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On the Numerical Approximation of the Karhunen-Loève

Expansion for Lognormal Random Fields

Michael Griebel∗† and Guanglian Li‡

Abstract

The Karhunen-Loève (KL) expansion is a popular method for approximating random fields by trans-

forming an infinite-dimensional stochastic domain into a finite-dimensional parameter space. Its numer-

ical approximation is of central importance to the study of PDEs with random coefficients. In this work,

we analyze the approximation error of the Karhunen-Loève expansion for lognormal random fields. We

derive error estimates that allow the optimal balancing of the truncation error of the expansion, the Quasi

Monte-Carlo error for sampling in the stochastic domain and the numerical approximation error in the

physical domain. The estimate is given in the number M of terms maintained in the KL expansion, in

the number of sampling pointsN , and in the discretization mesh size h in the physical domain employed

in the numerical solution of the eigenvalue problems during the expansion. The result is used to quantify

the error in PDEs with random coefficients. We complete the theoretical analysis with numerical exper-

iments in one and multiple stochastic dimensions.

Keywords: Karhunen-Loève expansion, eigenvalue decay, approximation of bivariate functions, error

estimates, lognormal random field.

1 Introduction

Partial differential equations (PDEs) with random coefficient have been widely employed to describe appli-

cations that are affected by a certain amount of uncertainty arising from imperfect/insufficient information

about the problem, e.g., in the input data. The range of applications is broad and diverse and includes, e.g.,

oil field modelling, quantum mechanics and finance [9, 16, 23]. The dimension of the random coefficient

can be huge or even infinite, which poses enormous computational challenge. To reduce its dimensionality,

one can parameterize the random coefficient by means of the Karhunen-Loève (KL) expansion or the poly-

nomial chaos (PC) expansion [15, 22], which greatly facilitates the subsequent numerical treatment, e.g.,

by the stochastic Galerkin method or the stochastic collocation method. Alternatively, one may expand the

random field with respect to the hierarchical Faber basis or some wavelet type basis; see [5, 12] for details.

In this paper, we will focus on the KL expansion, which is known to be optimal in the sense of the mean

square error.

To formulate the problem, let D ⊂ R
d be an open bounded domain with a strong local Lipschitz bound-

ary and let (Ω̃,Σ,P) be a complete separable probability space with σ-field Σ ⊂ 2Ω̃ and probability mea-

sure P . We will denote Ω := (Ω̃,Σ,P) for notational simplicity. Now, we consider a stochastic field
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κ(y, x) ∈ L∞(Ω, L2(D)) with its logarithm being a centered Gaussian field. The lognormal random field

is frequently used in stochastic PDEs as a random diffusion coefficient.

In practical computation, its numerical approximation usually proceeds in three steps. In the first step,

the centered random field log κ(y, x) is approximated by its M -term KL expansion for some M ∈ N+. The

truncation error relies on the regularity of the bivariate function log κ(y, x) in the physical variable x, see

[18] for details. In the second step, the covariance function R(x, x′) of the centered Gaussian random field

log κ(y, x) is approximated via a sampling method. By its very definition, the covariance function involves

an integral over the stochastic domain Ω, which is often of very high dimensional. For its approximation,

various quadrature-type sampling methods, e.g., Monte-Carlo methods, (Quasi) Monte-Carlo (QMC) meth-

ods and sparse grids [10, 13, 14] can be applied, say with N sampling points. These methods essentially

require boundedness of the variation, the first or higher mixed derivatives of log κ(·, x) for fixed x ∈ D
and then yield a corresponding order of convergence. In this paper, we focus on the QMC method, which

has only a low regularity requirement on Ω, namely that the first mixed derivative of log κ(·, x) is bounded.

The outcome of this second step is a function RN (x, x′) ∈ L2(D × D) that approximates the covariance

function R(x, x′). The associated self-adjoint operators are denoted as RN and R, respectively. Note that

RN is a finite rank operator with rank not larger than N . We shall prove in Proposition 3.1 that only the

first ⌊N
1

2s/d+1 ⌋ terms in the KL expansion of RN are relevant to approximate the spectrum of R(x, x′).
Here, the nonnegative parameter s denotes the regularity of the bivariate function log κ(y, x) in the physical

variable x. This result implies that the number of KL truncation terms satisfies M ≤ ⌊N
1

2s/d+1 ⌋. The third

step is to approximate the eigenvalue problem of the self-adjoint operator RN by means of a conforming

Galerkin finite element method (FEM) over a regular mesh with a mesh size h. Now, to estimate the error

between κ(y, x) and its numerical approximation κN,h
M (y, x) with M being the number of truncation terms,

N being the number of sampling points and h being the mesh size, the eigenvalue approximation error is

derived. Moreover, to balance the decay of the eigenvalues of the covariance kernel R(x, x′) and the nu-

merical approximation error, we need to take h ≪ N−1/s in order to ensure convergence in the first place.

Otherwise, no convergence rate is guaranteed when solving the eigenvalue problems numerically.

The main contribution of this work is threefold. First, we present the spectral analysis of the finite

rank operator RN , which allows us to specify the number of truncation terms. Second, we recall the error

rate of QMC quadrature and provide an error estimate of the numerical approximation to the eigenvalue

problem associated with the operator RN in terms of mesh size h. Third, we derive an error estimate of

both, log κ − log κN,h
M and κ − κN,h

M in various norms. Our final estimates of ‖κ − κN,h
M ‖Lp(Ω,L2(D)) and

‖κ− κN,h
M ‖Lp(Ω,C(D)) with 1 ≤ p < 2 are presented in Theorem 5.6. For example, we obtain the bound

∥∥∥κ− κN,h
M

∥∥∥
Lp(Ω,L2(D))

.M− s
d +M

s
d
+ 3

2hs +
(M
N

)1/2
.

Moreover, we discuss the example of an elliptic PDE with lognormal random diffusion coefficient.

There, using our previous results on the approximation of the lognormal random field, we can deduce bounds

of the error between the solution u of the PDE and its induced approximation uN,h
M .

The remainder of the paper is organized as follows. We formulate in Section 2 the approximation of

log κ by the KL expansion, explain the general sampling method and discuss the Galerkin approximation.

In Section 3, we analyze the Quasi Monte-Carlo method to approximate the covariance kernel R(x, x′),
and derive a spectral estimate for R and RN by means of the maximin principle and an eigenvalue decay

estimate. In Section 4, we discuss the conforming Galerkin approximation of the eigenvalue problems of

RN and derive spectral estimates. The main error estimates between κ and κN,h
M in the Lp(Ω, L2(D))-norm

and the Lp(Ω, C(D))-norm with p ∈ [1, 2), respectively, are established in Section 5. Furthermore, we
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present an application of our results for an elliptic operator with lognormal random coefficients in Section

6. Two numerical tests are provided in Section 7 to verify our findings. Finally, we give some concluding

remarks in Section 8.

2 Preliminaries

This section collects elementary facts on the KL expansion and its numerical approximation. To this end,

the overall numerical approximation error is divided into three parts: the truncation error, the sampling error

and the resulting approximation error of the eigenvalue problems.

We start with some notation. Let two Banach spaces V1 and V2 be given. Then, B(V1, V2) stands for the

Banach space composed of all continuous linear operators from V1 to V2 and B(V1) stands for B(V1, V1).
The set of nonnegative integers is denoted by N. For any index α ∈ N

d, |α| is the sum of all components.

The letters M , N and h are reserved for the truncation number of the KL modes, the number of sampling

points and the mesh size. We write A . B if A ≤ cB for some absolute constant c which is independent

of M , N and h, and we likewise write A & B. Moreover, for any m ∈ N, 1 ≤ p ≤ ∞, we follow [1] and

define the Sobolev space Wm,p(D) by

Wm,p(D) = {u ∈ Lp(D) : Dαu ∈ Lp(D) for 0 ≤ |α| ≤ m}.

It is equipped with the norm

‖u‖Wm,p(D) =





( ∑

0≤|α|≤m

‖Dαu‖pLp(D)

) 1

p
, if 1 ≤ p <∞,

max
0≤|α|≤m

‖Dαu‖L∞(D) , if p = ∞.

