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STABLE SPLITTING OF POLYHARMONIC OPERATORS BY

GENERALIZED STOKES SYSTEMS

DIETMAR GALLISTL

Abstract. A stable splitting of 2m-th order elliptic partial differential equa-
tions into 2(m− 1) problems of Poisson type and one generalized Stokes prob-

lem is established for any space dimension d ≥ 2 and any integer m ≥ 1.
This allows a numerical approximation with standard finite elements that are
suited for the Poisson equation and the Stokes system, respectively. For some
fourth- and sixth-order problems in two and three space dimensions, precise

finite element formulations along with a priori error estimates and numerical
experiments are presented.

1. Introduction

Let Ω ⊆ R
d be an open, simply-connected and bounded polytope with Lipschitz

boundary. This article deals with the numerical approximation of the solutions
to partial differential equations (PDEs) of polyharmonic type involving the m-th
power ∆m of the Laplace operator ∆ as highest derivative for an integerm ≥ 1. The
exact solution is customarily sought in an m-th order Sobolev space, for instance
Hm

0 (Ω). A model problem is to seek, for a given f ∈ L2(Ω), a function u ∈ Hm
0 (Ω)

such that

(1) (−1)m∆mu = f in H−m(Ω).

The numerical approximation of (1) with conforming finite elements, requires the
trial functions to belong to the Sobolev space Hm

0 (Ω). This means that the finite el-
ement functions must satisfy Cm−1 continuity across the inter-element boundaries.
One prominent instance of (1) is the biharmonic equation ∆2u = f for m = 2.
Even in this case and for two space-dimensions, the design and implementation of
conforming finite elements [13] is a difficult task and there have been many differ-
ent attempts to circumvent the use of conforming methods, such as nonconforming
finite elements [13, 21] or discontinuous Galerkin methods [3, 15, 9]. For the case
m ≥ 3, besides the conforming finite elements of [29], the following approaches have
been suggested: the C0 interior penalty method of [19] for m = 3, the nonconform-
ing finite element method of [28] for arbitrary m with the restriction that m ≥ d,
and the mixed formulation based on Helmholtz-type decompositions [24, 25, 26] for
the m-th Laplace operator with arbitrary m.

The method suggested in this work is based on a mixed system. The idea of
mixed methods is to reduce a higher-order differential equation to a system of lower-
order equations. It is, however, difficult to find stable mixed methods for m ≥ 2:
care has to be taken that the stability of the mixed formulation is independent of
the regularity of the solution, see also the discussion in [7, §10.1.1]. In particular,
some mixed methods for the biharmonic equation may be divergent in the presence
of singularities, e.g., for simply-supported plates. This is related to the fact that
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2 D. GALLISTL

the stability of those splittings requires additional regularity on the solution of the
PDE. It is therefore desirable that the mixed formulation is stable, independent of
regularity assumptions on the solution. This is the case for the splitting proposed
in this paper. For the simplest case, the biharmonic equation, this formulation
resembles the splitting of [11] for the Reissner-Mindlin model of moderately thick
elastic plates, where a singularly perturbed version of a fourth-order problem is
reduced to two Poisson equations and a Stokes system. The formulation shows in
particular that the biharmonic equation in planar domains can be approximated
with any stable finite element for the Stokes equations. It turns out that such an
idea can be generalized to any order of differentiability m ≥ 1 and any space dimen-
sion d ≥ 2 leading to a generalized polyharmonic Stokes equation. The resulting
splitting is natural in that it is derived from the principles of exterior calculus and
symmetric tensors. In particular, high-order partial differential equations like (1)
can be numerically approximated with standard, even low-order (independent of
m), finite elements for the Poisson and the classical Stokes problem. The method is
presented for data f ∈ L2(Ω), but the theory is also valid for the weaker assumption
f ∈ H−1(Ω). In order to keep the formalism to a minimum, the analysis is carried
out for the splitting of the model problem (1). The application to more general
elliptic systems is, however, possible; an outline is given in Subsection 4.5.

The remaining parts of this article are organized as follows. Section 2 introduces
the notation on tensors and their differential operators and proves a result on the
existence of generalized scalar potentials. In Section 3, the new split of high-order
PDEs is presented. It relies on the study of the polyharmonic Stokes problem with
symmetry constraint. Sections 4–5 present applications for the case for m = 2 and
m = 3 in two and three space dimensions along with finite element formulations
and a priori error estimates. Numerical computations are presented in Section 6.
The remarks from Section 7 conclude the paper.

Standard notation on Lebesgue and Sobolev spaces applies throughout this arti-
cle. A detailed description of differential operators in tensor-valued Sobolev spaces
is given in Section 2. An inequality A ≤ CB for some generic mesh-size indepen-
dent constant C is denoted by A . B while A ≈ B abbreviates A . B . A.
Throughout this paper, m refers to the order of differentiability, n denotes the de-
gree of a tensor, and d is the space dimension. The integration with respect to the
d-dimensional Lebesgue measure is indicated by the symbol dx whereas ds denotes
integration with respect to the (d− 1)-dimensional Hausdorff measure; the integral
mean is denoted by

ffl

. If not specified otherwise, Ω ⊆ R
d is a bounded, open,

simply-connected Lipschitz polytope with outer unit normal ν. For a matrix A
with transpose A∗, the symmetric and the skew-symmetric part are denoted by

symA :=
1

2
(A+A∗) and skwA :=

1

2
(A−A∗).

The trace of A is denoted by trA.

2. Differential operators for tensor fields

This section introduces the notation for tensor fields and states a result on gen-
eralized scalar potentials.

2.1. Notation. Let d ≥ 2. For any nonnegative integer n ∈ N0, the set of n-tensors
over Rd is defined as

Md(n) := (Rd)n = R
d × · · · × R

d

︸ ︷︷ ︸

n times

with the convention (Rd)0 := R.
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In particular, Md(0) = R, Md(1) = R
d, Md(2) = R

d×d. Let S(n) denote the
symmetric group of degree n. An element τ ∈ Md(n) is referred to as symmetric,
if any (j1, . . . , jn) ∈ {1, . . . , d}n and any σ ∈ S(n) satisfy

τj1,...,jn = τσ(j1,...,jn).

This defines the space Sd(n) of symmetric n-tensors over Rd, namely

Sd(n) := {τ ∈ Md(n) : τ is symmetric}.

In particular, Sd(0) = R, Sd(1) = R
d, while Sd(2) is the space of symmetric d × d

matrices.
The inner product of σ, τ ∈ Md(n) is defined as

σ : τ =
∑

(j1,...,jn)∈{1,...,d}n

σj1,...,jnτj1,...,jn .

The space of Md(n)-valued functions over some domain ω whose components are
square integrable is denoted by L2(ω;Md(n)). The subspace of symmetric L2 tensor
fields reads L2(ω; Sd(n)). In the scalar case, abbreviate L2(ω) := L2(ω;R). The L2

inner product and the L2 norm for fields σ, τ ∈ L2(ω;Md(n)) read

(σ, τ)L2(ω) :=

ˆ

ω

σ : τ dx and ‖σ‖L2(ω) :=
√

(σ, σ)L2(ω) .

Let Ω ⊆ R
d be a simply-connected and bounded Lipschitz domain. For m ∈ N0,

the m-th order Sobolev space of L2(Ω) functions whose generalized derivatives up
to order m belong to L2 and whose boundary traces up to order (m − 1) vanish,
is denoted by Hm

0 (Ω). Tensor fields with values in Md(n) (resp. Sd(n)) whose
components belong to Hm

0 (Ω) are denoted by Hm
0 (Ω;Md(n)) (resp. H

m
0 (Ω; Sd(n))).

The following abbreviations will be used

V M

m,n := Hm
0 (Ω;Md(n)) and V S

m,n := Hm
0 (Ω; Sd(n)).

