analysis (CCA),
curvilinear distance analysis (CDA), Laplacian eigenmaps (LE), locally linear embed-
ding (LLE), Kohonen’s self-organizing map (SOM) and generative topographic map-
ping (GTM), cf. [18]. Of course, there are also many methods closely related to the
PCA with additional capabilities. One approach that can deal with non-linearities is
kernel PCA (KPCA) [21], although this method does not ultimately lead to a low-
dimensional embedding of the data. If the assumption of Gaussianity does not hold,
the Independent component analysis (ICA) [6] is useful. The probabilistic PCA [24]
and the sensible PCA [20] provide a latent variable model view on the PCA that
allows the use of the Expectation Maximization algorithm [8, 19] and supports vari-
ous extensions, e.g., mixture models [23]. Robustness towards outliers is achieved by
using an L1-norm maximization [17].

We base our work on the generative topographic mapping (GTM) [4], which ex-
plicitly constructs a non-linear mapping from the L-dimensional latent space [0, 1]L

into the D-dimensional data space RD. This method has many advantages. For exam-
ple, it allows to embed new data points that were not available when fitting the model.
Furthermore, it is possible to generate new data points or synthetic data similar to
the given data. Unfortunately, the discretization of the mapping by a full grid suffers
from an exponential dependence of the number of degrees of freedom on the latent
space dimension L. This effect is often referred to as the “curse of dimension” [2].
This limits the use of the GTM to dimensions L ≤ 3. Consequently, it is not suited
for a drastic initial dimensionality reduction (also called hard dimensionality reduc-
tion [18]) of high-dimensional data to a moderate amount of latent space dimensions,
e.g. L ≈ 6. While there are modifications of the original GTM with a semi-linear
approach [3] or sparse grids [12] which allow to treat somewhat higher latent space
dimensions, their practical use is still limited.

In this paper, we present a low-cost but yet partially non-linear approach that
relates to the Principal Component Analysis and the GTM. Our Principal Component
Generative Topographic Mapping (PCGTM) uses a generative model with a mapping
y : [0, 1]L → RD with the structure

(1.1) y(x) =

D∑
d=1

g(d)
(
x(m(d))

)
v(d) ,
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where m : {1, . . . , D} → {1, . . . , L} assigns the orthonormal vectors v(d) ∈ RD, d =
1, . . . , D, typically the principal components of the data, to the L latent space dimen-
sions. The not yet specified functions1 g(d) : [0, 1]→ R depend only on the latent vari-
ables x(m(d)) ∈ [0, 1] for d = 1, . . . , D, respectively, with x = (x(1), . . . , x(L)) ∈ [0, 1]L.
Our model (1.1) offers two advantages over the PCA: We do not have to assume
multivariate Gaussian distributions in the latent and in the data space, but can ac-
count for non-parametric distributions by our degrees of freedom g(d), d = 1, . . . , D.
Moreover, the PCA approximation has a 1:1 relationship of the L latent variables
with the first2 L principal components, where all v(d) with d = L+ 1, . . . , D are dis-
carded. This is optimal under the model assumption of Gaussian distributions, but,
for non-Gaussian distributions, linear decorrelation does not imply independence and
the principal components v(d) with d = L + 1, . . . , D can still depend non-linearly
on the first L ones. We can model these dependencies to some extent by letting the
same latent variable x(l) for l = 1, . . . , L control all principal components v(d) with
m(d) = l. In consequence, we assign all principal components to the latent variables
and do not need to truncate after L dimensions anymore. Of course, our model (1.1)
is still restrictive compared to a model where the principal components may depend
on more than one latent variable, but this limitation allows us to fit the model to given
data without a significant increase in computational costs compared to standard PCA
and furthermore prevents overfitting.

This paper is organized as follows: In Section 2, we describe our non-linear gen-
erative model, state a target functional for a desirable mapping between latent space
and data space and describe the necessary discretizations. In Section 3, we give
the computational steps necessary for the minimization of the target functional and
discuss the computational complexity involved. In Section 4, we consider various syn-
thetic and publicly available real-world datasets and show that the PCGTM mostly
surpasses the PCA with the same latent space dimension. Finally, in Section 5, we
give some concluding remarks.

2. The Principal Component GTM. In the following subsection, we intro-
duce the generative model of the new Principal Component GTM. Then, in Subsec-
tion 2.2, we describe the necessary discretization steps for its numerical treatment.
Note that the following presentation is a slight generalization of the original GTM [4]
that allows us to express several generative models in this framework.

2.1. Construction. Our aim is to represent aD-dimensional probability density
p(t) ≥ 0, t ∈ RD, in the data space by a density that is intrinsically low-dimensional.
To this end, our generative model relies on a general vector-valued function

(2.1) y : [0, 1]L → RD

with L � D that connects the L-dimensional latent space [0, 1]L and the data
space RD. The generated density is

(2.2) qy,β(t) =

(
β

2π

)D/2 ∫
[0,1]L

exp

(
−β

2
‖y(x)− t‖2

)
dx ,

1In the context of additive models and non-parametric regression of one-dimensional response
variables [10, 5], the g(d) are called smooth functions.