The space Wm,p
0 (D) is the closure of C∞

0 (D) in Wm,p(D). Its dual space is W−m,q(D), with 1/p+1/q =
1. Also we use Hm(D) =Wm,p(D) for p = 2. (·, ·) denotes the inner product in L2(D).

2.1 Karhunen-Loève expansion: continuous level

In this work, we consider a stochastic field κ(y, x) ∈ L2(Ω × D) with its logarithm being a centered

Gaussian field, i.e.,

log dP(y) = ρdy :=
d′∏

j=1

ρ(yj)d(yj) with ρ(y) :=
1√
2π

exp (−y
2

2
),

where P is the probability measure on Ω introduced in Section 1. We denote the associated integral operator

S : L2(D) → L2(Ω) by

(Sv)(y) =
ˆ

D
log κ(y, x)v(x)dx, (2.1)

whereas its adjoint operator S∗ : L2(Ω) → L2(D) is defined by

(S∗v)(x) =

ˆ

Ω
log κ(y, x)v(y)ρdy. (2.2)
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Let R : L2(D) → L2(D) be defined by R := S∗S . Then R is a nonnegative self-adjoint Hilbert-Schmidt

operator with kernel R ∈ L2(D ×D) : D ×D → R given by

R(x, x′) =

ˆ

Ω
log κ(y, x) log κ(y, x′)ρdy.

This is just the covariance function of the stochastic process log κ(x, y). Moreover, for any v ∈ L2(D), we

have

Rv(x) =
ˆ

D
R(x, x′)v(x′)dx′ =

ˆ

D

ˆ

Ω
log κ(y, x) log κ(y, x′)v(x′)ρdydx′.

The standard spectral theory for compact operators [25] implies that the operator R has at most count-

ably many discrete eigenvalues, with zero being the only accumulation point, and each non-zero eigenvalue

has only finite multiplicity. Let {λn}∞n=1 be the sequence of eigenvalues (with multiplicity counted) associ-

ated to R, which are ordered nonincreasingly, and let {φn}∞n=1 be the corresponding eigenfunctions that are

orthonormal in L2(D). Furthermore, for any λn 6= 0, define

ψn(y) =
1√
λn

ˆ

D
log κ(y, x)φn(x)dx. (2.3)

One can verify that the sequence {ψn}∞n=1 is uncorrelated and orthonormal inL2(Ω), and therefore, {ψn}∞n=1

are i.i.d normal random functions.

Note that the sequence {λn}∞n=1 can be characterized by the so-called approximation numbers (cf. [21,

Section 2.3.1]). They are defined by

λn = inf{‖R − L‖B(L2(D)) : L ∈ F(L2(D)), rank(L) < n} (2.4)

where F(L2(D)) denotes the set of the finite rank operators on L2(D). This equivalency is frequently

employed to estimate eigenvalues by constructing finite rank approximation operators to R.

The KL expansion of the bivariate function log κ(y, x) then refers to the expression

log κ(y, x) =

∞∑

n=1

√
λnφn(x)ψn(y), (2.5)

where the series converges in L2(Ω×D).

2.2 Karhunen-Loève expansion: M -term truncation

Now, we will truncate the KL expansion and discuss the resulting error. The studies on the M -term KL

approximation to random fields are extensive. In [22], the authors derived the eigenvalue decay rates for

random fields with their corresponding covariance kernels possessing certain regularity and considered the

generalized fast multipole methods to solve the associated eigenvalue problems. Robust eigenvalue compu-

tation for smooth covariance kernels was studied in [24]. A comparison of M -term KL truncation and the

sparse grids approximation was given in [17].

The result of this section is based on our recent paper [18], which proves a sharp eigenvalue decay rate

under a mild assumption on the regularity of the bivariate function log κ(y, x) in the physical domain. To

this end, we make the following assumption.

Assumption 2.1 (Regularity of log κ(y, x)). There exists some s ≥ 0 such that log κ(y, x) ∈ L∞(Ω, Hs(D)).
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Under Assumption 2.1, by the definition of the kernel R(x, x′), we have R(x, x′) ∈ Hs(D)×Hs(D).
The following eigenvalue decay estimate [18, Theorems 3.2, 3.3 and 3.4] will be used repeatedly.

Theorem 2.1. Let Assumption 2.1 hold. Then, for any M ∈ N sufficiently large, there holds

λn ≈ C2.1n
− 2s

d
−1 when n is sufficiently large,

∥∥∥
∑

n>M

√
λnφn(x)ψn(y)

∥∥∥
L2(Ω×D)

≤ C
1/2
2.1

√
d

2s
(M + 1)−

s
d .

with the constant C2.1 := diam(D)2sCem(d, s)Cext(D, s) ‖log κ‖2L2(Ω,Hs(D)). Here, Cem(d, s) denotes the

embedding constant between the Lorentz sequence spaces ℓ d
d+2s

,1 →֒ ℓ d
d+2s

,∞ and Cext(D, s) is a constant

depending only on D and s.

The next lemma gives the regularity of the eigenfunctions {φn}∞n=1.

Lemma 2.1 (Regularity of the eigenfunctions {φn}∞n=1). Let Assumption 2.1 be valid. Then for all 0 ≤ θ ≤
1, there holds

‖φn‖Hθs(D) ≤ C(D, d, s)n
θs
d when n is sufficiently large. (2.6)

Here, C(D, d, s) denotes a positive constant depending only on D, d and s.

Proof. We will only prove the result for s ∈ N+. The case for s ∈ R
+ can be obtained by the interpolation

method.

Let α = [α1, · · · , αd] ∈ N
d with |α| :=

d∑
i=1

αi ≤ s. The combination of Assumption 2.1 and decom-

position (2.5) and an application of Lebesgue’s dominated convergence theorem lead to the expansion

∂αx log κ(y, x) =

∞∑

n=1

√
λn∂

α

x φn(x)ψn(y).

After taking the squared L2(Ω×D)-norm on both sides, we arrive at

‖∂αx log κ‖2L2(Ω×D) =

∞∑

n=1

λn‖∂αx φn‖2L2(D).

Now we sum over all α ∈ N
d with |α| ≤ s, and obtain by the definition of the Sobolev space Hs(D) that

‖ log κ‖2L2(Ω,Hs(D)) =
∞∑

n=1

λn ‖φn‖2Hs(D) .

At last, an application of Theorem 2.1 gives

+∞ >
∞∑

n=1

λn ‖φn‖2Hs(D) ≈ C2.1

∞∑

n=1

n−
2s
d
−1 ‖φn‖2Hs(D)

= C2.1

∞∑

n=1

n−1−ǫ · n− 2s
d
+ǫ ‖φn‖2Hs(D) (2.7)
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for any positive parameter ǫ. With 0 < ǫ → 0 we obtain from the relation (2.7) that, when n is sufficiently

large, there holds

‖φn‖Hs(D) ≤ C(D, d, s)n
s
d .

This verifies (2.6) for θ = 1. By noting that ‖φn‖L2(D) = 1, an application of [2, Theorem 3.3] yields then

the desired estimate.

It is worth to emphasize the optimality of the eigenfunctions {φn}∞n=1 in the sense that the mean-square

error resulting from a finite-rank approximation of κ(y, x) is minimized [15]. Thus, the eigenfunctions

indeed minimize the truncation error in the L2-sense, i.e.

min
{cn(x)}Mn=1

⊂L2(D)

{cn(x)}Mn=1
orthonormal

∥∥∥∥∥log κ(y, x)−
M∑

n=1

(
ˆ

D
log κ(y, x)cn(x)dx

)
cn(x)

∥∥∥∥∥
L2(Ω×D)

=

√∑

n>M

λn. (2.8)

2.3 Sampling estimate of the continuous Karhunen-Loève approximation

Clearly, any numerical computation of the covariance functionR(x, x′) by a conventional quadrature method

quickly becomes expensive and impractical when the dimensionality d′ of the random domain Ω is large.

This is due to the curse of dimensionality. To this end, depending on the regularity prerequisites with respect

to the stochastic variable y, the Monte Carlo method, the Quasi-Monte Carlo (QMC) methods or the sparse

grid method may be employed in approximating R(x, x′). In this paper, we will focus on QMC.