The (total) derivative Dv ∈ V M
m−1,n+1 of an element v ∈ V M

m,n has the represen-
tation

(Dv)j1,...,jn,jn+1
= ∂jn+1

vj1,...,jn

for any (j1, . . . , jn+1) ∈ {1, . . . , d}n+1. In other words, (Dv)j1,...,jn,• corresponds
to the gradient of the function vj1,...,jn and (Dv)j1,...,jn−1,•,• corresponds to the
Jacobian of the vector field vj1,...,jn−1,•.

Let n ≥ 1. For any v ∈ V M
m,n, its component-wise exterior derivative rot v ∈

V M
m−1,n+1 is defined by

(rot v)j1,...,jn−1,jn,jn+1
= ∂jn+1

vj1,...,jn−1,jn − ∂jnvj1,...,jn−1,jn+1
.

In other words, the d× d matrix field (or 2-form) (rot v)j1,...,jn−1,•,• is the exterior
derivative of the vector field (or 1-form) vj1,...,jn−1,•. If n = 0, that is if v is scalar-
valued, then, by definition, rot v = 0. This is consistent with the fact that the
space of alternating 2-forms over R is the trivial vector space {0}.

In particular, if v is a vector field (n = 1) for d = 2 or d = 3, the upper triangular
part of the skew-symmetric matrix rot v reads as

(2) rot v =

(
0 ∂2v1 − ∂1v2

0

)

or rot v =





0 ∂2v1 − ∂1v2 ∂3v1 − ∂1v3
0 ∂3v2 − ∂2v3

0





and can be identified with the usual “vector proxies”

(3) rot v = ∂2v1 − ∂1v2 for d = 2 or rot v =

(
∂2v3−∂3v2

∂3v1−∂1v3

∂1v2−∂2v1

)

for d = 3.
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In order to distinguish between alternating quadratic forms and the vector rep-
resentations, the vector representation of rot is denoted by rot without boldface
letters.

The divergence of a sufficiently smooth Md(n)-valued tensor field τ has values
in Md(n− 1) and is defined via

(div τ)j1,...,jn−1
= tr

(
(Dτ)j1,...,jn−1,•,•

)
=

d∑

k=1

∂kτj1,...,jn−1,k.

The space of L2(Ω) vector fields whose divergence belongs to L2(Ω) is denoted by
H(div,Ω).

2.2. Exterior calculus of symmetric tensor fields. The following result serves
as the main tool for the stable splitting of higher-order differential operators.

Lemma 1. Let Ω be simply-connected and let m ≥ 1 and n ≥ 1 be integers.

(a) Let v ∈ V M
m,n. If rot v = 0 then there exists η ∈ V M

m+1,n−1 such that Dη = v.

(b) Let v ∈ V M
m,n. The matrix (Dv)j1,...,jn−1,•,• is symmetric for any index

(j1, . . . , jn−1) ∈ {1, . . . , d}n−1 if and only if rot v = 0.
(c) Let v ∈ V S

m,n. If rot v = 0 then there exists η ∈ V S
m+1,n−1 such that Dη = v.

(d) Let v ∈ V S
m,n. If rot v = 0, then for any k ∈ {1, . . . , n} there exists η ∈

V S

m+k,n−k such that Dkη = v.

Proof. Assertion (a) is a well-known fact from the exterior calculus on simply-
connected domains. Assertion (b) is the observation that rot v contains exactly
the skew-symmetric parts of the matrices (Dv)j1,...,jn−1,•,•. For the proof of (c), let

v ∈ V S
m,n. From (a) it is known that there exists η ∈ V M

m+1,n−1 such that Dη = v.
Let now σ ∈ S(n − 1) be a permutation. The relation Dη = v and the symmetry
of v imply that for any (j1, . . . , jn) ∈ {1, . . . , d}n the following identity holds

∂jnηj1,...,jn−1
= vj1,...,jn = vσ(j1,...,jn−1),jn = ∂jnησ(j1,...,jn−1).

This means that the difference ηj1,...,jn−1
− ησ(j1,...,jn−1) is constant with respect to

the variable xjn for any jn ∈ {1, . . . , d}. From the boundary condition on η it turns
out that ηj1,...,jn−1

= ησ(j1,...,jn−1). Hence, η is symmetric. Assertion (d) follows
from the recursive application of (b) and (c). �

Remark 2. Symmetry principles like in Lemma 1 were also studied in [24, 25, 26]
for the proof of generalized Helmholtz decompositions.

3. Stable splitting of higher-order differential operators

In this section, the splitting of the 2m-th order PDE in a system of second-
order problems is presented. To keep the presentation simple, the polyharmonic
operator (−1)m∆m without lower-order terms is analyzed. Subsection 4.5 will give
an outline of the case of more general differential operators. The core part of the
split consists of a polyharmonic generalized Stokes equation.

3.1. The polyharmonic generalized Stokes equation. Define the space of
symmetric and rotation-free Hm

0 tensor fields as

Zm,n := {v ∈ V S

m,n : rot v = 0}.

Let f ∈ L2(Ω;Md(n)). The polyharmonic generalized Stokes problem seeks u ∈
Zm,n such that

(4) (Dmu,Dmv)L2(Ω) = (f, v)L2(Ω) for all v ∈ Zm,n.
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This problem is referred to as generalized Stokes equation because it corresponds
to the minimization of a quadratic energy functional subject to a linear constraint
on the partial derivatives. Section 4–5 will show how the problem (4) can be re-
written as a saddle-point problem with Lagrange multipliers. Lemma 1(b) shows
that Du is symmetric. With the substitution w := Du ∈ Zm−1,n+1 one arrives at
the following alternative formulation: Seek u ∈ V S

1,n, w ∈ Zm−1,n+1, r ∈ V S
1,n such

that

(Du,Dv)L2(Ω) = (w,Dv)L2(Ω) for all v ∈ V S

1,n,(5a)

(D(m−1)w,D(m−1)z)L2(Ω) = (Dr, z)L2(Ω) for all z ∈ Zm−1,n+1,(5b)

(Dr,Ds)L2(Ω) = (f, s)L2(Ω) for all s ∈ V S

1,n.(5c)

The unique solvability of (4) and (5) is a direct consequence of the obvious coercivity
of the involved operators. The next result states the equivalence of (4) and (5).

Proposition 3. If u ∈ Zm,n solves (4), then there exists r ∈ V S
1,n such that

(u,Du, r) ∈ V S
1,n × Zm−1,n+1 × V S

1,n solves (5). If, conversely, (u,w, r) ∈ V S
1,n ×

Zm−1,n+1 × V S
1,n solves (5), then u belongs to Zm,n and solves (4) and w = Du.

Proof. The sufficient condition is verified with the solution r of the Poisson-type
problem (5c). Indeed, w := Du belongs to Zm−1,n+1 and, by Lemma 1(c), any test
function z ∈ Zm−1,n+1 can be represented as z = Dv for some v ∈ V S

m,n. Hence,

(D(m−1)w,D(m−1)z)L2(Ω) = (Dmu,Dmv)L2(Ω) = (f, v)L2(Ω) = (Dr, z)L2(Ω).

For the verification of the necessary condition, let (u,w, r) solve (5). By Lemma 1(c)
there exists η ∈ V S

m,n such that Dη = w. Since w is symmetric, η is rotation-free
rot η = 0 (cf. Lemma 1(b)). Hence, η ∈ Zm,n. By testing equation (5a) with the
test function v := u− η, one obtains

‖D(u− η)‖2L2(Ω) = (D(u− η), Dv)L2(Ω) = (Du− w,Dv)L2(Ω) = 0.

This implies η = u and, thus, Du = w. According to Lemma 1(b), for any v ∈ Zm,n

the derivative Dv is symmetric. Hence, (5b) and (5c) lead to

(Dmu,Dmv)L2(Ω) = (D(m−1)w,D(m−1)Dv)L2(Ω) = (Dr,Dv)L2(Ω) = (f, v)L2(Ω).

Therefore, u solves (4). �

System (5) consists of two Poisson equations and one generalized symmetric
Stokes system. In the present case where no lower-order terms appear in the dif-
ferential operator, the problem (5b) decouples from the equations (5a) and (5c).
However, this decoupling does not hold in the presence of lower-order terms. Ex-
amples will be given below.