2We assume that the principal components v(d), d = 1, . . . , D, are sorted by their eigenvalues in
descending order.
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which is the image of a L-dimensional uniform distribution under the mapping y
with additional D-dimensional Gaussian noise with variance β−1, see Fig. 2.1 for an
illustration. It is easy to see that

∫
RD qy,β(t)dt = 1, i.e., qy,β is indeed a probability

density in the D-dimensional data space.

data spacemappinglatent space

y(x)

Fig. 2.1. The L-dimensional data space is mapped by y into the D-dimensional data space.
There, the model assumes multivariate Gaussian noise with variance β−1

The aim is now to choose a mapping y and an inverse variance β ∈ R+ such that
the dissimilarity between qy,β and p is minimized. To be precise, we want to minimize
the cross-entropy [16]

H(p, qy,β) := −
∫
RD

p(t) log qy,β(t)dt

= −
∫
RD

p(t) log

∫
[0,1]L

exp

(
−β

2
‖y(x)− t‖2

)
dxdt− D

2
log

β

2π
(2.3)

between the model density qy,β and the given data density p(t). However, in most
practical settings, no continuous data space density p(t) is available, and an empirical
density based on N data points or samples (tn)Nn=1 is given instead. Therefore, we
replace the continuous density p(t) by a sum of Dirac delta functions pemp

N (t) =
1
N

∑N
n=1 δtn(t). Then, the dt-integral in (2.3) is replaced by a sum, and we now have

to minimize

(2.4) HN (y, β) := − 1

N

N∑
n=1

log

∫
[0,1]L

exp

(
−β

2
‖y(x)− tn‖2

)
dx− D

2
log

β

2π

with respect to y and β.

Of course, the problem of minimizing (2.4) is not well-posed and we have to
require as a prior that y ∈ V , where the function set V ⊂ {f : [0, 1]L → RD} imposes
a certain structure or smoothness on the mapping y. For example, we could assume
that the components of y exhibit some Sobolev smoothness and that the sum of their
Hs([0, 1]L)-norms is bounded, i.e.
(2.5)

y ∈ VHs :=

{
f = (f (1), . . . , f (D))T : [0, 1]L → RD with

D∑
d=1

‖f (d)‖2Hs([0,1]L) < R

}
.

This would amount to adding a regularization term weighted by a regularization pa-
rameter λ to the functional (2.4). For an in-depth discussion of the relation between
regularization terms and associated function spaces, see [21]. Then, when discretiz-
ing y ∈ VHs by a typical tensor product type method, we suffer from the curse of



Non-linear dimensionality reduction with a principal component aligned GTM 5

dimensionality in terms of L. Similarly, the original GTM assumes a superposition of
Gaussians for the components of y, which means

y ∈ VGTM :=

{
f = (f (1), . . . , f (D))T : [0, 1]L → RD with

f (d)(x) =
∑
i

α
(d)
i exp

(
−‖zi − x‖2

2σ2

)
for d = 1, . . . , D

}

with coefficients (α
(d)
i )i and points (zi)i that are centered on a uniform grid structure.

This grid structure again introduces the curse of dimension. The standard PCA with L
principal components (v(l))Ll=1 emerges by the choice

(2.6) y ∈ VPCA :=

{
f(x) =

L∑
l=1

Φ−1(x(l))v(l) with v(l) ∈ RD, l = 1, . . . , L

}
,

where x = (x(1), . . . , x(L)) and Φ−1 : (0, 1) → R denotes the inverse cumulative
distribution function of the normal distribution. Indeed, observe that for (2.6) the
model (2.2) is the density of a D-variate Gaussian distribution N (0,VVT + β−1I),
where I ∈ RD×D is the identity matrix and V = [v(l)]Ll=1 ∈ RD×L. Since dimVPCA =
L ·D, there is no curse of dimension anymore, but the cost of this simplification is a
very rigid model.

In our Principal Component GTM, we assume that the number L of latent space
dimensions is fixed and that

(2.7) y(x) ∈ VPCGTM :=

{
f : [0, 1]L → RD with f(x) =

D∑
d=1

g(d)
(
x(m(d))

)
v(d)

}
,

where v(1), . . . ,v(D) are orthonormal vectors, typically the principal components of
the data covariance matrix, the functions g(d) : [0, 1] → R, d = 1, . . . , D, are our
degrees of freedom and

m : {1, . . . , D} → {1, . . . , L}

is a surjective function that assigns the D principal components of the data to the L
latent space dimensions.

We now describe how we build v(d), d = 1, . . . , D, and the mapping m from the
given data samples (tn)Nn=1. To this end, we assume that the samples are centered,
i.e.

1

N

N∑
n=1

tn = 0 ,

otherwise we have to demean them in the first place. Then, the sample covariance
matrix is given by

C :=
1

N − 1

N∑
n=1

tn · tTn =
1

N − 1
TTT ∈ RD×D ,
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where T ∈ RD×N is a matrix that contains the data points (tn)Nn=1 as columns. Now,
we decompose the positive semi-definite matrix C into

C = VDVT

with the orthogonal matrix V ∈ RD×D and the diagonal matrix

D = diag
(
λ(1), . . . , λ(D)

)
∈ RD×D .

The (non-negative) eigenvalues (λ(d))Dd=1 of C are assumed to be arranged in descend-
ing order. Then, we choose the v(d), d = 1, . . . , D, simply as the columns of V.

We now want to define a meaningful mapping m : {1, . . . , D} → {1, . . . , L} that
does a sensible matching of principal components to latent variables. To this end,
we look at the data in terms of projections onto the principal components, i.e., of

the sets S(d) :=
(〈

v(d), tn
〉)N
n=1

for all d = 1, . . . , D, where 〈·, ·〉 denotes the standard
Euclidean scalar product. Just like the PCA we form a 1:1 relationship for the first L
principal components and the latent variables by setting

m(d) = d for d = 1, . . . , L .

Now we want to match the remaining S(d), d = L + 1, . . . , D, with the latent space
variables. Note that by assigning S(d) to the latent variable x(m(d)), we are able to
model the dependencies of S(d) and S(m(d)) because they are then controlled by the
same latent variable. However, we cannot use linear correlations to determine which
S(d) and S(m(d)) belong together since they are all linearly decorrelated. This can be
seen from the fact that the S(d), d = 1, . . . , D, are the rows of VTT ∈ RD×N and
their sample covariance matrix

1

N − 1
VTTTTV = VTCV = D

is diagonal. However, we can still use non-linear measures of correlation like Spear-
man’s [22] rank correlation coefficient ρld or Kendall’s [15] tau correlation coeffi-
cient τld to measure the pairwise dependencies between the S(d), d = 1, . . . , D. Then,
we map every S(d) for d = L + 1, . . . , D to the latent variable x(m(d)) for which
the corresponding S(m(d)) has the highest measure of non-linear correlation to S(d).
Formally, this reads as

(2.8) m(d) =

{
d for 1 ≤ d ≤ L ,
arg max1≤l≤L |ρld| or arg max1≤l≤L |τld| else .