Anyway, a numerical quadrature gives RN (x, x′), which is defined by

RN (x, x′) :=
N∑

n=1

ωn log κ(yn, x) log κ(yn, x
′). (2.9)

Here, N ∈ N denotes the number of quadrature points and {y1, · · · , yN} and {ω1, · · · , ωN} are the corre-

sponding quadrature points and weights. Clearly, RN ∈ L2(D ×D) and RN : D ×D → R.

Analogously, we denote by RN the nonnegative self-adjoint Hilbert-Schmidt operator with kernel RN .

The operator RN is of rank no greater than N and hence compact. Analogously, we can define in non-

decreasing order its eigenvalues and its normalized eigenfunctions in L2(D) as {λNn }Nn=1 and {φNn }Nn=1,

respectively.

Note at this point the following: If we are interested in a specific approximate realization of log κ(y, ·)
for some y ∈ Ω, then we have to consider the function ψN

n (y) defined by

ψN
n (y) =

1√
λNn

ˆ

D
log κ(y, x)φNn (x)dx. (2.10)

To estimate the error between ψn and ψN
n , we can apply finite elements Th over D as introduced in Subsec-

tion 2.4. This error depends on the regularity of log κ(y, ·) for given y ∈ Ω. On the other hand, if we are

only interested in certain statistical quantities of the Gaussian random field log κ, then there is no need to

calculate {ψN
n }Nn=1, and we can take directly i.i.d normal random functions, e.g., {ψn}Nn=1. This is indeed

the situation many articles are concerned with, see e.g., [5, 11, 19].
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2.4 Galerkin discretization of the sampled, truncated continuous Karhunen-Loève approx-

imation

Now we describe the conforming Galerkin approximation of the eigenvalue problem on RN . To this end,

let Th be a regular quasi-uniform triangulation over the physical domain D with a maximal mesh size h and

let k := ⌈s⌉. The associated finite element space Vh is defined by

Vh := {v ∈ H1(D) : v|K ∈ P k(K) for all K ∈ Th}. (2.11)

Let Q be the dimension of Vh. We then have Q = O
(
(hk )

d
)

. The L2-projection Ih : L2(D) → Vh has the

approximation property [8, Theorem 4.4.20]

‖v − Ihv‖L2(D) ≤ CIhh
s ‖v‖Hs(D) for all v ∈ Hs(D) (2.12)

hd/2 ‖v − Ihv‖C(D) ≤ CIhh
s ‖v‖Hs(D) for all v ∈ Hs(D) for s > d/2. (2.13)

Here, the positive constant CIh depends only on the regularity parameter of Th and is independent of the

mesh size h.

The conforming Galerkin approximation of the eigenvalue problem of RN is to find {λN,h
n , φN,h

n }Qn=1 ⊂
R× Vh such that

Ih

(
λN,h
n φN,h

n −RNφ
N,h
n

)
= 0.

This is equivalent to the eigenvalue problem of the finite-rank operator on L2(D) defined by

RN,h := IhRNIh.

Let {λN,h
n , φN,h

n }Qn=1 be the corresponding eigenpairs with eigenvalues in nonincreasing order and eigen-

vectors orthonormal in L2(D). Then theM -term truncated KL expansion, denoted by κN,h
M (y, x), is defined

by

log κN,h
M (y, x) :=

M∑

n=1

√
λN,h
n φN,h

n (x)ψn(y). (2.14)

Note at this point the following: Again, if we are mainly concerned with the approximation to a specific

bivariate function log κ via the expression (2.14), then we have to replace ψn with its numerical approxima-

tion

ψN,h
n (y) :=

1√
λN,h
n

h2
N∑

n=1

∑

K∈Th

∑

xj∈IK

log κ(xj , yn)φ
N,h
n (xj)Ln(y). (2.15)

Here, IK represents the quadrature points on each finite element K ∈ Th and {Ln(y)}Nn=1 denotes the

Legendre polynomials of order N . Note that ψN,h
n (y) is the numerical approximation by interpolation with

sampling points {yn}Nn=1 to ψ̃N,h
n (y) defined as

ψ̃N,h
n (y) :=

1√
λN,h
n

ˆ

D
log κ(y, x)φN,h

n (x)dx. (2.16)
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In view of the KL expansion (2.5) and the M -term truncation estimate (2.14), an application of the triangle

inequality yields
∥∥∥log κ− log κN,h

M

∥∥∥
L2(Ω×D)

≤
∥∥∥
∑

n>M

√
λnφn(x)ψn(y)

∥∥∥
L2(Ω×D)

+
∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψn(y)

)∥∥∥
L2(Ω×D)

+
∥∥∥

M∑

n=1

(√
λNn φ

N
n (x)ψn(y)−

√
λN,h
n φN,h

n (x)ψn(y)
)∥∥∥

L2(Ω×D)
.

(2.17)

A main goal of this paper is to derive a sharp estimate of

∥∥∥log κ− log κN,h
M

∥∥∥
L2(Ω×D)

in (2.17). To this

end, it suffices to analyze the three terms on the right hand side of (2.17). Here, the first term represents

the truncation error that can be estimated by Theorem 2.1, the second term is due to sampling of the KL

approximation and the third term is induced by the Galerkin approximation error.

3 QMC method approximation error

In this section, we apply the QMC method based on the randomly shifted lattice rule and derive the

sampling error corresponding to the second term in (2.17). To this end, we map the quadrature points

ΞN := {ξ1, ξ2, · · · , ξN} ⊂ [0, 1]d
′

to R
d′ by the inverse of the cumulative distribution function of the

standard normal distribution. The cumulative distribution function φ(y) is defined by

φ(y) :=

d′∏

i=1

φ(yi), where φ : R → (0, 1) with φ(yi) :=

ˆ yi

−∞
ρ(y′)dy′

and its inverse is φ−1(y) : (0, 1)d
′ → R

d′ . Upon changing variables, we obtain

R(x, x′) =

ˆ

[0,1]d′
log κ(φ−1(z), x) log κ(φ−1(z), x′)dz. (3.1)

Then by taking yi := φ−1(ξi) and ωi :=
1
N for i = 1, 2, · · · , N in (2.9), we get an approximation to the

covariance function R(x, x′), which is denoted by RN (x, x′).
To this end, we introduce the construction of the quadrature points ΞN , which is based on the fast CBC

construction of randomly shifted lattice rules in the unanchored space [20]. The unanchored space F(Rd′)
is defined by

F(Rd′) :=

{
v ∈ L2(Rd′) : ‖v‖2

F(Rd′ )
:=

∑

α⊂{1,··· ,d′}

1

γα

ˆ

R|α|

( ˆ

Rd′−|α|

∂αy v(yα; y−α)ρ(y−α)dy−α

)2
ν(yα)dyα <∞

}
. (3.2)

Here, the positive function ν controls the boundary behavior of the functions in F(Rd′). The collection of

parameters γα for all α ⊂ {1, · · · , d′} controls the relative importance of various groups of variables, and

ρ(y−α) = Πj∈{1,d′}\αρ(yj) and ν(yα) = Πj∈αν(yj).
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Note that we will choose the weight function ν and the weight parameters γα, such that the bivariate function

log κ(·, x) belongs to F(Rd′) for all x ∈ D.

We apply the CBC approach [20, Algorithm 6] to derive the generating vector z ∈ [0, 1)d
′

with the

number of sampling points being N . To this end, let the shift ∆ ∈ [0, 1]d
′

be an i.i.d uniformly distributed

vector. Then we obtain the randomly shifted (rank-1) lattice rule by

ξi :=
iz

N
+∆− ⌊ iz

N
+∆⌋, i = 1, · · · , N. (3.3)

Now, RN (x, x′) in (2.9) can be approximated by taking yi := φ−1(ξi) for i = 1, 2, · · · , N .

The error ed′,N (z) between R(x, x′) and RN (x, x′) is measured by the shifted-averaged worse-case

error defined by

ed′,N (z) := max
v∈F(Rd′ )

{( ˆ

[0,1]d
′

∣∣∣
ˆ

Rd′
v(y)ρdy − 1

N

N∑

i=1

v(yi)
∣∣∣
2
d∆

)1/2
}
.

Thus, using the CBC Algorithm to calculate RN (x, x′) ∈ L2(D × D) defined in (2.9) yields a shifted-

averaged worse-case error of O(N−1+δ) for any δ > 0 with the construction cost of O(d′N log(N)).
Therefore, we start with the following setting.