3.2. Splitting of polyharmonic equations. Let f ∈ L2(Ω) and consider the
2m-th order partial differential equation that seeks u ∈ Hm

0 (Ω) with

(−1)m∆mu = f.

Its weak form is given by

(6) (Dmu,Dmv)L2(Ω) = (f, v)L2(Ω) for all v ∈ Hm
0 (Ω).

The observation that Hm
0 (Ω) = V S

m,0 = Zm,0 reveals that (6) is identical to problem
(4) for n = 0. Hence, by applying recursively the split (5), one obtains a splitting of
(6) into (2m−1) second-order equations, namely (2m−2) Poisson-like problems and
one generalized Stokes equation over the symmetric tensors. The resulting system
is the following. Seek (u0, . . . , um−2) ∈ V S

1,0 × V S
1,1 × · · · × V S

1,m−2, w ∈ Z1,m−1, and

(r0, . . . , rm−2) ∈ V S
1,0 × V S

1,1 × · · · × V S
1,m−2 such that, for all j ∈ {0, . . . ,m− 3},
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(Duj , Dvj)L2(Ω) = (uj+1, Dvj)L2(Ω),(7a)

(Dum−2, Dvm−2)L2(Ω) = (w,Dvm−2)L2(Ω),(7b)

(Dw,Dz)L2(Ω) = (Drm−2, z)L2(Ω),(7c)

(Drm−2−j , Dsm−2−j)L2(Ω) = (Drm−3−j , sm−2−j)L2(Ω),(7d)

(Dr0, Ds0)L2(Ω) = (f, s0)L2(Ω)(7e)

for all (v0, . . . , vm−2) ∈ V S
1,0×V S

1,1×· · ·×V S
1,m−2, z ∈ Z1,m−1, and (s0, . . . , sm−2) ∈

V S
1,0 × V S

1,1 × · · · × V S
1,m−2.

Hence, the following equivalence is valid.

Proposition 4. If u ∈ Hm
0 (Ω) solves (6), then there exist (u1, . . . , um−2) ∈ V S

1,1 ×

V S
1,1 × · · · × V S

1,m−2, w ∈ Z1,m−1, and (r0, . . . , rm−2) ∈ V S
1,0 × V S

1,1 × · · · × V S
1,m−2

such that, with u0 := u, (7) is satisfied.

If, conversely, (u0, . . . , um−2) ∈ V S
1,0 × V S

1,1 × · · · × V S
1,m−2, w ∈ Z1,m−1, and

(r0, . . . , rm−2) ∈ V S
1,0×V S

1,1×· · ·×V S
1,m−2 solve (7), then u := u0 belongs to Hm

0 (Ω)

and solves (6) with Dju = uj for all j ∈ {1, . . . ,m− 2} and D(m−1)u = w. �

3.3. Discretization with standard finite elements. The main advantage of the
reformulation of (6) as the system (7) is that one can use standard finite elements for
its discretization. In particular, for the Poisson-like problems in (7), standard H1

0 -
conforming finite elements can be used without any restriction on the polynomial
order. In the absence of lower-order terms, the equations in (7) even decouple
into a finite sequence of second-order problems. The only equation in (7) that
needs further investigation is (7c). This equation is similar to the classical Stokes
system, but the side constraint is on the rotation (instead on the divergence for
the classical Stokes equations). In three space dimensions, this results in a vector
valued “pressure” variable. Moreover, the symmetry constraint implies further
constraints for the space of multipliers in a saddle-point formulation. Hence, (7c)
requires modifications of stable finite elements for the second-order generalized
Stokes problem. As described in Sections 4–5 below, in the case of space dimensions
2 and 3 some of the known stable finite elements for the classical Stokes problem
can be utilized.

4. Application to fourth-order problems

Throughout the remaining sections, the space dimension is d = 2 or d = 3. If
d = 3, it is assumed that Ω is contractible.

This section is devoted to the application of the splitting to the biharmonic
equation. It establishes a saddle-point formulation of the Stokes-type equation and
studies discretization schemes.

4.1. The mixed system. The biharmonic equation

(8) ∆2u = f in Ω and u =
∂u

∂ν
= 0 on ∂Ω

is a classical model for the vertical deflection of a thin elastic plate subject to
clamped boundary conditions. Its weak form is given by (6) for m = 2. In this
case, the system from (7) seeks (u,w, r) ∈ H1

0 (Ω)× Z1,1 ×H1
0 (Ω) such that

(Du,Dv)L2(Ω) = (w,Dv)L2(Ω) for all v ∈ H1
0 (Ω),(9a)

(Dw,Dz)L2(Ω) = (Dr, z)L2(Ω) for all z ∈ Z1,1,(9b)

(Dr,Ds)L2(Ω) = (f, s)L2(Ω) for all s ∈ H1
0 (Ω).(9c)
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Similar systems were used in [11] for the analysis of the equations of the Reissner-
Mindlin plate model in two space dimensions, which can be interpreted as a per-
turbed biharmonic equation.

For the numerical approximation of (9a) and (9c), any finite element method for
Poisson’s equation can be used. The next subsections focus on the approximation
of (9b).

4.2. The generalized Stokes equation. This subsection is devoted to the saddle-
point formulation of the problem

(10) (Dw,Dz)L2(Ω) = (g, z)L2(Ω) for all z ∈ Z1,1

with given g ∈ L2(Ω;Rd). Recall that the space Z1,1 consists of the rotation-free
vector fields in the first-order Sobolev space V := V S

1,1 = H1
0 (Ω;R

d). For d = 3, the
following space will be employed

(11) H0(div
0,Ω) :=

{
q ∈ L2(Ω;R3) : div q = 0 in Ω and q · ν|∂Ω = 0

}
.

Define the space Q for the Lagrange multipliers as

Q :=

{

{q ∈ L2(Ω;R2) :
´

Ω
q dx = 0} if d = 2,

H0(div
0,Ω) if d = 3,

equipped with the L2 norm. The saddle-point problem reads as follows. Seek
(w, p) ∈ V ×Q such that

(12)
(Dw,Dv)L2(Ω) + (rot v, p)L2(Ω) = (g, v)L2(Ω) for all v ∈ V,

(rotw, q)L2(Ω) = 0 for all q ∈ Q.

System (12) can formally be written as

−∆w + rot∗ p = g

rotw = 0.

Since, rotV ⊆ Q, with the standard theory [7] it is readily verified that problems
(10) and (12) are equivalent once the following inf-sup condition is proved.

Proposition 5. Let d ∈ {2, 3} and assume that, if d = 3, the domain Ω is con-

tractible. There is a constant β > 0 such that

β ≤ inf
q∈Q\{0}

sup
v∈V\{0}

(rot v, q)L2(Ω)

‖Dv‖L2(Ω)‖q‖L2(Ω)
.

Proof. Provided the domain Ω has vanishing first and second Betti number (which
in 3D means that Ω is contractible), the result follows from [22, Prop. A.1] or [1,
Theorem 1.2]. For d = 2, the result is known as the Ladyzhenskaya lemma [2], and
there are no restrictions on the topology of Ω. �

4.3. Finite elements for the generalized Stokes equation. System (12) re-
sembles the classical Stokes system. Indeed, in two space dimensions, (12) can be
reformulated as Stokes system by means of a change of variables. Therefore, any
stable finite element method can be used for the approximation of (12). In three
dimensions, (12) differs from the Stokes equations, but the methods that are well-
studied for the Stokes equations [7] can nevertheless be used for the discretization
of the system. This is exemplified with two choices of discrete spaces: a continuous
finite element method, namely a stabilized P1 element with discontinuous pressure,
and the nonconforming P1 element.
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4.3.1. Notation. In what follows, T denotes a shape-regular simplicial triangulation
of Ω. The set of (d − 1)-dimensional hyperfaces is denoted by F. The space of
piecewise polynomial functions of maximal degree k is denoted by Pk(T). The
space of functions with values in some finite dimensional spaceX whose components
belong to Pk(T) is denoted by Pk(T;X). Furthermore, denote

Sk(T) := Pk(T) ∩H1(Ω) and Sk
0 (T) := Pk(T) ∩H1

0 (Ω).