Thus, by forming groups of the S(d), d = 1, . . . , D, that share the same latent space
variable, we allow some of the non-linear features in the data to be captured by our
model. Of course, this model is heuristic, but we consider it the natural extension of
the PCA, and in our experiments it turned out to produce more accurate results than
other choices.

2.2. Discretization. We have already replaced the data space density by the
empirical distribution of the samples. Now, we need two further types of discretiza-
tion. One is the use of a quadrature rule for the [0, 1]L-integral in (2.4), the other
one is related to the approximation of the functions g(d) : [0, 1] → R, d = 1, . . . , D,
in (2.7).
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We start with the functions g(d) : [0, 1] → R, d = 1, . . . , D, and choose a linear
spline basis on [0, 1]. On level J , we have nJ = 2J + 1 hat functions

φJ,i(x) = max(1− 2J |x− zJ,i| , 0) ,

which are centered at equidistant points

zJ,i = 2−J(i− 1)

for i = 1, . . . , nJ . Then, for d = 1, . . . , D and given the coefficient vectors

ᾱ
(d)
J =

(
α

(d)
J,1, . . . , α

(d)
J,nJ

)T ∈ RnJ ,

we set

(2.9) g
(d)
J (x) :=

nJ∑
i=1

α
(d)
J,iφJ,i(x)

and
(2.10)

VPCGTM,J :=

{
f : [0, 1]L → RD with f(x) =

D∑
d=1

g
(d)
J

(
x(m(d))

)
v(d)

}
⊂ VPCGTM .

We have not yet specified how we treat the [0, 1]L-integral in (2.2) or (2.4) without suf-
fering from the curse of dimension. To this end, we can choose any tensorized quadra-
ture rule, and due to the special structure of our y ∈ VPCGTM or yJ ∈ VPCGTM,J ,
we only have to deal with the complexity of the one-dimensional quadrature rule as
we see in the following Section 3. Thus, at the moment, we just assume to have a
one-dimensional quadrature rule on level K with points (xK,i)

mK
i=1 and positive weights

(ωK,i)
mK
i=1 , i.e.,

(2.11) QKf =
∑
i∈χK

ωK,if(xK,i) ≈
∫ 1

0

f(x)dx

for χK := {1, . . . ,mK}. The L-dimensional case is then covered by

(2.12) QLKf =
∑
i∈χL

K

ωK,if(xK,i) ≈
∫

[0,1]L
f(x)dx

with

(2.13) ωK,i =

L∏
l=1

ωK,i(l) and xK,i =
(
xK,i(1) , . . . , xK,i(L)

)
for i =

(
i(1), . . . , i(L)

)
∈ χLK := ×Ll=1χK .

Instead of our target functional (2.4), we now switch to its discretized version for
numerical treatment. The objective then reads: Minimize
(2.14)

HN,K(yJ , β) := − 1

N

N∑
n=1

log
∑
i∈χL

K

ωK,i exp

(
−β

2

∥∥yJ(xK,i)− tn
∥∥2
)
− D

2
log

β

2π
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with respect to yJ ∈ VPCGTM,J and β.

In most numerical problems, the asymptotics of the discretization error is relevant.
However, as our data consists only of a finite amount of samples and is noisy in most
cases anyway, we content ourselves with discretization and quadrature levels that are
sufficient. This means that the discretization level J needs to be high enough so
that our model captures the features of the data, but not too high in order to avoid
overfitting.3 The level K of the quadrature rule (2.12) should be high enough such
that there is a sufficient number of quadrature points in the support of every basis
function φJ,i, i = 1, . . . , nJ . In our experiments we observed that K = J + 3 was
enough for a simple midpoint rule.

Remark. We could have started directly with a grid based latent space distribution
instead of starting with a uniform one and choosing a quadrature rule. However, in
that case we cannot describe the PCA in our setting, see (2.6), since the multivariate
Gaussian distribution has a continuous density.

In the following Section 3, we show how the minimization of (2.14) can be done
efficiently.

3. Minimization routine. We need to minimize the GTM functional HN,K
efficiently even though it is non-linear and non-convex in yJ and β. Typically, the
EM-algorithm [8] is used, which can also be regarded as the minimization of a free
energy functional, cf. [19]. First, we start with a simple definition.

Definition 3.1 (Posterior probabilities). First, we define the posterior probabil-
ities RK,yJ ,β : {tn}Nn=1 × {xK,i}i∈χL

K
→ R≥0 by

(3.1) RK,yJ ,β(tn,xK,i) :=
exp

(
−β2 ‖yJ(xK,i)− tn‖2

)
∑

j∈χL
K
ωK,j exp

(
−β2 ‖yJ(xK,j)− tn‖2

)
for all n = 1, . . . , N . Then, the following Lemma shows that, using (3.1), we can
rearrange (2.14) to the free energy form.

Lemma 3.2. It holds that

HN,K(yJ , β) =
1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i) logRK,yJ ,β(tn,xK,i)(3.2)

+
β

2N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i)‖yJ(xK,i)− tn‖2(3.3)

− D

2
log

β

2π
.

3This is in fact regularization by discretization and poses an alternative to employing a regular-
ization term.
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Proof. The proof consists of a straightforward calculation. We first plug the
definition of (3.1) into the term logRK,yJ ,β of the right-hand side of (3.2) and obtain

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i) logRK,yJ ,β(tn,xK,i)

= − β

2N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i)‖yJ(xK,i)− tn‖2

− 1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i)

︸ ︷︷ ︸
=1

log
∑
j∈χL

K

ωK,j exp
(
− β

2
‖yJ(xK,j)− tn‖2

)
.