Assumption 3.1 (Assumption on the sampling error). For some δ ∈ (0, 1), there holds

‖R −RN‖B(L2(D)) . N−1+δ. (3.4)

To approximate a bivariate function or a specific realization of the random field log κ(y, ·), we have

introduced in the last section the quantities {ψN
n }∞n=1, cf. (2.10), which are not orthonormal in L2(Ω).

Nevertheless, they are very close to an orthonormal basis when the approximation error between R and RN

is very small.

Lemma 3.1 (Near orthonormality of {ψN
n }Nn=1). Let ψN

n be defined as in (2.10). There holds

ˆ

Ω
ψN
n ψ

N
mρdy = δm,n +

1√
λNn λ

N
m

ˆ

D
(R−RN )φNmφ

N
n dx for all 1 ≤ m,n ≤ N.

Proof. This is a direct consequence of the definition (2.10) and the eigenvalue problem for RN .

Next, we give some estimates on the finite-rank approximation RN and its spectrum.

Proposition 3.1 (Spectral estimate for RN ). Let Assumption 2.1 hold, let N ∈ N+ be sufficiently large and

let M := ⌊N
1

2s/d+1 ⌋. Then RN ∈ B(L2(D), Hs(D)) with

‖RN‖B(L2(D),Hs(D)) ≤ ‖log κ‖L∞(Ω,L2(D)) ‖log κ‖L∞(Ω,Hs(D)) . (3.5)

For 1 ≤ n ≤ N , there holds

∥∥φNn
∥∥
Hs(D)

≤ (λNn )−1 ‖RN‖B(L2(D),Hs(D)) . (3.6)

Furthermore, let λki be an eigenvalue of R with multiplicity qi for i = 1, 2, · · · and kI−1 < N ≤ kI for

some I ∈ N+. Assume that for sufficiently large N , there holds

1

N
≪ min

i=2,··· ,I
{λki − λki−1

}. (3.7)
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Then, for 1 ≤ n ≤ N , there holds

λNn . max{n− 2s
d
−1, N−1}. (3.8)

In addition,

∥∥φNn − φn
∥∥
L2(D)

. N−1/2 for all 1 ≤ n ≤M. (3.9)

Proof. We can obtain from the definition (2.9) and the triangle inequality

‖RN‖B(L2(D),Hs(D)) ≤
1

N

N∑

n=1

‖log κ(yn, ·)‖L2(D) ‖log κ(yn, ·)‖Hs(D) .

Then Assumption 2.1 leads to (3.5). The relation (3.6) is derived from the definition. To prove (3.8), fix

1 ≤ n ≤ N and let Vn = span{φ1, · · · , φn} be a n-dimension subspace. Since R and RN are nonnegative

and self-adjoint, we obtain

λn − λNn ≤ λn − min
v∈Vn

(RNv, v)

(v, v)
. (3.10)

Next we estimate the lower bound of the minimum on the right hand side of (3.10). To this end, note that

any v ∈ Vn admits the expression v =
n∑

i=1
ciφi for some {ci}ni=1 ⊂ R

n. Let (v, v) := 1, then
n∑

i=1
c2i = 1.

For any δ > 0, plugging in the expression for v and applying (3.4) lead to

min
v∈Vn

(RNv, v)

(v, v)
= min

v∈Vn

(Rv, v)
(v, v)

+
((RN −R)v, v)

(v, v)

≥ min
n∑

i=1

c2i=1

n∑

i=1

λic
2
i −N−1+δ

n∑

i=1

n∑

j=1

cicj

=: min
n∑

i=1

c2i=1

f(c1, · · · , cn). (3.11)

The lower bound of the minimum can now be estimated using Lagrange multipliers. To this end, let µ ∈ R

and define

F (c1, · · · , cn;µ) := f(c1, · · · , cn)− µ(

n∑

i=1

c2i − 1)

Let (c∗, µ∗) = (c∗1, · · · , c∗n, µ∗) be the optimal point to the unconstrained minimization problem associated

to F (c1, · · · , cn;µ). Then c∗1, · · · , c∗n have the same sign by the definition of f . Let c∗i ≥ 0 for all 1 ≤ i ≤ n.

The optimality conditions read ∂F
∂ci

|(c∗,µ∗) = 0 for i = 1, · · · , n, and ∂F
∂µ |(c∗,µ∗) = 0. This immediately

implies

min
n∑

i=1

c2i=1

f(c1, · · · , cn) = f(c∗) = µ∗ and ∀1 ≤ i ≤ n : (λi − µ∗)c∗i =
1

N1−δ

n∑

j=1

c∗j . (3.12)
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The second relation in (3.12) implies for all 1 ≤ i ≤ n that there holds

1

λi − µ∗
= N1−δ c∗i

n∑
j=1

c∗j

.

Summing over i = 1, · · · , n yields

n∑

i=1

1

λi − µ∗
= N1−δ. (3.13)

Recall that c∗i ≥ 0 for all i = 1, · · · , n. Together with (3.12), this implies µ∗ < λn. Now combining

(3.7) and (3.13) results in 1
λn−µ∗ & N, and therefore, µ∗ ≥ λn − C1N

−1 for some positive constant C1

independent of N . This, together with (3.12), (3.11) and (3.10), gives λn − λNn . N−1. Analogously, by

changing the roles of R and RN , we can show

|λNn − λn| . N−1. (3.14)

Consequently, (3.8) follows by Theorem 2.1.

It remains to prove (3.9). We only present the proof for n = 1. For n > 1, (3.9) can be shown similarly

to [4, Theorem 9.1]. Since the whole space L2(D) is orthogonally decomposed as the direct sum of the

range of R and its kernel, φN1 can be split into

φN1 :=
∞∑

i=1

ciφi + v (3.15)

for some v ∈ L2(D) satisfying Rv = 0. Recall that λ1 = · · ·λq1 > λq1+1. This leads to

(
1− λq1+1

λ1

)
∥∥∥∥∥φ

N
1 −

q1∑

i=1

ciφi

∥∥∥∥∥

2

L2(D)

=
(
1− λq1+1

λ1

)( ∞∑

n=q1+1

c2n + ‖v‖2L2(D)

)

≤
∞∑

n=1

(
1− λn

λ1

)
c2n + ‖v‖2L2(D) = (φN1 , φ

N
1 )− λ−1

1 (RφN1 , φN1 )

= λ−1
1 (λ1 − λN1 )− λ−1

1 ((R−RN )φN1 , φ
N
1 ),

which, combined with (3.4) and (3.14), gives

(1− λq1+1

λ1
)

∥∥∥∥∥φ
N
1 −

q1∑

i=1

ciφi

∥∥∥∥∥

2

L2(D)

. λ−1
1 N−1.

By redefining φ1 to be
( q1∑
i=1

c2i
)− 1

2

q1∑
i=1

ciφi, (3.9) is proved due to the spectral gap assumption (3.7).

Remark 3.1. If the number of sampling points N is not sufficiently large then the spectral gap assumption

(3.7) is not fulfilled. Then one can show that for 1 ≤ n ≤ N , there holds

λNn . max{n− 2s
d
−1,

n

N
}. (3.16)

Thus, to make λNn an accurate approximation to λn for 1 ≤ n ≤ M , we have to impose a much more

stringent restriction on M := ⌊N
1

2s/d+2 ⌋. In this manner, we can show that n
N ≪ n−

2s
d
−1 for 1 ≤ n ≤M .
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Finally, we can give an estimate to the second term in (2.17):

Proposition 3.2 (Root mean square error to the second term in (2.17)). Let N be sufficiently large and

M ≤ ⌊N
1

2s/d+1 ⌋. Furthermore, let (3.7) be satisfied. Then there holds

∥∥∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψn(y)

)∥∥∥∥∥
L2(Ω×D)

.M1/2N−1/2.

Proof. Employing the triangle inequality yields

∥∥∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψn(y)

)∥∥∥∥∥

2

L2(Ω×D)

=

∥∥∥∥∥

M∑

n=1

(
(
√
λn −

√
λNn )φn(x)ψn(y) +

√
λNn (φn(x)− φNn (x))ψn(y)

)∥∥∥∥∥

2

L2(Ω×D)

≤
M∑

n=1

(
(
√
λn −

√
λNn )2 + λNn

∥∥φNn − φn
∥∥2
L2(D)

)
.