Similarly, X-valued functions with components in Sk(T) (resp. Sk
0 (T)) are denoted

by Sk(T;X) (resp. Sk
0 (T;X)).

4.3.2. Continuous finite elements. The finite element discretization of (12) is based
on finite-dimensional subspaces Vh ⊆ V and Qh ⊆ Q and seeks (wh, ph) ∈ Vh×Qh

such that

(13)
(Dwh, Dvh)L2(Ω) + (rot vh, ph)L2(Ω) = (g, vh)L2(Ω) for all vh ∈ Vh,

(rotwh, qh)L2(Ω) = 0 for all qh ∈ Qh.

In two space dimensions, this system is equivalent to the Stokes equations after the
change of coordinates (x1, x2) 7→ (−x2, x1). Therefore, any stable finite element
pairing (Vh,Qh) for the Stokes equations (for examples see, e.g., [7]) can be used
for the numerical solution.

Proposition 6. For d = 2, any pairing Vh ⊆ V, Qh ⊆ Q that is stable for the

Stokes equations leads to a unique solution (wh, ph) ∈ (Vh,Qh) to (13). It satisfies

the error estimate

‖D(w−wh)‖L2(Ω)+‖p−ph‖L2(Ω) . inf
vh∈Vh

‖D(w−wh)‖L2(Ω)+ inf
qh∈Qh

‖p−ph‖L2(Ω).

�

In the case of three space dimensions, a conforming stable pairing requires the
space Qh ⊆ H0(div

0,Ω) to be a subset of (pointwise) divergence-free vector fields.
The (strong) incorporation of this constraint in a space of continuous discrete vector
fields is difficult. The modification of existing Stokes elements with discontinuous
pressure can lead to a stable pairing. This is exemplified with a stabilized P1–
P0 element. The lowest-order Raviart-Thomas space of H(div) conforming vector
fields [7] in three dimensions is defined as

RT 0(T) :=

{

q ∈ H(div,Ω) :
for any T ∈ T there exist aT ∈ R

3, bT ∈ R

with q|T (x) = aT (x) + bT (x)x for all x ∈ T

}

.

Let, for any face F ∈ F, bF denote the cubic bubble function that vanishes on ∂F
and satisfies

ffl

F
bF ds = 1. It satisfies, for any adjacent simplex T , the scaling

(14) ‖bF ‖L2(T ) ≈ diam(T )3/2.

The space of three-dimensional vector-fields whose components are spanned by the
functions (bF : F ∈ F) is denoted by B3(F;R

3). Define the following spaces of
discrete functions

(15) Vh := S1
0(T;R

3)⊕B3(F;R
3) and Qh := RT 0(T) ∩H0(div

0,Ω).

It is useful to note that Qh = P0(T;R
3) ∩ Q, in particular elements of Qh are

piecewise constant. This low-order pairing generalizes stabilized finite elements [7]
for the Stokes equations.

Proposition 7. Let d = 3 and let Ω be contractible. The system (13) with the

choice (15) of discrete spaces has a unique solution (wh, ph) ∈ Vh×Qh. It satisfies

the error estimate

‖D(w−wh)‖L2(Ω)+‖p−ph‖L2(Ω) . inf
vh∈Vh

‖D(w−wh)‖L2(Ω)+ inf
qh∈Qh

‖p−ph‖L2(Ω).
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Proof. The proof follows the usual reasoning for stabilized Stokes elements. Let
qh ∈ Qh. According to Proposition 5, there exists v ∈ V such that

‖qh‖L2(Ω)‖Dv‖L2(Ω) . (rot v, qh)L2(Ω).

Let Ih : V → V ∩P1(T;R
3) denote a quasi-interpolation operator [8] satisfying, for

any v ∈ V and any T ∈ T, the stability estimate

(16) diam(T )−1‖v − Ihv‖L2(T ) + ‖DIhv‖L2(T ) . ‖Dv‖L2(∪{K∈T:K∩T 6=∅}).

Define vh ∈ Vh by

vh = Ihv +
∑

F∈F

bF

 

F

(v − Ihv) ds.

The combination of the scaling and stability properties (14) and (16) readily proves

‖Dvh‖L2(Ω) . ‖Dv‖L2(Ω).

On the other hand, since the elements in Qh are piecewise constant and by the
definition of vh, one has for any T ∈ T (with outward-pointing unit normal νT )
that

(rot(v − vh), qh)L2(T ) =

ˆ

∂T

((v − vh) ∧ νT ) · qh ds = 0

(the wedge ∧ denotes the exterior product in R
3). Hence (rot vh, qh)L2(Ω) =

(rot v, qh)L2(Ω). This establishes the discrete stability condition

β . inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(rot vh, qh)L2(Ω)

‖Dvh‖L2(Ω)‖qh‖L2(Ω)
.

The stability and the error estimate follow from the usual theory for saddle-point
problems [7]. �

Remark 8. From the proof of Proposition 7 it can be seen that a smaller choice
of Vh with stabilization in the tangential directions only would also suffice for a
stable pairing. This would correspond to an analogue of the SMALL element [7]
for the usual Stokes system.

4.3.3. Nonconforming P1 element. Nonconforming methods where VNC

h 6⊆ V may
have favourable stability properties with trial functions based on low-order poly-
nomials. This subsection describes an application of the nonconforming P1 finite
element [14] for the generalized Stokes system (12). Define the spaces

VNC

h :=






v ∈ P1(T;R

d)

∣
∣
∣
∣
∣
∣

v is continuous in the interior hyper-faces’
midpoints and vanishes in the midpoints
of hyper-faces on the boundary







and

Qh :=

{

P0(T) ∩Q if d = 2,

RT 0(T) ∩Q if d = 3.

Again, it will be made use of the fact that RT 0(T) ∩ Q = P0(T;R
3) ∩ Q. The

T-piecewise action of the differential operators D and rot is denoted by Dh and
roth. The nonconforming finite element method seeks (wh, ph) ∈ VNC

h × Qh such
that

(17)
(Dhwh, Dhvh)L2(Ω) + (roth vh, ph)L2(Ω) = (g, vh)L2(Ω) for all vh ∈ VNC

h ,

(roth wh, qh)L2(Ω) = 0 for all qh ∈ Qh.
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Proposition 9. The system (17) has a unique solution (wh, ph) ∈ (VNC

h ,Qh). It

satisfies the error estimate

‖Dh(w − wh)‖L2(Ω) + ‖p− ph‖L2(Ω)

. inf
vh∈VNC

h

‖Dh(w − wh)‖L2(Ω) + inf
qh∈Qh

‖p− ph‖L2(Ω)

+

√
∑

T∈T

diam(T )2 inf
c∈R

‖g − c‖2L2(T ).

Proof. The nonconforming interpolation operator INC

h : V → VNC

h is defined for
any v ∈ V via the condition

ˆ

F

(v − INC

h v) ds = 0 for all hyper-faces F ∈ F.

It is well-known [14] that, for any v ∈ V, the function DhI
NC

h v equals the L2

projection of Dv onto the piecewise constants. In particular, for any qh ∈ Qh, any
v ∈ V satisfies (rot v, qh)L2(Ω) = (roth I

NC

h v, qh)L2(Ω). This and ‖DhI
NC

h v‖L2(Ω) ≤
‖Dv‖L2(Ω) establish the discrete inf-sup condition

β . inf
vh∈VNC

h
\{0}

sup
qh∈Qh\{0}

(roth vh, qh)L2(Ω)

‖Dhvh‖L2(Ω)‖qh‖L2(Ω)
.