The last line corresponds to HN,K(yJ , β) + D
2 log β

2π , see (2.14). The Lemma is then
proven after a simple rearrangement.

Obviously, (2.14) is a non-linear functional and hard to minimize and the same
holds for the free energy form (3.2) and (3.3). Fortunately, we can introduce a third
parameter ψK that results in the closely related functional

GN,K(ψK ,yJ , β) :=
1

N

N∑
n=1

∑
i∈χL

K

ωK,iψK(tn,xK,i) logψK(tn,xK,i)(3.4)

+
β

2N

N∑
n=1

∑
i∈χL

K

ωK,iψK(tn,xK,i)‖yJ(xK,i)− tn‖2(3.5)

− D

2
log

β

2π
,

where ψK : {tn}Nn=1 × {xK,i}i∈χL
K
→ R≥0 is any function with

(3.6)
∑
i∈χL

K

ωK,iψK(tn,xK,i) = 1

for all n = 1, . . . , N . Obviously,

(3.7) GN,K(RK,yJ ,β ,yJ , β) = HN,K(yJ , β)

holds. We now minimize GN,K by successively optimizing with respect to its single
parameters ψK , yJ and β. We see in the following subsections that this is superior
to the direct minimization of (2.14), as the resulting subproblems are uniquely and
efficiently solvable even though the minimization problem for HN,K is not. Moreover,
it will be shown in Lemma 3.3 that the posterior probabilities RK,y,β minimize GN,K
with respect to ψK , i.e., we have

(3.8) arg minψK
GN,K(ψK ,yJ , β) = RK,yJ ,β .

This is analogous to statistical physics where the Boltzmann distribution minimizes
the free energy. In combination with (3.7), this step can be understood as a projection
back to the permissible search space since

GN,K(arg minψK
GN,K(ψK ,yJ , β),yJ , β) = GN,K(RK,yJ ,β ,yJ , β) = HN,K(yJ , β) .
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Altogether, the minimization steps with respect to the three parameters of GN,K
have to be carried out in an outer iteration until convergence into a local minimum
is achieved. In the next subsections, we give an in-depth description of the necessary
computational steps and show that the computational complexity does not depend in
an exponential way on the latent space dimension L. In order not to confuse the reader
with another index carrying the iteration count, we just add old- and new-superscripts
where necessary.

3.1. Minimization with respect to the first parameter ψK . Minimizing
with respect to ψK is equivalent to the E-Step of the Expectation Maximization
algorithm. The following Lemma shows that there exists a closed form solution.

Lemma 3.3. It holds that

arg min
ψK

GN,K(ψK ,yJ , β) = RK,yJ ,β .

Proof. Considering the structure of GN,K , see (3.4) and (3.5), it can be seen that
the problem of finding the optimal ψK decouples into N independent problems of
finding the optimal functions

ψK(tn, ·) : {xK,i}i∈χL
K
→ R≥0

for n = 1, . . . , N . Assuming that we are at a critical point, the derivative of GN,K
needs to be orthogonal to the constraint surface (3.6), i.e., it needs to be collinear
with (ωK,i)i∈χL

K
. This means that for all n = 1, . . . , N a constant cn exists such that

cnωK,i
!
=

∂

∂ψK(tn,xK,i)
GN,K(ψK ,yJ , β)

=
1

N
ωK,i +

1

N
ωK,i logψK(tn,xK,i) +

β

2N
ωK,i‖yJ(xK,i)− tn‖2

for all i ∈ χLK and thus

ψK(tn,xK,i) = exp (Ncn − 1) exp

(
−β

2
‖yJ(xK,i)− tn‖2

)
.

The constraint (3.6) implies that exp (Ncn − 1) is equal to the denominator of (3.1).
Now that we know how the E-step looks like, we would like to find an efficient

way to compute it. The following Lemma shows that this can be done by solving only
one-dimensional subproblems.

Lemma 3.4. For n = 1, . . . , N , it holds that

(3.9) RK,yJ ,β(tn,xK,i) =

L∏
l=1

R
(l)
K,yJ ,β

(
tn, xK,i(l)

)
for i =

(
i(1), . . . , i(L)

)
∈ χLK with

R
(l)
K,yJ ,β

(
tn, xK,i

)
=

∏
d∈m−1(l) exp

(
−β2 g

(d)
J (xK,i)

2 + β
〈
v(d), tn

〉
g

(d)
J (xK,i)

)
∑
j∈χK

ωK,j
∏
d∈m−1(l) exp

(
−β2 g

(d)
J (xK,j)2 + β

〈
v(d), tn

〉
g

(d)
J (xK,j)

)
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for i = 1, . . . ,mK , l = 1, . . . , L and

m−1(l) := {d ∈ {1, . . . , D} : m(d) = l} .

Proof. First, we look at the numerator of RK,yJ ,β , see (3.1), and rearrange it to

exp
(
− β

2
‖yJ(xK,i)− tn‖2

)
= exp

(
− β

2

∥∥∥ D∑
d=1

g
(d)
J

(
xK,i(m(d))

)
v(d) − tn

∥∥∥2)
= exp

(
− β

2
〈tn, tn〉

)
· exp

(
β

D∑
d=1

g
(d)
J

(
xK,i(m(d))

)〈
v(d), tn

〉)
· exp

(
− β

2

D∑
d=1

D∑
d′=1

g
(d)
J

(
xK,i(m(d))

)
g

(d′)
J

(
xK,i(m(d′))

)〈
v(d),v(d′)

〉)
.(3.10)

The orthonormality property of the
(
v(d)

)D
d=1

removes any terms with d 6= d′ in (3.10).