Then the desired result follows from (3.14) and (3.9).

Next we give an estimate on ‖ψn − ψN
n ‖L2(Ω).

Lemma 3.2 (Estimate on ‖ψn−ψN
n ‖L2(Ω)). LetN be sufficiently large andM ≤ ⌊N

1

2s/d+1 ⌋. Furthermore,

let (3.7) be satisfied. Then there holds

‖ψn − ψN
n ‖L2(Ω) .

1√
λNn

N−1/2 for all n = 1, · · · ,M.

Proof. By (2.3), we obtain

ψn(y)− ψN
n (y) =

1√
λn

ˆ

D
log κ(y, x)φn(x)dx− 1√

λNn

ˆ

D
log κ(y, x)φNn (x)dx

=
( 1√

λn
− 1√

λNn

) ˆ

D
log κ(y, x)φn(x)dx+

1√
λNn

ˆ

D
log κ(y, x)(φn(x)− φNn (x))dx.

Therefore, taking the L2(Ω)-norm on both sides yields

‖ψn − ψN
n ‖L2(Ω) ≤

∣∣∣1−
√
λn
λNn

∣∣∣+
1√
λNn

‖ log κ‖L2(Ω×D)

∥∥φNn − φn
∥∥
L2(D)

.
1√
λNn

N−1/2,

where, in the last inequality, we have applied (3.9) and the inequality |√a −
√
b| ≤

√
|a− b| for all

a, b ≥ 0.
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In order to numerically approximate each realization of the Gaussian random field log κ(y, ·) for given

y ∈ Ω, we need the following result.

Proposition 3.3. Let N be sufficiently large and M ≤ ⌊N
1

2s/d+1 ⌋. Furthermore, let (3.7) be satisfied. Then

∥∥∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψN

n (y)
)∥∥∥∥∥

L2(Ω×D)

.MN−1/2.

Proof. The triangle inequality yields

∥∥∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψN

n (y)
)∥∥∥∥∥

L2(Ω×D)

=
∥∥∥

M∑

n=1

(
(
√
λn −

√
λNn )φn(x)ψn(y) +

√
λNn (φn(x)− φNn (x))ψn(y)

+
√
λNn φ

N
n (x)(ψn(y)− ψN

n (y))
)∥∥∥

L2(Ω×D)

.

M∑

n=1

(
|
√
λn −

√
λNn |+

√
λNn

∥∥φNn − φn
∥∥
L2(D)

+
√
λNn ‖ψn − ψN

n ‖L2(Ω)

)
.

Then the desired result follows from (3.14), (3.9) and Lemma 3.2.

4 Conforming Galerkin approximation estimate

In this section we derive an estimate for the third term in (2.17) by means of the approximation theory of

conforming finite element methods. To this end, let

EN,h := RN −RN,h

eN,h
n := φNn − φN,h

n

∆λN,h
n := λNn − λN,h

n .

(4.1)

Then EN,h is a self-adjoint operator on L2(D) and we have the following error representation.

Lemma 4.1. The error operator EN,h has the property

(EN,hv, v) = (v, (I − Ih)RN (I + Ih)v) for all v ∈ L2(D).

Proof. For given v ∈ L2(D) and since RN,h = IhRNIh and (RNIhv − IhRNv, v) = 0, we obtain

(EN,hv, v) = ((RN − IhRNIh)v, v) + (RNIhv − IhRNv, v)

= ((I − Ih)RN (I + Ih)v, v).
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A direct consequence of Lemma 4.1, together with the approximation property (2.12) and Proposition

3.1, is the upper bound estimate for the operator norm of EN,h

‖EN,h‖B(L2(D)) ≤ 2CIhh
s ‖RN‖B(L2(D),Hs(D)) . (4.2)

Finally, we are ready to present the main result in this section.

Proposition 4.1 (Conforming Galerkin approximation estimate). Let Assumption 2.1 hold and let N ∈ N+

be sufficiently large and M ≤ ⌊N
1

2s/d+1 ⌋. Assume that the spectral gap condition (3.7) is valid. Then there

are constants C1, C2 and h0 ≪ N−1/s such that

∆λN,h
n ≤ C1(λ

N
n )−1h2s for all 0 < h ≤ h0 and n = 1, · · · ,M.

Furthermore, the eigenvectors {φNn }Nn=1 can be selected such that

∥∥∥eN,h
n

∥∥∥
L2(D)

≤ C2(λ
N
n )−1hs for all 0 < h ≤ h0 and n = 1, · · · ,M.

Here, the constants C1 and C2 are independent of h and N and h0 > 0 is sufficiently small.

Proof. The proof follows from [4, Theorem 9.1], where the following identity plays a crucial role. We have

λNn − (RNv, v) = λNn (v − φNn , v − φNn )− (RN (v − φNn ), v − φNn )

for all v ∈ L2(D) satisfying (v, v) = 1. This identity can be derived by definition directly. Together with

Proposition 3.1 and the estimate (4.2), this completes the proof.

Recall that if we want to approximate a certain realization of the random field log κ(y, ·) for some y ∈ Ω,

then we have to estimate the error between ψN
n and ψN,h

n . To this end, we make the following assumption.

Assumption 4.1. Let ψN,h
n and ψ̃N,h

n be as defined in (2.15) and (2.16), respectively. Assume that, for some

N0 sufficiently large and a sufficiently small h0 ≪ N
−1/s
0 , there holds

‖ψ̃N,h
n − ψN,h

n ‖L2(Ω) . N−1 + hs for all N > N0 and h < h0.

Note that Assumption 4.1 requires a certain regularity of the bivariate function log κ(y, x) ∈ L2(Ω × D)

over the stochastic domain Ω since the computation of ψ̃N,h
n involves the polynomial interpolation of ψN,h

n

over Ω.

We then get the following result.

Lemma 4.2. Let Assumption 4.1 be valid. Let ψN
n and ψN,h

n be as defined in (2.10) and (2.15), respectively.

Then, for some N0 sufficiently large and a sufficiently small h0 ≪ N
−1/s
0 , there holds

‖ψN
n − ψN,h

n ‖L2(Ω) . N−1 + n
3s
d
+ 3

2hs for all N > N0 and h < h0.

Proof. An application of the triangle inequality leads to

‖ψN
n − ψN,h

n ‖L2(Ω) ≤ ‖ψN
n − ψ̃N,h

n ‖L2(Ω) + ‖ψ̃N,h
n − ψN,h

n ‖L2(Ω).
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The second term can be estimated by Assumption 4.1. The definitions (2.3) and (2.16) imply

ψN
n (y)− ψ̃N,h

n (y) =
1√
λNn

ˆ

D
log κ(y, x)φNn (x)dx− 1√

λN,h
n

ˆ

D
log κ(y, x)φN,h

n (x)dx

=
( 1√

λNn
− 1√

λN,h
n

) ˆ

D
log κ(y, x)φNn (x)dx+

1√
λN,h
n

ˆ

D
log κ(y, x)(φNn (x)− φN,h

n (x))dx

=
(
1−

√
λNn

λN,h
n

)
ψN
n +

1√
λN,h
n

ˆ

D
log κ(y, x)(φNn (x)− φN,h

n (x))dx.

Taking the L2(Ω)-norm on both sides leads to

‖ψN
n − ψN,h

n ‖L2(Ω) ≤
∣∣∣∣∣

√
λNn −

√
λN,h
n√

λN,h
n

∣∣∣∣∣
∥∥ψN

n

∥∥
L2(Ω)

+
1√
λN,h
n

‖log κ‖L2(Ω×D)

∥∥∥eN,h
n

∥∥∥
L2(D)

≤ 1√
λN,h
n

(√
∆λN,h

n

∥∥ψN
n

∥∥
L2(Ω)

+ ‖log κ‖L2(Ω×D)

∥∥∥eN,h
n

∥∥∥
L2(D)

)
.

Then the desired result follows from Lemma 3.1 and Proposition 4.1.

5 Main estimates

In this section, we present the main estimate of the error between the lognormal random field κ and its M -

term numerical approximation κN,h
M in the Lp(Ω, L2(D))-norm and in the Lp(Ω, C(D))-norm for p < 2.