The a priori error estimate can be deduced with the techniques of [12] for d = 2
and [16] for d = 3. �

4.4. Numerical methods for the biharmonic equation. This subsection de-
scribes the numerical approximation of the biharmonic system (9). LetUh ⊆ H1

0 (Ω)
be a finite-dimensional subspace and let Vh, Qh be one of the admissible pairings
from §4.3.2. Then the discrete problem seeks (uh, wh, ph, rh) ∈ Uh×Vh×Qh×Uh

(18)

(Duh, Dvh)L2(Ω) = (wh, Dvh)L2(Ω) for all vh ∈ Uh,

(Dwh, Dξh)L2(Ω) + (rot ξh, ph)L2(Ω) = (Drh, ξh)L2(Ω) for all ξh ∈ Vh,

(rotwh, qh)L2(Ω) = 0 for all qh ∈ Qh,

(Drh, Dsh)L2(Ω) = (f, sh)L2(Ω) for all sh ∈ Uh.

Standard a priori error estimates for the Poisson problem together with the triangle
inequality and the a priori error estimates from Propositions 6 and 7 give the
following quasi-optimal error estimate

‖D(u− uh)‖L2(Ω) + ‖D(w − wh)‖L2(Ω) + ‖p− ph‖L2(Ω) + ‖D(r − rh)‖L2(Ω)

. inf
vh∈Uh,ξh∈Vh,qh∈Qh,sh∈Uh

[
‖D(u− vh)‖L2(Ω) + ‖D(w − ξh)‖L2(Ω)

+ ‖p− qh‖L2(Ω) + ‖D(r − sh)‖L2(Ω)

]
.

It is emphasized that this error estimate can dispense with any regularity assump-
tions on the solution. In particular, if the solution is smooth enough such that Du,
Dw, Dr, p have Hs regularity for some 0 < s ≤ 1 (this is satisfied u ∈ H2+s(Ω)
and the Poisson equation in Ω has H1+s(Ω) regularity), this results in the following
convergence rate

‖D(u− uh)‖L2(Ω) + ‖D(w − wh)‖L2(Ω)

+ ‖p− ph‖L2(Ω) + ‖D(r − rh)‖L2(Ω) . hs‖f‖L2(Ω)

for the maximal mesh-size h. With standard duality techniques, the following
convergence rates in weaker norms can be proven

‖u− uh‖L2(Ω) + ‖w − wh‖L2(Ω) + ‖r − rh‖L2(Ω) . h2s‖f‖L2(Ω).

Analogous estimates can be obtained for the nonconforming discretization.
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Remark 10. With the nonconforming method from §4.3.3, the Hessian is approx-
imated with piecewise derivatives of nonconforming P1 finite element functions.
Hence, the method may be interpreted as a variant of the Morley finite element
[13].

4.5. More general fourth-order operators. This section describes the applica-
tion of the new methodology to more general fourth-order problems. For simplicity,
constant material coefficients are assumed in the model problem: Let δ ≥ 0 be a
nonnegative number, let γ ∈ Sd(2) be a symmetric and positive definite d×d matrix
and let B ∈ Sd(4) be a symmetric and positive definite fourth-order tensor. Given
f ∈ L2(Ω), the fourth-order model problem under consideration reads

div divBD2u− div γDu+ δu = f in Ω and u =
∂u

∂ν
= 0 on ∂Ω.

That is u ∈ H2
0 (Ω) solves, for all v ∈ H2

0 (Ω),

(BD2u,D2v)L2(Ω) + (γDu,Dv)L2(Ω) + (δu, v)L2(Ω) = (f, v)L2(Ω).

With the split from Section 3, this leads to the following equivalent system

(19)

− divBDw + γw +rot∗ p −Dr = 0

rotw = 0

δu −∆r = f

divw −∆u = 0.

The rows and columns have been rearranged for better readibility. This is a sym-
metric problem in saddle-point form. The last row in (19) asks for w = Du while
the third row implies − div(Dr) = f − δu. Hence, taking the divergence of the first
row leads to div divBD2u− div γDu+ δu = f . Let

a(w, v) := (BDw,Dv)L2(Ω) + (γw, v)L2(Ω) for any w, v ∈ H1
0 (Ω;R

d).

The weak form of the the mixed system seeks (w, u, r) ∈ Z1,1 × H1
0 (Ω) × H1

0 (Ω)
such that (z, s, v) ∈ Z1,1 ×H1

0 (Ω)×H1
0 (Ω)

a(w, z) − (Dr, z)L2(Ω) = 0

(δu, s)L2(Ω) + (Dr,Ds)L2(Ω) = (f, s)L2(Ω)

− (w,Dv)L2(Ω) +(Du,Dv)L2(Ω) = 0.

The well-posedness of this system and the stability of the numerical methods sug-
gested in 5.3 follow immediately, provided u and r are discretized with the same
finite element spaces. The discretization from Subsection 4.4 is stable and leads to
the a priori error estimates from that subsection.

Remark 11. For simplicity, the analysis of this paper focusses on the boundary
condition u ∈ Hm

0 (Ω), which in the context of plate theory corresponds to clamped
boundary conditions. However, the arguments from the stability proofs apply
equally well for more general boundary conditions. In particular, the discrete sta-
bility does not rely on additional smoothness assumptions. Subsection 6.3 shows
an application for simply-supported plates.

5. Application to sixth-order problems

This section deals with the case m = 3. The section is structured similarly as
Section 4. The main difference lies in the identification of the multiplier space Q,
which requires proper side restrictions in order to allow for the inf-sup condition.
For better readability, the following notation is used

Md×d = R
d×d = Md(2) and Sd×d = Sd(2).
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Again, the convention (3) for the rotation is used. If v is a matrix-valued function,
the rot operator is applied row-wise.

5.1. The mixed system. The triharmonic equation

(20) −∆3u = f in Ω and u =
∂u

∂ν
=

∂2u

∂ν2
= 0 on ∂Ω

is given in weak form by (6) for m = 3. Differential operators of this type arise for
example in mathematical models of silicon oxidation [4, 20]. The system from (7)
seeks

(u0, u1, w, r1, r0) ∈ H1
0 (Ω)×H1

0 (Ω;R
d)× Z1,2 ×H1

0 (Ω;R
d)×H1

0 (Ω)

such that

(Du0, Dv0)L2(Ω) = (u1, Dv0)L2(Ω) for all v1 ∈ H1
0 (Ω),(21a)

(Du1, Dv1)L2(Ω) = (w,Dv1)L2(Ω) for all v1 ∈ H1
0 (Ω;R

d),(21b)

(Dw,Dz)L2(Ω) = (Dr1, z)L2(Ω) for all z ∈ Z1,2,(21c)

(Dr1, Ds1)L2(Ω) = (Dr0, s1)L2(Ω) for all s1 ∈ H1
0 (Ω;R

d),(21d)

(Dr0, Ds0)L2(Ω) = (f, s0)L2(Ω) for all s0 ∈ H1
0 (Ω).(21e)

The subsequent subsections will study the saddle-point formulation and numerical
approximation of (21c).

5.2. The generalized Stokes equation. Let g ∈ L2(Ω;Rd). This subsection is
devoted to the saddle-point formulation of the problem

(22) (Dw,Dz)L2(Ω) = (g, z)L2(Ω) for all z ∈ Z1,2.

Recall that the space Z1,2 consists of the rotation-free symmetric tensor fields in
the first-order Sobolev space V := V S

1,2 = H1
0 (Ω; Sd×d). Thus, (22) is a generalized

tensor-valued Stokes equation with a symmetry constraint. Recall the definition
of the space H0(div

0,Ω) from (11) let H0(div
0,Ω;M3×3) denote the space of 3× 3

tensor fields whose rows belong to H0(div
0,Ω). Let ξ : Ω → R; x 7→ x denote the

identity mapping. Define the space of multipliers as

Q :=

{{
q ∈ L2(Ω;R2) :

´

Ω
q dx = 0 and

´

Ω
q · ξ dx = 0

}
if d = 2,

{
q ∈ H0(div

0,Ω;M3×3) : tr q = 0 a.e. in Ω
}

if d = 3.

For a stable saddle-point formulation, the following result is required.