The term exp
(
− β

2 〈tn, tn〉
)

appears in the nominator and denominator of (3.1), so
it cancels out. Thus, we obtain

RK,yJ ,β(tn,xK,i)

=
exp

(
− β

2

∑D
d=1 g

(d)
J

(
xK,i(m(d))

)2
+ β

∑D
d=1 g

(d)
J

(
xK,i(m(d))

)〈
v(d), tn

〉)
∑

j∈χL
K
ωK,j exp

(
− β

2

∑D
d=1 g

(d)
J

(
xK,j(m(d))

)2
+ β

∑D
d=1 g

(d)
J

(
xK,j(m(d))

)〈
v(d), tn

〉)
=

∏D
d=1 exp

(
− β

2 g
(d)
J

(
xK,i(m(d))

)2
+ βg

(d)
J

(
xK,i(m(d))

)〈
v(d), tn

〉)
∑

j∈χL
K
ωK,j

∏D
d=1 exp

(
− β

2 g
(d)
J

(
xK,j(m(d))

)2
+ βg

(d)
J

(
xK,j(m(d))

)〈
v(d), tn

〉)
=

L∏
l=1

∏
d∈m−1(l) exp

(
− β

2 g
(d)
J

(
xK,i(m(d))

)2
+ βg

(d)
J

(
xK,i(m(d))

)〈
v(d), tn

〉)
∑
j∈χK

ωK,j
∏
d∈m−1(l) exp

(
− β

2 g
(d)
J (xK,j)2 + βg

(d)
J (xK,j)

〈
v(d), tn

〉) .
In the last line, we separated the D factors of

∏D
d=1 ... into L groups (m−1(l))Ll=1 and

exploited the tensor product structure (2.13) of the quadrature rule.
Lemma 3.4 states that the minimum in the first parameter of GN,K can be com-

puted and stored by precomputing only the one-dimensional functions R
(l)
K,yJ ,β

, l =
1, . . . , L, from (3.9) for every xK,i, i ∈ χK , and every tn, n = 1, . . . , N . In total, the
amount of storage is O(L ·N ·mK) and the cost of precomputation is O(D ·N ·mK).

Note that analogously to

(3.11)
∑
i∈χL

K

ωK,iRK,yJ ,β(tn,xK,i) = 1

it also holds that

(3.12)
∑
i∈χK

ωK,iR
(l)
K,yJ ,β

(tn, xK,i) = 1

for all l = 1, . . . , L and n = 1, . . . , N .
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3.2. Minimization with respect to the second parameter yJ . To minimize
GN,K with respect to yJ , we need to solve the quadratic regression type problem

ynew
J = arg min

yJ∈VPCGTM,J

GN,K(RK,yold
J ,β ,yJ , β)

= arg min
yJ∈VPCGTM,J

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)‖yJ(xK,i)− tn‖2 .(3.13)

In order to compute (3.13) for given β and RK,yold
J ,β , we have to use the representa-

tions (2.9) and (2.10) for yJ ∈ VPCGTM,J . Then, the problem reads
(3.14)

arg min(
ᾱ

(d)
J

)D
d=1

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)

∥∥∥ D∑
d=1

nJ∑
j=1

α
(d)
J,jφj

(
xK,i(m(d))

)
v(d)−tn

∥∥∥2

,

which can be tackled efficiently as shown by the following Lemma.
Lemma 3.5. The problem (3.14) results in D decoupled systems of linear equa-

tions

(3.15) A(d)ᾱ
(d)
J = b(d)

for d = 1, . . . , D with ᾱ
(d)
J =

(
α

(d)
J,1, . . . , α

(d)
J,nJ

)T ∈ RnJ , A(d) ∈ RnJ×nJ with

(A(d))jk =
∑
i∈χK

ωK,i

( 1

N

N∑
n=1

R
(m(d))

K,yold
J ,β

(tn, xK,i)
)
φj(xK,i)φk(xK,i)

for j, k = 1, . . . , nJ , and bd ∈ RnJ with

(b(d))k =
∑
i∈χK

ωK,i

( 1

N

N∑
n=1

R
(m(d))

K,yold
J ,β

(tn, xK,i)
〈
v(d), tn

〉)
φk(xK,i)

for k = 1, . . . , nJ .
Proof. A critical point of (3.14) satisfies

∂

∂α
(d)
J,k

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)

·
∥∥∥ D∑
d′=1

nJ∑
j=1

α
(d′)
J,j φj

(
xK,i(m(d′))

)
v(d′) − tn

∥∥∥2 !
= 0

⇔ ∂

∂α
(d)
J,k

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i) ·

( D∑
d′=1

( nJ∑
j=1

α
(d′)
J,j φj

(
xK,i(m(d′))

))2

(3.16)

− 2

D∑
d′=1

nJ∑
j=1

α
(d′)
J,j φj

(
xK,i(m(d′))

)〈
v(d′), tn

〉
+ ‖tn‖2

)
= 0(3.17)

for d = 1, . . . , D and k = 1, . . . , nJ , where we have again used the orthonormality

property of the
(
v(d)

)D
d=1

in (3.16) and (3.17). Then, carrying out the differentiation
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yields

1

N

N∑
n=1

∑
i∈χL

K

ωK,iRyold
J ,β(tn,xK,i)

(
2

nJ∑
j=1

α
(d)
J,jφj

(
xK,i(m(d))

)
φk
(
xK,i(m(d))

)
− 2φk

(
xK,i(m(d))

)〈
v(d), tn

〉)
= 0

⇔
nJ∑
j=1

(
1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β

(
tn,xK,i

)
· φj
(
xK,i(m(d))

)
φk
(
xK,i(m(d))

))
α

(d)
J,j

=
1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)φk

(
xK,i(m(d))

)〈
v(d), tn

〉
.