The overall procedure is as follows: We first derive in Sections 5.1 and 5.2 an estimate on | log κ− log κN,h
M |

with respect to the L2(Ω × D)-norm and the L2(Ω, C(D))-norm, cf. Theorems 5.1 and 5.4. Then we

establish the final results on |κ− κN,h
M | in Theorem 5.6 by employing Fernique’s Theorem.

5.1 L2 error estimate

First, we give an estimate for the third term in (2.17).

Proposition 5.1 (Galerkin approximation estimate in (2.17)). Let Assumption 2.1 hold, let N ∈ N+ be

sufficiently large and let M ≤ ⌊N
1

2s/d+1 ⌋ and h ≪ N−1/s. Assume the spectral gap condition (3.7) to be

valid. Then there holds

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n ψn −

√
λN,h
n φN,h

n ψn

)∥∥∥∥∥
L2(Ω×D)

.M
s
d
+ 3

2hs.

Proof. Due to the orthogonality of the basis functions {ψn}∞n=1 in L2(Ω), an application of the triangle
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inequality leads to

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n ψn −

√
λN,h
n φN,h

n ψn

)∥∥∥∥∥
L2(Ω×D)

=

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n −

√
λN,h
n φN,h

n

)∥∥∥∥∥
L2(D)

=

∥∥∥∥∥

M∑

n=1

(
(
√
λNn −

√
λN,h
n )φNn +

√
λN,h
n (φNn − φN,h

n )
)∥∥∥∥∥

L2(D)

≤

√√√√
M∑

n=1

∆λN,h
n +

M∑

n=1

√
λN,h
n

∥∥∥eN,h
n

∥∥∥
L2(D)

.

Here, we have used the orthogonality of {φNn }Mn=1 over L2(D) in the last step. Then, an application of

Proposition 4.1 and Theorem 2.1 gives the desired result.

Now, using Theorem 2.1, Propositions 3.2 and 5.1, we are finally ready to present an estimate for (2.17).

Theorem 5.1 (Root mean square error for M -term KL expansion). Let Assumption 2.1 hold. Let N ∈ N+

be large, let M ≤ ⌊N
1

2s/d+1 ⌋ and h ≪ N−1/s. Assume the spectral gap condition (3.7) to be valid. Let

log κN,h
M be given as in (2.14). Then there holds

∥∥∥log κ− log κN,h
M

∥∥∥
L2(Ω×D)

.M− s
d +

(M
N

)1/2
+M

s
d
+ 3

2hs.

Remark 5.1 (Complexity). According to Theorem 5.1, in order to approximate the Gaussian random field

log κ by formula (2.14) with root mean square error of ǫ for a certain threshold accuracy ǫ > 0, we need to

take the number of sampling points N := O(ǫ−2−d/s), the number of truncation terms M := O(ǫ−d/s) and

the mesh size h := O(ǫ2/s+3d/2s2).

To numerically approximate the realization of log κ(y, ·) for given y ∈ Ω by the M -term truncation

formula (2.14), we can replace the i.i.d normal random functions {ψn(y)}Mn=1 with {ψN,h
n (y)}Mn=1 defined

in (2.15). The error in this process can be estimated as follows.

Theorem 5.2 (Root mean square error for M -term KL expansion of a bivariate function). Let Assumptions

2.1 and 4.1 hold. Let N ∈ N+ be large, let M ≤ ⌊N
1

2s/d+1 ⌋ and h ≪ N−1/s. Assume the spectral gap

condition (3.7) to be valid. Let

log κN,h
M (y, x) =

M∑

n=1

√
λN,h
n φN,h

n (x)ψN,h
n (y). (5.1)

Then there holds
∥∥∥log κ(y, x)− log κN,h

M (y, x)
∥∥∥
L2(Ω×D)

.M− s
d +MN−1/2 +M

2s
d
+ 3

2hs.
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Proof. An application of the triangle inequality together with the KL expansion (2.5) implies

∥∥∥log κ− log κN,h
M

∥∥∥
L2(Ω×D)

≤
∥∥∥∥∥

M∑

n=1

(√
λnφn(x)ψn(y)−

√
λNn φ

N
n (x)ψN

n (y)
)∥∥∥∥∥

L2(Ω×D)

+

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n (x)ψN

n (y)−
√
λN,h
n φN,h

n (x)ψN,h
n (y)

)∥∥∥∥∥
L2(Ω×D)

+

∥∥∥∥∥
∑

n>M

√
λnφn(x)ψn(y)

∥∥∥∥∥
L2(Ω×D)

.

Now, the first term and the third term above can be bounded by Proposition 3.3 and Theorem 2.1, respec-

tively. We only need to estimate the second term. The triangle inequality gives

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n ψ

N
n −

√
λN,h
n φN,h

n ψN,h
n

)∥∥∥∥∥
L2(Ω×D)

=

∥∥∥∥∥

M∑

n=1

(
(
√
λNn −

√
λN,h
n )φNn ψ

N
n +

√
λN,h
n (φNn − φN,h

n )ψN
n +

√
λN,h
n φN,h

n (ψN
n − ψN,h

n )
)∥∥∥∥∥

L2(Ω×D)

≤

√√√√
M∑

n=1

∆λN,h
n ‖ψN

n ‖2
L2(Ω)

+

M∑

n=1

√
λN,h
n

∥∥∥eN,h
n

∥∥∥
L2(D)

‖ψN
n ‖L2(Ω) +

√√√√
M∑

n=1

λN,h
n ‖ψN

n − ψN,h
n ‖2

L2(Ω)
.

By Lemma 3.1 and (3.4), ‖ψN
n ‖L2(Ω) . 1 for all 1 ≤ n ≤ M. Then, Proposition 4.1, Lemma 4.2 and

Theorem 2.1 together show the desired result.

Remark 5.2 (Complexity). According to Theorem 5.2, in order to approximate a specific realization of the

Gaussian random field log κ by formula (5.1) with root mean square error for a certain threshold accuracy

ǫ > 0, we need to choose the number of sampling pointsN := O(ǫ−2−2d/s), the number of truncation terms

M := O(ǫ−d/s) and the mesh size h := O(ǫ3/s+3d/2s2).

5.2 Uniform error estimate

In order to derive a uniform error estimate of the Gaussian random field log κ(y, x), we require a further

regularity assumption on log κ to guarantee that log κ ∈ L2(Ω, C(D)). To this end, we make the following

assumption.

Assumption 5.1 (Regularity of log κ(y, x)). Let Assumption 2.1 hold. Furthermore, assume s > d/2.

Then, the following estimate is valid.

Theorem 5.3 (Uniform estimate on the eigenfunctions). Let Assumption 5.1 be satisfied. Then there holds

‖φn‖C(D) ≤ C(D, d, s)n
1

2 . (5.2)

Proof. Due to Assumption 5.1, an application of (2.6) with θs > d/2 together with the Sobolev embedding

implies the desired result.
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Remark 5.3 (Optimality of the uniform estimate (5.2)). In [6, Section 3] the uniform estimate of eigen-

functions was studied under certain assumptions on the stationary covariance kernel. There, the authors

derived a similar uniform estimate as (5.2) by utilizing essentially the regularity of the Fourier transform of

the covariance kernel. They showed the sharpness of their uniform estimate in the case whenD = [0, 1] and

for the stationary covariance kernel R(x, x′) = R(x − x′) with its Fourier transform R̂ = χ[−F,F ]. Then,

the uniform estimate of the n-th eigenfunction is O(n1/2), see [7].

Proposition 5.2 (Uniform truncation estimate). Let Assumption 5.1 be satisfied. Then, for any 1 ≤M ∈ N,

there holds ∥∥∥
∑

n>M

√
λnφn(x)ψn(y)

∥∥∥
L2(Ω,C(D))

.M− s
d
+ 1

2 .

Proof. By the Sobolev embedding theorem, Assumption 5.1 implies R(x, x′) ∈ C(D ×D). Then one can

obtain

R(x, x) =

∞∑

n=1

λn|φn(x)|2 and ‖ log κ− log κM‖2L2(Ω,C(D)) ≤
∑

n>M

λn‖φn‖2C(D).