Proposition 12. Let d ∈ {2, 3} and assume that, if d = 3, the domain Ω is

contractible. For any q ∈ Q there exists v ∈ V with rot v = q and ‖Dv‖L2(Ω) .

‖q‖L2(Ω).

Proof. Let d = 2. Let q ∈ Q. By the classical Ladyzhenskaya lemma (applied row-
wise) there exists a tensor field τ ∈ H1

0 (Ω;M2×2) with rot τ = q and ‖Dτ‖L2(Ω) .

‖q‖L2(Ω). Its skew-symmetric part is determined by the entry ϕ := τ12−τ21. Recall
the identity mapping ξ(x) = x. By the definition of Q and integration by parts,

0 = (rot τ, ξ)L2(Ω) = (τ,
(

0 1
−1 0

)
)L2(Ω) =

ˆ

Ω

ϕdx.

Hence, by the Ladyzhenskaya lemma [2], there exists α ∈ H2
0 (Ω;R

2) such that
ϕ = rotα and ‖α‖H2(Ω) . ‖Dϕ‖L2(Ω). This implies

skwDα =
1

2

(
0 ϕ
−ϕ 0

)

= skw τ.
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With rotDα = 0, this leads to

rot symDα = − rot skwDα = − rot skw τ.

Thus, from the split in symmetric and skew-symmetric parts one obtains

q = rot(sym τ + skw τ) = rot(sym τ − symDα).

Hence, the assertion follows with v := sym τ − symDα.
For the case d = 3, let q ∈ Q. Then, by [22, Prop. A.1] or [1, Theorem 1.2] there

exists τ ∈ H1
0 (Ω;M3×3) with rot τ = q and ‖Dτ‖L2(Ω) . ‖q‖L2(Ω). Abbreviate

ρ :=





τ23 − τ32
τ31 − τ13
τ12 − τ21



 .

Recall that q ∈ Q and, thus, tr q = 0 almost everywhere in Ω. Thus, for any
φ ∈ H1

0 (Ω), the integration by parts plus elementary manipulations reveal, with
the 3× 3 identity matrix I3×3, that

0 = (q, φI3×3)L2(Ω) = (rot τ, φI3×3)L2(Ω) = (ρ,Dφ)L2(Ω).

This means that div ρ = 0 in Ω and, hence ρ ∈ H0(div
0,Ω) ∩H1

0 (Ω;R
3). Thus, by

[22, Prop. A.1] or [1, Theorem 1.2] there exists α ∈ H2
0 (Ω;R

3) with rotα = ρ and
‖α‖H2(Ω) . ‖Dρ‖L2(Ω). The representation (2) of rot therefore shows

2 skwDα = rotα =





0 −ρ3 ρ2
ρ3 0 −ρ1
−ρ2 ρ1 0



 = −2 skw τ.

Since rot skwDα = − rot symDα, we infer

rot τ = rot sym τ + rot skw τ = rot sym τ + rot symDα.

The claim thus follows with the choice v := sym τ + symDα. �

The saddle-point formulation seeks (u, p) ∈ V ×Q such that

(23)
(Du,Dv)L2(Ω) + (rot v, p)L2(Ω) = (g, v)L2(Ω) for all v ∈ V,

(rotu, q)L2(Ω) = 0 for all q ∈ Q.

Proposition 12 and the inclusion rotV ⊆ Q imply that (23) is equivalent to (22),
provided the domain Ω is contractible for d = 3.

5.3. Finite elements for the generalized Stokes equation with symmetry.

This subsection presents finite elements for problem (23). Recall the notation for
finite element spaces from §4.3.1.

5.3.1. Continuous finite elements. The finite element discretization of (23) is based
on finite-dimensional subspaces Vh ⊆ V and Qh ⊆ Q and seeks (wh, ph) ∈ Vh×Qh

such that

(24)
(Dwh, Dvh)L2(Ω) + (rot vh, ph)L2(Ω) = (g, vh)L2(Ω) for all vh ∈ Vh,

(rotwh, qh)L2(Ω) = 0 for all qh ∈ Qh.

In two space dimensions, some stable Stokes elements can be used “row-wise”, but
the additional constraints of V and Q must be taken into account. The following
choice serves as an example how the established stabilized schemes can be adapted
to this situation. Let, for any T ∈ T, bT denote the cubic bubble function that
vanishes on ∂T and satisfies

ffl

T
bT dx = 1. The space of symmetric tensors that

are component-wise spanned by these functions is denoted by B3(T; S2×2). As a
generalization of the stabilized P1 or MINI element [7] define the discrete spaces

Vh := V ∩ (P1(T; S2×2)⊕B3(T; S2×2)) and Qh := Q ∩ S1(T;R2).
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“Row-wise” this is the MINI element, but with the symmetry constraint of V and
the integral constraint of Q.

Proposition 13. Let d = 2. Then the choice (Vh,Qh) leads to a unique solution

(wh, ph) ∈ (Vh,Qh) to (24). It satisfies the error estimate

‖D(w−wh)‖L2(Ω)+‖p−ph‖L2(Ω) . inf
vh∈Vh

‖D(w−wh)‖L2(Ω)+ inf
qh∈Qh

‖p−ph‖L2(Ω).

Proof. The proof follows the usual design of a suitable Fortin interpolation (see,
e.g., [7, §4.8.2]). The details are omitted. �

For three dimensions, the stabilized finite element suggested in (15) can be gen-
eralized to the tensor-case. Let RT 0(T;M3×3) denote the space of 3×3 tensor fields
whose rows belong to RT 0(T). Furthermore, let B3(F; S3×3) denote the space of
symmetric 3 × 3 tensor fields whose rows belong to B3(F;R

3) (for the definition,
cf. §4.3.2). Define the following spaces of discrete functions

(25) Vh := S1
0(T; S3×3)⊕B3(F; S3×3) and Qh := RT 0(T;M3×3) ∩Q.

Proposition 14. Let d = 3 and let Ω be contractible. The system (24) with the

choice (25) of discrete spaces has a unique solution. It satisfies the error estimate

‖D(w−wh)‖L2(Ω)+‖p−ph‖L2(Ω) . inf
vh∈Vh

‖D(w−wh)‖L2(Ω)+ inf
qh∈Qh

‖p−ph‖L2(Ω).

Proof. The proof is analogous to that of Proposition 7. �

5.3.2. Nonconforming P1 element. Similar as in §4.3.3, the nonconforming P1 finite
element can be used for the saddle-point problem (23), where the trial functions
from §4.3.3 are are taken row-wise and are combined with the additional symmetry
and integral constraints on V and Q. The analysis is analogous to the foregoing
paragraph and §4.3.3. The details are omitted.

5.4. Numerical methods for triharmonic problems. Analogous to Subsec-
tion 4.4,the mixed system (21) can be approximated with standard finite elements
for the Poisson equations (21a), (21b), (21c),(21d). The Stokes-like system (21c) is
approximated with one of the methods described in Section 5.3. Let Uh ⊆ H1

0 (Ω)
be a finite-dimensional subspace and let Vh, Qh be one of the admissible pairings
from §5.3.1. Then the discrete problem seeks

(uh,0, uh,1, wh, ph, rh,1, rh,0) ∈ Uh × [Uh]
d ×Vh ×Qh × [Uh]

d ×Uh

such that

(Duh,0, Dvh,0)L2(Ω) = (uh,1, Dvh,0)L2(Ω) for all vh,0 ∈ Uh,

(Duh,1, Dvh,1)L2(Ω) = (wh, Dvh,1)L2(Ω) for all vh,1 ∈ [Uh]
d,

(Dwh, Dξh)L2(Ω) + (rot ξh, ph)L2(Ω) = (Drh,1, ξh)L2(Ω) for all ξh ∈ Vh,

(rotwh, qh)L2(Ω) = 0 for all qh ∈ Qh,

(Drh,1, Dsh,1)L2(Ω) = (Drh,0, sh,1)L2(Ω) for all sh,1 ∈ [Uh]
d,

(Drh,0, Dsh,0)L2(Ω) = (f, sh,0)L2(Ω) for all sh,0 ∈ Uh.