As there appear no α
(d′)
J,j with d′ 6= d, we can obviously determine all ᾱ

(d)
J , d = 1, . . . , D,

by solving the separate systems (3.15) of linear equations with nJ unknowns, where

(A(d))kj =
1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)φj

(
xK,i(m(d))

)
φk
(
xK,i(m(d))

)

=
1

N

N∑
n=1

∑
i∈χL

K

( L∏
l=1

ωK,i(l)R
(l)

K,yold
J ,β

(
tn, xK,i(l)

))
φj
(
xK,i(m(d))

)
φk
(
xK,i(m(d))

)
(3.18)

=
1

N

N∑
n=1

∑
i∈χK

ωK,iR
(m(d))

K,yold
J ,β

(tn, xK,i)φj(xK,i)φk(xK,i)(3.19)

for k, j = 1, . . . , nJ and

(b(d))k =
1

N

N∑
n=1

∑
i∈χL

K

ωK,iRK,yold
J ,β(tn,xK,i)φk

(
xK,i(m(d))

)〈
v(d), tn

〉

=
1

N

N∑
n=1

∑
i∈χL

K

( L∏
l=1

ωK,i(l)R
(l)

K,yold
J ,β

(
tn, xK,i(l)

))
φk
(
xK,i(m(d))

)〈
v(d), tn

〉
(3.20)

=
1

N

N∑
n=1

∑
i∈χK

ωK,iR
(m(d))

K,yold
J ,β

(
tn, xK,i

)
φk(xK,i)

〈
v(d), tn

〉
(3.21)

for k = 1, . . . , nJ . In (3.18) and (3.20), we have used the tensor product structure of
the quadrature rule (2.13) and the separability of posterior probabilities (3.9). Then,
in (3.19) and (3.21), we have used (3.12) for all dimensions l 6= m(d).

The set up of the systems (3.15) can easily be done with computational costs of no
more than O(D ·N ·mk) floating point operations. As the matrices A(d), d = 1, . . . , D,
are tridiagonal for linear splines, the solution of the systems (3.15) is possible with a
complexity of O(D · nJ) floating point operations.

3.3. Minimization with respect to the β-parameter. The minimization
with respect to β is simple. We are given yJ and RyJ ,βold , and we want to determine
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an optimal βnew, i.e.,

∂

∂β
GN,K(RK,yJ ,βold ,yJ , β

new)
!
= 0

⇔(βnew)−1 =
1

DN

N∑
n=1

∑
i∈χL

K

ωK,iRK,yJ ,βold(tn,xK,i)‖yJ(xK,i)− tn‖2 .(3.22)

The computation of the right-hand side of (3.22) can be done efficiently using the
separated representation of the posterior probabilities (3.9) as the following Lemma
shows.

Lemma 3.6. It holds that

(βnew)−1 =
1

DN

N∑
n=1

D∑
d=1

∑
i∈χK

ωK,iR
(m(d))

K,yJ ,βold(tn, xK,i)(3.23)

·
(
g

(d)
J (xK,i)

2 − 2g
(d)
J (xK,i)

〈
v(d), tn

〉)
+

1

DN

N∑
n=1

〈tn, tn〉 .

Proof. By plugging (2.13) and (3.9) into (3.22), we obtain

(βnew)−1 =
1

DN

N∑
n=1

∑
i∈χL

K

( L∏
l=1

ωK,i(l)R
(l)

K,yJ ,βold

(
tn, xK,i(l)

))

·
〈 D∑
d=1

g
(d)
J

(
xK,i(m(d))

)
v(d) − tn,

D∑
d=1

g
(d)
J

(
xK,i(m(d))

)
v(d) − tn

〉
.

We use the orthogonality property of the
(
v(d)

)D
d=1

and (3.11) to arrive at

(βnew)−1 =
1

DN

N∑
n=1

∑
i∈χL

K

(
L∏
l=1

ωK,i(l)R
(l)

K,yJ ,βold

(
tn, xi(l)

))(3.24)

·
(

D∑
d=1

g
(d)
J (xi(m(d)))2 − 2

D∑
d=1

g
(d)
J (xi(m(d)))

〈
v(d), tn

〉)
+

1

DN

N∑
n=1

〈tn, tn〉

A reordering of the summations
∑D
d=1 . . . and

∑
i∈χL

K
. . . , and the application of

(3.12) for any l 6= m(d) to (3.24) results in

(βnew)−1 =
1

DN

N∑
n=1

D∑
d=1

∑
i∈χK

ωK,iR
(m(d))

K,yJ ,βold(tn, xK,i)(3.25)

·
(
g

(d)
J (xK,i)

2 − 2g
(d)
J (xK,i)

〈
v(d), tn

〉)
+

1

DN

N∑
n=1

〈tn, tn〉 .

Note that in this step all dimensions interact, so our model does not decompose
into independent problems. The optimization in βnew results in computational costs
of O(D ·N ·mK) floating point operations.
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3.4. Complexity discussion. We now discuss the total computational cost of
the PCGTM method. The initialization step requires the set up of the sample covari-
ance matrix, which has computational costs of O(N · D2) floating point operations.
We assume that the cost of computing non-linear correlation coefficients for deter-
mining the mapping m : {1, . . . , D} → {1, . . . , L} is essentially the same, e.g., up to a

log-term in N . The computation of the principal component vectors
(
v(d)

)D
d=1

needs

O(D3) floating point operations.
Then, the minimization of GN,K has to be carried out. In the Subsections 3.1, 3.2

and 3.3 we have described how the minimization steps of GN,K can be implemented
where none of them costs more than O(D · N · mK) operations. Of course, the
minimization steps have to be repeated multiple times, so for #it iterations we arrive
at total costs of

O(N ·D2 +D3 + #it ·D ·N ·mK) .

In our experiments, #it showed to be never larger than 50. It is noteworthy that our
method is only polynomial in the data space dimension and essentially linear in the
number of data points. Moreover, the cost of the L-dimensional quadrature rule (2.12)
appears only with the cost O(mK) of the one-dimensional rule (2.11), and, thus, there
is no curse of dimension involved.