This and Theorem 2.1 yield the desired estimate.

Proposition 5.3. Let Assumption 5.1 be fulfilled. Then R and RN are bounded from L2(D) to C(D), i.e.,

R and RN ∈ B(L2(D), C(D)). In addition, it holds

‖R‖B(L2(D),C(D)) ≤ ‖ log κ‖L2(Ω,C(D))‖ log κ‖L2(Ω×D), (5.3)

‖RN‖B(L2(D),C(D)) ≤
1

2N

N∑

n=1

(
‖log κ(yn, ·)‖2L2(D) + ‖log κ(yn, ·)‖2C(D)

)
, (5.4)

‖EN,h‖B(Hs(D),C(D)) ≤ CIh ‖RN‖B(L2(D),Hs(D)) h
s− d

2 . (5.5)

Furthermore, the eigenfunctions φNn ∈ Hs(D) →֒ C(D). Let N ∈ N+ be sufficiently large and M :=

⌊N
1

2s/d+1 ⌋. Assume the spectral gap condition (3.7) to be valid. When 0 < h ≤ h0 ≪ N− 1

s for some

sufficiently small h0, there holds

∥∥∥eN,h
n

∥∥∥
C(D)

.
(
h−

d
2 + (λNn )−1

)
(λNn )−1hs for all n = 1, · · · ,M. (5.6)

Proof. The proof of (5.3) and (5.4) follows directly from basic operator theory. The bound (5.5) is a result

of (2.13) and (5.4). By the definitions of φNn and φN,h
n , we obtain

eN,h
n = (λNn )−1RNφ

N
n − (λN,h

n )−1RN,hφ
N,h
n

= (λNn )−1EN,hφ
N
n +

(
(λNn )−1 − (λN,h

n )−1
)
RN,hφ

N
n + (λN,h

n )−1RN,he
N,h
n .

Together with Proposition 4.1 and (5.5), this yields

∥∥∥eN,h
n

∥∥∥
C(D)

.
(
h−

d
2 + (λNn )−2hs + (λN,h

n )−1
)
(λNn )−1hs.

Since h ≪ N− 1

s , the second term can be bounded from above by the third term, and this completes the

proof.
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Remark 5.4. In a similar manner as in the proof to (5.6), if N ∈ N+ is sufficiently large and M :=

⌊N
1

2s/d+1 ⌋, one can show that

∥∥φn − φNn
∥∥
C(D)

. λ−1
n N−1/2 for all n = 1, · · · ,M. (5.7)

Combining (5.7) and Theorem 5.3, analogously to Proposition 3.1, we can derive the following estimate.

Proposition 5.4. Let N be sufficiently large and M ≤ ⌊N
1

2s/d+1 ⌋. Furthermore, let (3.7) be satisfied. Then

there holds

∥∥∥∥∥

M∑

n=1

(√
λnφnψn −

√
λNn φ

N
n ψn

)∥∥∥∥∥
L2(Ω,C(D))

.M
s
d
+1N−1/2.

Proof. This result follows from an application of the triangle inequality and (5.7).

Proposition 5.5. Let N be sufficiently large and M ≤ ⌊N
1

2s/d+1 ⌋. There holds

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n ψn −

√
λN,h
n φN,h

n ψn

)∥∥∥∥∥
L2(Ω,C(D))

.M
3s
d
+2N−1/2hs +M

s
d
+ 3

2hs.

Proof. An application of the triangle inequality leads to

∥∥∥∥∥

M∑

n=1

(√
λNn φ

N
n ψn −

√
λN,h
n φN,h

n ψn

)∥∥∥∥∥
L2(Ω,C(D))

=

∥∥∥∥∥

M∑

n=1

(
(
√
λNn −

√
λN,h
n )φNn ψn +

√
λN,h
n (φNn − φN,h

n )ψn

)∥∥∥∥∥
L2(Ω,C(D))

≤

√√√√
M∑

n=1

‖φNn ‖2C(D)∆λ
N,h
n +

√√√√
M∑

n=1

λN,h
n

∥∥∥eN,h
n

∥∥∥
2

C(D)
.

Then, an application of the inequalities (5.2) and (5.7), Propositions 4.1 and 5.3 and Theorem 2.1 reveals

the desired result.

Finally, the uniform estimate between log κ and log κN,h
M can be derived from Propositions 5.4, 5.5 and

5.2. We then obtain the following result.

Theorem 5.4 (Uniform estimate on M -term KL truncation of log κ). Let Assumption 5.1 hold and let

N ∈ N+ be large and M ≤ ⌊N
1

2s/d+1 ⌋. Assume the spectral gap condition (3.7) to be valid. Then there

exists h0 ≪ N− 1

s sufficiently small, such that

∥∥∥log κ(y, x)− log κN,h
M (y, x)

∥∥∥
L2(Ω,C(D))

.M− s
d
+ 1

2 +M
3s
d
+2N−1/2hs +M

s
d
+ 3

2hs

+M
s
d
+1N−1/2.

for all 0 < h ≤ h0.
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5.3 Numerical estimate for the error between κ and κ
N,h
M

In this section, by utilizing the preceding results on | log κ− log κN,h
M | together with the mean value theorem,

we will derive an error estimate between κ and κN,h
M . Note at this point that the results in this part can be only

applied to the case when log κ is a normal random field. One crucial tool which we will employ repeatedly

below is Fernique’s theorem. For convenience, we recall it in the following.

Theorem 5.5 (Fernique’s theorem). Let E be a real, separable Banach space and suppose that X is an

E-valued random variable which is a centered and Gaussian in the sense that, for each x∗ ∈ E∗, 〈X,x∗〉
is a centered, R-valued Gaussian random variable. If R = inf

{
r ∈ [0,∞) : P(‖X‖E ≤ r) ≥ 3

4

}
, then

ˆ

Ω
exp

(‖X‖2E
18R2

)
ρdy . 1.

First, we give a priori bounds on κ and κN,h
M .

Proposition 5.6. Let Assumption 5.1 hold and let N ∈ N+ be large and M ≤ ⌊N
1

2s/d+1 ⌋. Assume the

spectral gap condition (3.7) to be valid. Then there exists h0 ≪ N− 1

s sufficiently small such that, for all

0 < h ≤ h0, there holds

∀0 < p <∞ : ‖κ‖Lp(Ω,C(D)) . 1 and ‖κN,h
M ‖Lp(Ω,C(D)) . 1.

Proof. Note that log κ is a symmetric Gaussian random variable defined on Ω and valued in C(D). By

Fernique’s theorem, there exists α > 0 such that
ˆ

Ω
exp

(
α‖ log κ(·, y)‖2C(D)

)
ρdy . 1. (5.8)

Hence, by Young’s inequality, we obtain
ˆ

Ω
‖κ(·, y)‖pC(D)ρdy =

ˆ

Ω
exp

(
p‖ log κ(·, y)‖C(D)

)
ρdy

≤
ˆ

Ω
exp

(
α‖ log κ(·, y)‖2C(D) +

p2

4α

)
ρdy,

and (5.8) leads to

ˆ

Ω
‖κ(·, y)‖pC(D)ρdy . exp (

p2

4α
).

This shows the first assertion. The second one can be obtained in a similar manner.

Now we can state the main result of this section.

Theorem 5.6. Let Assumption 5.1 hold. Let N ∈ N+ be sufficiently large, let M ≤ ⌊N
1

2s/d+1 ⌋ and

h≪ N− 1

s . Assume the spectral gap condition (3.7) to be valid. Then, for all p < 2, there holds
∥∥∥κ− κN,h

M

∥∥∥
Lp(Ω,C(D))

.M− s
d
+ 1

2 +M
3s
d
+2N−1/2hs +M

s
d
+ 3

2hs +M
s
d
+1N−1/2 (5.9)

∥∥∥κ− κN,h
M

∥∥∥
Lp(Ω,L2(D))

.M− s
d +M

s
d
+ 3

2hs +
(M
N

)1/2
. (5.10)
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Proof. The mean value theorem indicates

∀x, y ∈ R : |ex − ey| ≤ |x− y|(ex + ey).