Standard a priori error estimates for the Poisson problem together with the
triangle inequality and the a priori error estimates from Propositions 13 and 14
give quasi-optimal error estimates for the quantity

1∑

j=0

(

‖D(uj − uh,j)‖L2(Ω) + ‖D(rj − rh,j)‖L2(Ω)

)

+ ‖D(w − wh)‖L2(Ω) + ‖p− ph‖L2(Ω).
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In particular, if the solution is smooth enough such that Du0, Du1 Dw, Dr1, Dr0,
p have Hs regularity for some 0 < s ≤ 1 (which is the case if u ∈ H3+s(Ω) and the
Poisson equation in Ω has H1+s(Ω) regularity), one obtains the convergence rate

1∑

j=0

(

‖D(uj − uh,j)‖L2(Ω) + ‖D(rj − rh,j)‖L2(Ω)

)

+ ‖D(w − wh)‖L2(Ω) + ‖p− ph‖L2(Ω) . hs‖f‖L2(Ω)

for the maximal mesh-size h. With standard duality techniques, the following
convergence rates in the L2 norms can be proven

1∑

j=0

(

‖uj − uh,j‖L2(Ω) + ‖rj − rh,j‖L2(Ω)

)

+ ‖w − wh‖L2(Ω) . h2s‖f‖L2(Ω).

Analogous estimates can be obtained for the nonconforming discretization. Also,
more general systems can be considered. Let, for example, δ ≥ 0 be a nonnegative
number, γ ∈ Sd(2) a symmetric and positive definite d × d matrix, B ∈ Sd(4) be
a symmetric and positive definite fourth-order tensor, and A ∈ Sd(8) a symmetric
eighth-order tensor. Consider, for given f ∈ L2(Ω), the equation

− div3 AD3u+ div2 BD2u− div γDu+ δu = f in Ω

subject to the boundary condition u = ∂u/∂ν = ∂2u/∂ν2 = 0 on ∂Ω. The weak
solution u ∈ H3

0 (Ω) is characterized by

(AD3u,D3v)L2(Ω) + (BD2u,D2v)L2(Ω)

+ (γDu,Dv)L2(Ω) + (δu, v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H3
0 (Ω).

Following the lines of Section 3, this problem can be split into a symmetric mixed
system and the finite element discretizations of Sections 5.3–5.4 yield quasi-optimal
a priori error estimates.

6. Numerical experiments

In this section, numerical computations with the new method are presented for
fourth and sixth order problems. In all examples, uniform mesh-refinement is used.
The mesh-size is quantified by the parameter h := maxT∈T diam(T ). The rate α
of algebraic convergence hα for some error quantity error(j) (with respect to the
mesh-size h(j)) in the j-th row of the table (j ≥ 2) is computed with the formula

α =
log(error(j − 1)/error(j))

log(h(j − 1)/h(j))
.

The domains and their initial partitions are displayed in Figure 1 for 2D and Fig-
ure 2 for 3D.

6.1. Biharmonic equation with smooth solution. Consider the square domain
Ω = (0, 1)2 and the biharmonic equation (8) with the exact solution

u(x) = (x1 − x2
1)

2(x2 − x2
2)

2 for f = ∆u.

For the H1
0 (Ω) variables, standard P1 conforming finite elements are employed. The

variables in the Stokes-like system are approximated with the MINI finite element
[7]. Table 1 displays the convergence history. For this smooth solution, the optimal
convergence order of h and h2 for the error ‖Dwh −D2u‖L2(Ω) in the energy norm

and the error ‖uh − u‖L2(Ω) in the L2 norm, respectively, is observed.
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Figure 1. Initial meshes in 2D: the square, cusp, L, and sector
domains. The last plot displays the triangulation of the sector
domain after three refinements.

mesh-size h ‖Dwh −D
2
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

7.0711e-01 4.8604e-02 — 1.4042e-03 —

3.5355e-01 2.8576e-02 0.76 8.8575e-04 0.66

1.7678e-01 1.4373e-02 0.99 3.0992e-04 1.51

8.8388e-02 6.9823e-03 1.04 8.3667e-05 1.88

4.4194e-02 3.4409e-03 1.02 2.1225e-05 1.97

2.2097e-02 1.7098e-03 1.00 5.3134e-06 1.99

1.1049e-02 8.5257e-04 1.00 1.3272e-06 2.00

5.5243e-03 4.2576e-04 1.00 3.3152e-07 2.00

Table 1. Convergence history for the biharmonic equation on the square.

6.2. Clamped plate. Consider the equation

∆2u+ u = f in Ω and u =
∂u

∂ν
= 0 on ∂Ω

in the the planar cusp domain Ω = (−1, 1)
2
\ (conv{(0, 0), (1,−1), (1, 0)}). Define

ω := 7π/4 and α := 0.50500969 as a noncharacteristic root of sin2(αω) = α2 sin2(ω).
The exact singular solution from [18, p. 107] reads in polar coordinates

u(r, θ) = (r2 cos2 θ − 1)2 (r2 sin2 θ − 1)2 r1+α g(θ)

for

(26)

g(θ) =

[
sin((α− 1)ω)

α− 1
−

sin((α+ 1)ω)

α+ 1

]
(
cos((α− 1)θ)− cos((α+ 1)θ)

)

−

[
sin((α− 1)θ)

α− 1
−

sin((α+ 1)θ)

α+ 1

]
(
cos((α− 1)ω)− cos((α+ 1)ω)

)
.

The right-hand side f is computed according to the exact solution. The derivation
of the mixed system follows Subsection 4.5 with the identity tensor B and γ = 0,
δ = 1. As in the previous example, standard P1 conforming finite elements are
used for the H1

0 (Ω) variables and the MINI finite element is used for the Stokes-like
system. The convergence history of the energy error ‖Dwh − D2u‖L2(Ω) and the

L2 error ‖uh − u‖L2(Ω) is displayed in Table 2. The solution belongs to the space

H2+α(Ω) [5, 23] and the expected convergence order for the energy error is h0.505.
This rate is approached by the values in Table 2. The error in the L2 norm is
observed to decrease with the double rate.

6.3. Vibrations of a simply-supported plate. Consider the planar L-shaped
domain Ω = (−1, 1)

2
\ [0, 1]2. The fundamental frequency of a vibrating thin elastic

plate subject to simply-supported boundary conditions is described by the first
eigenvalue λ of

∆2u = λu in Ω and u = ∆u = 0 on ∂Ω,
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mesh-size h ‖Dwh −D
2
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

7.0711e-01 3.0092e+00 — 1.6664e-01 —

3.5355e-01 1.8534e+00 0.69 8.1044e-02 1.04

1.7678e-01 1.0189e+00 0.86 2.6797e-02 1.59

8.8388e-02 5.7615e-01 0.82 8.2287e-03 1.70

4.4194e-02 3.4537e-01 0.73 2.7135e-03 1.60

2.2097e-02 2.1886e-01 0.65 1.0120e-03 1.42

1.1049e-02 1.4476e-01 0.59 4.2341e-04 1.25

5.5243e-03 9.8488e-02 0.55 1.9163e-04 1.14

Table 2. Convergence history for the clamped plate with cusp.

mesh-size h λh error
|λ−λh|

λ
rate

7.0711e-01 3.7632e+02 1.2984e+00 —

3.5355e-01 2.1643e+02 3.2185e-01 2.0123

1.7678e-01 1.8117e+02 1.0651e-01 1.5954

8.8388e-02 1.7093e+02 4.3946e-02 1.2772

4.4194e-02 1.6730e+02 2.1777e-02 1.0129

2.2097e-02 1.6573e+02 1.2180e-02 0.8383

1.1049e-02 1.6492e+02 7.2731e-03 0.7438

5.5243e-03 1.6447e+02 4.4861e-03 0.6971

Table 3. Convergence history for the first eigenvalue of the
simply-supported L-shaped plate. The reference value is λ =
163.731.

understood in the weak sense in H1
0 (Ω)∩H2(Ω). A reference value λ = 163.731 for

the first eigenvalue was computed with the adaptive Morley finite element method
(see, e.g., [17]). This eigenvalue problem corresponds to the system from Subsec-
tion 4.5 where B is the identity, γ = 0 and δ = 0, while f = λu. The simply-
supported boundary condition is realized by demanding homogeneous Dirichlet
boundary conditions for the tangential component of w and for u on ∂Ω. As in
the previous example, standard P1 finite elements are combined with the MINI
element. The convergence history of the first eigenvalue is displayed in Table 3.
In this case, the solution belongs to the space H7/3(Ω) [5, 23] and the expected
convergence order for the energy error is h1/3. Accodingly, the convergence order
of the eigenvalue error approaches h2/3. This doubled rate of convergence is typ-
ical for symmetric eigenvalue problems, see, e.g., [27, 6]. It cannot be expected
in general that the first eigenfunction is smoother than H7/3(Ω). Indeed, this is
a setting where some of the conventional mixed methods do not converge, see the
examples in [10]. However, the method in this paper is stable also in the case of
low smoothness.