4. Numerical experiments. In this section, we demonstrate the abilities of
the PCGTM in terms of data reconstruction and classification. We first use three-
dimensional synthetic datasets and then consider high-dimensional real-world data.

The average reconstruction error of the PCGTM is given by

(4.1)
1

N

N∑
n=1

∥∥yJ(EK,yJ ,βtn
)
− tn

∥∥ ,
where EK,yJ ,β : RD → [0, 1]L is an embedding with

EK,yJ ,β : t 7→ xK,i with i = arg max
j∈χL

K

RK,yJ ,β(t,xK,j) .

In order to rule out that our model suffers from overfitting, we split our data in train-
ing and test data and evaluate the reconstruction errors separately. We compare (4.1)
to the average reconstruction error of the PCA. To this end, we do not use the prob-
abilistic PCA [24], but a simple diagonalization of the sample covariance matrix C.
Recall from Section 2 that

C = VDVT .

We choose the rectangular matrix IL ∈ RD×L with (I)dl = δdl for d = 1, . . . , D and
l = 1, . . . , L. Then, the projection of t ∈ RD onto the first L eigenvectors is

ITLVT t ∈ RL ,

and the mean reconstruction error of the PCA is given by

1

N

N∑
n=1

∥∥VILITLVT tn − tn
∥∥ .
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For quadrature, we always choose K = J + 3 and a simple midpoint rule. This
ensures a fixed amount of quadrature points in the support of every basis function. We

initialize the PCGTM mapping yJ by linear functions g
(d)
J , d = 1, . . . , D, such that the

initial PCGTM model, i.e., before carrying out any minimization of GN,K , resembles
approximately the PCA model. We denote the initial value of β by β0 and choose
here some value which has the same magnitude as the number that minimizes GN,K .

4.1. Synthetic datasets. In this subsection, we deal with one- and two-dimen-
sional structures in the three-dimensional space which are frequently used as test cases
in the literature, cf. [18].

4.1.1. Helix. We randomly generate 5000 points on a helix-structure, distort
them with isotropic Gaussian noise and split them in Ntrain = 3316 training data
points and Ntest = 1684 test data points. We fix the PCGTM parameters J = 5
and β0 = 5. The matching of principal components to latent space dimensions is
done according to (2.8) with Spearman’s rank correlation coefficient. This results in
m(d) = 1 for d = 1, 2, 3 in the case L = 1 and m(1) = 1,m(2) = 2,m(3) = 1 in
the case L = 2. Of course, L = 1 is the correct choice and the overestimation of the
embedding dimension with L = 2 leads to an unnecessarily complex model.

In Fig. 4.1, we show the structure of the PCGTM models after 50 iterations on
the training data for L = 1 and L = 2. A comparison of the reconstruction error of the
PCGTM and the PCA for the training data and the test data is given in Fig. 4.2. We
observe that the PCGTM model has a significantly lower reconstruction error than the
PCA with the same latent space dimension. Of course, the PCA error is reduced by
adding a second latent space dimension, whereas the PCGTM model reconstruction
error stays roughly the same due to the fact the helix structure has already been
learned for L = 1. The stability of the errors on training and test data indicates that
there is no overfitting.

0
1

0
1

−5

0

5

t1
t2

t 3

data PCGTM

−1 0
1 −1

0
1

−5

0

5

t1
t2

t 3

data PCGTM

Fig. 4.1. The helix structure (number of points reduced for visualization only) and the image
of [0, 1]L under the PCGTM mapping yJ for L = 1 (left) and L = 2 (right)

4.1.2. Swiss roll. We repeat the above experiment with the two-dimensional
Swiss roll structure in the three-dimensional space. The parameters are J = 4 and
β0 = 1. Figure 4.3 shows the PCGTM models for L = 1 and L = 2 after 50 iterations.
We observe that L = 1 leads to a rather poor model, whereas the PCGTM model
with L = 2 is able to almost correctly learn the two-dimensional structure of the
Swiss roll. Accordingly, the reconstruction error is considerably reduced by using a
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Fig. 4.2. The average reconstruction error for the helix training and test dataset with the one-
and two-dimensional PCA and PCGTM models

PCGTM model with L = 2, see Fig. 4.4, whereas the reconstruction error of the PCA
is still much larger. This reflects the fact that the non-linear structure of the Swiss
roll cannot be recovered well using a purely linear approach.
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Fig. 4.3. The Swiss roll (number of data points reduced for visualization only) and the image
of [0, 1]L under the PCGTM mapping yJ for L = 1 (left) and L = 2 (right)

4.2. Reconstruction error on real datasets. In this subsection, we consider
real-world datasets. For L = 1, 2, 3 we complement our results with the reconstruction
errors of the original GTM [4] with a linear spline tensor product basis. When possible,
the parameters employed for the GTM are the same as for the PCGTM.

4.2.1. Wine quality dataset. We first analyze the wine quality dataset [7]
available at the UCI Machine Learning Repository [1]. In particular, we look at
the white wines with 4898 instances and 11 physicochemical inputs. There is one
sensory output variable, the wine quality, which we simply append to the inputs and
regard this data as 12-dimensional. We split the data randomly in Ntrain = 3243
and Ntest = 1655 test data points and choose the PCGTM parameters J = 8 and
β0 = 0.05. The mappings m are determined for all L = 1, . . . , 6 according to (2.8).
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Fig. 4.4. The average reconstruction error for the Swiss roll training and test dataset with the
one- and two-dimensional PCA and PCGTM models

For example, for L = 6 this leads to

m(d) =

 1 for d = 1 4 for d = 4 4 for d = 7 6 for d = 10
2 for d = 2 5 for d = 5 3 for d = 8 4 for d = 11
3 for d = 3 6 for d = 6 2 for d = 9 3 for d = 12 .

We use 15 iterations for the minimization of GN,K to determine a good yJ and β.
As in the previous experiments, we measure the reconstruction error of the data

after the embedding and subsequent application of yJ to the data. The results for
the training and test data can be seen in Fig. 4.5.

We see that the reconstruction error of the original GTM and the PCGTM is
roughly the same for L = 1, which is what we would expect, as both methods offer
essentially the same flexibility. Due to memory constraints, we have to reduce the
discretization level of the original GTM for L = 2 and L = 3 to J = 6 and J =
4, respectively, which leads to deteriorating classification results compared to the
PCGTM even though the number of degrees of freedom of the original GTM is larger
by more than a factor of 10.

Again, we observe that the PCGTM offers a significant reduction of the recon-
struction error compared to the PCA. Note however that, for L = 6, the PCA error is
smaller. This is due to the fact that it goes analytically to zero for L → D, whereas
the PCGTM model is affected by discretization errors and possibly a local minimum.
We do not consider this to be a problem since here the latent space dimension is so
high, i.e., L = D/2, that already the reconstruction error of a purely linear method is
negligible. In the next experiment, we see that the number of latent space dimensions
for which the PCGTM outperforms the PCA grows with the dimensionality of the
data.

4.2.2. Libras hand movement dataset. We now analyze the Libras hand
movement dataset [9] which is also available at the UCI Machine Learning Reposi-
tory [1]. It consists of 15 classes with 24 instances, i.e., 360 data points in total. Every
data point has 91 attributes and describes one hand movement in LIBRAS, which is
the official Brazilian sign language. We do not perform a classification but, similar
to the wine data, compare the reconstruction errors. In the experimental setting, we
split the data in Ntrain = 251 training data and Ntest = 109 test data points. As
PCGTM parameters we choose J = 6 and β0 = 35 for the latent space dimensions
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Fig. 4.5. The average reconstruction error for the wine quality training and test dataset with
the original GTM for L = 1, 2, 3 and the PCA and PCGTM models for L = 1, . . . , 6

L = 1, . . . , 10. After 5 iterations, we measure the reconstruction error.
Figure 4.6 reveals a moderate amount of overfitting for the PCGTM, since the

test data reconstruction errors are slightly larger than the corresponding errors on
the training data. Furthermore, we observe that the PCGTM model has a lower error
than the PCA at least up to latent dimension L = 10. For complexity reasons, the
discretization level of the original GTM needs to be reduced to J = 4 for L = 3.
For L = 2 and L = 3 we employ a H1-seminorm regularization with λ = 0.2 and
λ = 1.0, respectively, to reduce the amount of overfitting. Still, the larger number of
degrees of freedoms leads to lower reconstruction errors on the training data than for
the PCGTM, but on the test data the results are slightly worse.

In conclusion this experiment shows that the restrictive PCGTM still captures
relevant features of the data and is also superior to the PCA in terms of the recon-
struction error in cases that cannot be treated with the original GTM anymore.

4.3. Classification: Connectionist bench. In this subsection we finally use
the PCGTM for classification. We can easily turn our unobserved learning method
into an observed one by reconstructing missing values. We achieve this by appending
a class variable cn ∈ {−1, 1} to the data points by

(4.2) t′n :=
(
t(1)
n , . . . , t(D)

n , cn

)T
for n = 1, . . . , N .

We first use the PCGTM to fit the mapping yJ and the inverse variance β to these
points. Then, we can classify previously unknown data points with help of the density
qyJ ,β , see (2.2), by

c(t) :=

{
1 if qy,β((t(1), . . . , t(D), 1)T ) ≥ qy,β((t(1), . . . , t(D),−1)T ) ,

−1 else .
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Fig. 4.6. The average reconstruction error of the Libras training and test dataset with the
original GTM for L = 1, 2, 3 and the PCA and PCGTM models for L = 1, . . . , 10

We apply this technique to the ‘Connectionist Bench (Sonar, Mines vs. Rocks)’,
a real-world dataset from the UCI Machine Learning Repository [1]. It consists of
208 measurements with 60 dimensions and two class labels {−1, 1}. The classes are
roughly equally distributed, i.e., 97 data points have class 1 and 111 data points have
class −1.

In [11], this data was randomly partitioned in 13 blocks with 16 data points each,
which were then used to create test cases with one block serving as test data and
the remaining 12 blocks as training data. In the original paper, the best neuronal
networks achieved an average classification rate of 84.7%.

In order to reduce the influence of the way we split the data in training and
test data, we independently generate 50 random test cases with Ntrain = 192 and
Ntest = 16. Then, we set β0 = 5 and J = 5 and perform a classical cross-validation to
determine the optimal amount of iteration steps S = 1, 2, 3 and the correct number of
latent space dimensions L = 1, . . . , 10 for our PCGTM model. We have to exclude 4 of
the 30 cross-validation runs for which overfitting results in indefinite systems in (3.15).
The remaining 26 runs achieve on average a 77.6% correctness rate on the training data
and a 71.2% correctness rate on the test data with a linear correlation coefficient of
ρ = 0.94. This demonstrates that a good result on the training data is an indicator for
a good result on the test data. Indeed, the two highest results on the training data were
88.9% (σ = 9.2) and 87.4% (σ = 8.5) for L = 1, S = 3 and L = 2, S = 3, respectively,
and their results on the test data were 78.4% and 82.3%, respectively. These results
are roughly comparable to the performance of the best neuronal networks in the
original paper [11].

5. Conclusion. We presented the PCGTM which can be used for dimensionality
reduction and classification of high-dimensional data. The model is fairly comprehen-
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sible and easy to compute, i.e., it can be implemented with costs that are polynomial
in the data space dimension D and linear in N . However, it is still able to capture
some non-linearities and leads to substantially smaller reconstruction errors than the
PCA. In summary, we advocate the PCGTM instead of the PCA as a preprocessing
step for latent space dimensions L > 3, where grid based methods like the original
GTM suffer from the curse of dimensionality. For further experiments and results,
cf. [14].
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