6.4. Tri-Laplacian on the square domain. Let Ω = (0, 1)2 be the unit square
and consider the sixth-order problem (20) with exact solution [19]

u(x) = (x2
1 + x2

2)
7.1
4 (x1 − x2

1)
3(x2 − x2

2)
3.

The Poisson-type problems (21a), (21b), (21d), (21e) are approximated with stan-
dard conforming P1 finite elements and the Stokes-type system (21c) is discretized
with the MINI element from §5.3.1. The convergence history of the energy error
‖Dwh−D3u‖L2(Ω) and the L2 error ‖uh−u‖L2(Ω) is displayed in Table 4. The exact

solution does not belong to H5(Ω). However, the H4 regularity implies the conver-
gence order h for this first-order scheme, as confirmed by the numerical experiment.
The error in the L2 norm is observed to converge with order h2.
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mesh-size h ‖Dwh −D
3
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

7.0711e-01 3.8378e-02 — 8.9477e-05 —

3.5355e-01 3.3265e-02 0.20 6.9306e-05 0.36

1.7678e-01 1.9384e-02 0.77 3.6861e-05 0.91

8.8388e-02 9.3635e-03 1.04 1.2082e-05 1.60

4.4194e-02 4.4908e-03 1.06 3.2260e-06 1.90

2.2097e-02 2.2048e-03 1.02 8.1679e-07 1.98

1.1049e-02 1.0946e-03 1.01 2.0443e-07 1.99

5.5243e-03 5.4572e-04 1.00 5.1071e-08 2.00

Table 4. Convergence history for the Tri-Laplacian on the square domain.

mesh-size h ‖Dwh −D
3
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

7.6537e-01 2.4008e+00 — 9.4515e-03 —

4.2033e-01 1.6271e+00 0.64 6.5989e-03 0.59

2.2193e-01 9.2028e-01 0.89 2.8347e-03 1.32

1.1373e-01 5.2651e-01 0.83 9.3696e-04 1.65

5.7536e-02 3.1540e-01 0.75 2.9592e-04 1.69

2.8933e-02 1.9484e-01 0.70 9.7135e-05 1.62

1.4507e-02 1.2196e-01 0.67 3.4079e-05 1.51

7.2637e-03 7.6700e-02 0.67 1.2786e-05 1.41

3.6344e-03 4.8305e-02 0.66 5.0664e-06 1.33

Table 5. Convergence history for the Tri-Laplacian on the sector domain.

6.5. Tri-Laplacian on the sector domain. Let Ω = {(r, θ) : r ∈ (0, 1), θ ∈
(0, 3π/2)} be the sector domain (defined in polar coordinates (r, θ)) and consider
the sixth-order problem (20) with the exact solution given in polar coordinates as

u(r, θ) = r8/3(r2 − r)3 sin(2θ/3).

As in the previous example, standard conforming P1 finite elements and the MINI
element from §5.3.1 are used. The curved boundary is approximated with polygonal
domains. The convergence history is displayed in Table 5. The exact solution has
regularity H11/3(Ω) and the expected convergence order is h2/3 for the energy
error and h4/3 for the L2 error. The observed convergence rates correspond to
these predictions.

6.6. Bi-Laplacian on the cube domain. Let Ω = (0, 1)3 be the unit cube.
Consider the biharmonic equation (8) with exact solution

u(x) =

3∏

j=1

(xj(1− xj))
2.

This problem is approximated with the stabilized P1 finite element from (15) for
(9b), while (9a) and (9c) are discretized with standard P1 finite elements. Table 6
displays the convergence history of the energy error ‖Dwh −D2u‖L2(Ω) and the L2

error ‖uh−u‖L2(Ω). The convergence order for the energy error is h. The observed

convergence order for the L2 error is between h and h2.

6.7. Bi-Laplacian on the tensor product L-domain. Let

Ω =
(

(−1, 1)2 \ ([0, 1]× [−1, 0])
)

× (0, 1)

be the tensor product of a planar L-shaped domain with the unit interval. Consider
the biharmonic equation (8). Define ω := 3π/2 and α := 0.5444837 as a nonchar-
acteristic root of sin2(αω) = α2 sin2(ω). The exact singular solution is given in
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Figure 2. Initial meshes in 3D: cube and tensor product L-
domain.

mesh-size h ‖Dwh −D
2
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

1.2247e+00 3.0507e-03 — 6.3507e-05 —

7.9057e-01 2.7227e-03 0.25 6.0334e-05 0.11

3.9528e-01 1.7855e-03 0.60 3.5170e-05 0.77

1.9764e-01 9.2940e-04 0.94 1.2177e-05 1.53

9.8821e-02 4.6011e-04 1.01 3.2859e-06 1.88

Table 6. Convergence history for the Bi-Laplacian on the cube domain.

mesh-size h ‖Dwh −D
2
u‖L2(Ω) rate ‖uh − u‖L2(Ω) rate

1.4142e+00 7.2084e-01 — 2.1545e-02 —

7.9057e-01 6.5507e-01 0.16 1.9770e-02 0.14

3.9528e-01 4.2226e-01 0.63 1.0651e-02 0.89

1.9764e-01 2.2298e-01 0.92 3.4186e-03 1.63

9.8821e-02 1.1287e-01 0.98 9.1808e-04 1.89

Table 7. Convergence history for the Bi-Laplacian on the tensor
product L-domain.

cylindrical coordinates by

u(r, θ, z) = (z − z2)2 (r2 cos2 θ − 1)2 (r2 sin2 θ − 1)2 r1+α g(θ)

for the function g from (26). Again, the stabilized P1 finite element is combined
with standard P1 finite elements. The exact solution belongs to H2+α(Ω) and the
expected convergence order is h0.5444 for the energy error and h1.0888 for the error
in the L2 norm. The empirical rates from Table 7 are slightly higher, which may
be a pre-asymptotic phenomenon.

7. Conclusive remarks

(a) The new splitting of polyharmonic equations presented in this work is sta-
ble, irrespective of the regularity of the solution. This stands in stark
contrast with traditional mixed formulations which require additional reg-
ularity for a stable splitting. Therefore, the new method is also suitable for
problems where the solution has only low regularity, see, e.g., the simply-
supported plate problem from Subsection 6.3.

(b) The new mixed formulation also covers the case of more general polyhar-
monic operators involving lower-order terms, see the outline in Subsec-
tion 4.5 and the numerical experiments.

(c) The new formulation allows a finite element approximation of polyharmonic
functions with lowest-order standard finite elements. The computer imple-
mentation is straightforward. The three-dimensional formulation requires
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divergence-free functions for the pressure-like variable. This side constraint
can be strongly incorporated with Raviart-Thomas finite elements.

(d) The numerical experiments show that the pre-asymptotic regime is small.
This suggests that the constants in the a priori error estimates are of mod-
erate size.
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