This, combined with Hölder’s inequality, leads to
∥∥∥κ− κN,h

M

∥∥∥
Lp(Ω,C(D))

≤
∥∥∥log κ(y, x)− log κN,h

M (y, x)
∥∥∥
L2(Ω,C(D))

(
‖κ‖Lq(Ω,C(D)) + ‖κN,h

M ‖Lq(Ω,C(D))

)
,

where 1/p = 1/2+1/q. In view of Theorem 5.4 and Proposition 5.6, this proves (5.9). The second assertion

(5.10) can be shown similarly using Theorem 5.1. This completes the proof.

6 Application to elliptic PDEs with random diffusion coefficient

In this section, we use the results of Theorem 5.6 to analyze a model order reduction algorithm for a class of

elliptic PDEs with lognormal random coefficient in the multi-query context. In the algorithm, we apply the

Karhunen-Loève approximation to the stochastic diffusion coefficient κ(y, x) to arrive at a truncated model

with finite-dimensional noise. We shall provide an error analysis below. Throughout this section, we assume

that the conditions of Theorem 5.6 are satisfied.

Let D be an open bounded domain in R
d with a strong local Lipchitz boundary and let (Ω,Σ,P) be a

given probability space. Consider the elliptic PDE with random coefficient

{
Lu(y, ·) = f, x ∈ D,

u(y, ·) = 0, x ∈ ∂D,
(6.1)

for a.e. y ∈ Ω, where the elliptic operator L is defined by

Lu(y, ·) = −∇ · (κ(y, x)∇u(y, x)),

and ∇ denotes the derivative with respect to the spatial variable x. We assume the force term f to be in

H−1(D). In the model problem (6.1), the dependence of the diffusion coefficient κ(y, x) on a stochastic

variable y ∈ Ω reflects imprecise knowledge or lack of information.

The extra-coordinate y poses significant computational challenges. One popular approach is the stochas-

tic Galerkin method [3]. There, one often approximates the stochastic diffusion coefficient κ(y, x) by a finite

sum of products of deterministic and stochastic orthogonal bases (with respect to a certain probability mea-

sure). This gives a computationally more tractable finite-dimensional noise model. There, the choice of the

employed orthogonal basis is crucial for the accurate and efficient approximation to κ(y, x). In this work,

we consider the KL approximation κN,h
M (y, x) of the random field κ(y, x) in (2.14).

First, we specify the functional analytic setting. Let V = H1
0 (D) and let H−1(D) be its dual space.

Then, for any given y ∈ Ω, the weak formulation of problem (6.1) is to find u(y, ·) ∈ V such that

ˆ

D
κ(y, x)∇u(y, x) · ∇v(x)dx =

ˆ

D
f(x)v(x)dx ∀v ∈ V. (6.2)

We first discuss the well-posedness of problem (6.2) for each y ∈ Ω, which was proven in [11, Theorem

2.2]. By Assumption 5.1, κ(y, x) ∈ C(D) a.e.. Let κmin(y) := min
x∈D̄

κ(y, x) and κmax(y) := max
x∈D̄

κ(y, x)

for all y ∈ Ω.
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Proposition 6.1 (Ellipticity and boundedness of κ). The following bounds hold:

∀ 0 < p <∞ : ‖κ−1
min‖Lp(Ω) . 1 and ‖κmax‖Lp(Ω) . 1.

Proposition 6.1, together with the Lax-Milgram theorem, guarantees that the weak formulation (6.2) is

well-posed. Furthermore,

‖u‖Lp(Ω,H1(D)) . ‖f‖H−1(D) for all p > 0. (6.3)

After substituting the numerical KL approximation κN,h
M (y, x) of the diffusion coefficient κ(y, x) into

problem (6.1), we arrive at a truncated problem with finite-dimensional noise: For a.e. y ∈ Ω

{
LN,h
M uN,h

M (y, ·) = f, x ∈ D,

uN,h
M (y, ·) = 0, x ∈ ∂D,

(6.4)

where LN,h
M is the elliptic differential operator with the diffusion coefficient κN,h

M . The corresponding weak

formulation is then to find uN,h
M (y, ·) ∈ V such that

ˆ

D
κN,h
M (y, x)∇uN,h

M (y, x) · ∇v(x)dx =

ˆ

D
f(x)v(x)dx ∀v ∈ V, (6.5)

for any given y ∈ Ω. Analogous to the continuous case, let κM,N,h
min (y) := min

x∈D̄
κN,h
M (y, x) and κM,N,h

max (y) :=

max
x∈D̄

κN,h
M (y, x) for all y ∈ Ω. We can then state the well-posedness of problem (6.5).

Proposition 6.2 (Ellipticity and boundedness of κN,h
M ). The following bounds hold:

∀ 0 < p <∞ : ‖(κM,N,h
min )−1‖Lp(Ω) . 1 and ‖κM,N,h

max ‖Lp(Ω) . 1.

Proof. This follows from the proof of [11, Theorem 2.2].

Due to Proposition 6.2 and the Lax-Milgram theorem, we obtain the well-posedness of problem (6.5).

Furthermore, (6.5) and Proposition 6.2, together with Poincarè’s inequality, give the following a priori

estimate

‖uN,h
M ‖Lp(Ω,H1(D)) . ‖f‖H−1(D) for all p > 0. (6.6)

The next result quantifies the effect of the perturbation of the coefficient κ(y, x) on the solution u(y, x).

Theorem 6.1. Let Assumption 5.1 hold. Let N ∈ N+ be large, let M ≤ ⌊N
1

2s/d+1 ⌋ and h≪ N− 1

s . Assume

the spectral gap condition (3.7) to be valid. Let u and uN,h
M be solutions to (6.1) and (6.4), respectively.

Then for all p < 2, there holds

‖u(y, ·)− uN,h
M (y, ·)‖Lp(Ω,H1(D)) .

(
M− s

d
+ 1

2 +M
3s
d
+2N−1/2hs +M

s
d
+ 3

2hs +M
s
d
+1N−1/2

)
‖f‖H−1(D) .
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Proof. From the weak formulations for u(y, x) and uN,h
M (y, x), cf. (6.2) and (6.5), we obtain for any y ∈ Ω

ˆ

D
κ(y, x)∇(u(y, x)− uN,h

M (y, x)) · ∇v(x)dx (6.7)

=

ˆ

D
(κN,h

M (y, x)− κ(y, x))∇uN,h
M (y, x) · ∇v(x)dx ∀v ∈ V.

By setting v = u − uN,h
M ∈ V in the weak formulation (6.7) and using Proposition 6.1 and the generalized

Hölder inequality, we have

κmin(y)
∣∣∣u(y, ·)− uN,h

M (y, ·)
∣∣∣
2

H1(D)
≤
ˆ

D
κ(y, x)|∇(u(y, x)− uN,h

M (y, x))|2dx

=

ˆ

D
(κN,h

M (y, x)− κ(y, x))∇uN,h
M (y, x) · ∇(u(y, x)− uN,h

M (y, x))dx

≤
∥∥∥κN,h

M (y, ·)− κ(y, ·)
∥∥∥
C(D)

∣∣∣u(y, ·)− uN,h
M (y, ·)

∣∣∣
H1(D)

∥∥∥∇uN,h
M (y, ·)

∥∥∥
L2(D)

.

Consequently, we arrive at

∣∣∣u(y, ·)− uN,h
M (y, ·)

∣∣∣
H1(D)

≤ κ−1
min(y)

∥∥∥κN,h
M (y, ·)− κ(y, ·)

∥∥∥
C(D)

∥∥∥∇uN,h
M (y, ·)

∥∥∥
L2(D)

.

Finally, taking the Lp(Ω)-norm on both sides and employing the generalized Hölder’s inequality, combined

with Theorem 5.6, Proposition 6.1 and the a priori estimate (6.6), shows the desired result.

Remark 6.1. Note that this work is mainly concerned with the numerical approximation of the lognormal

random coefficient. Therefore, we refrain from discussing the important issue of the numerical approxima-

tion of the associated elliptic problems, i.e., Problems (6.1) and (6.4). We refer to [19] for related results in

this direction.

7 Numerical simulation

In this section, we provide numerical tests to verify the theoretical results presented in Section 5. Recall

that the three parameters M , N and h denote the number of terms in the KL approximation, the number of

sampling points and the mesh size. These parameters determine directly the computational cost involved.

We take Ω := R
d′ in the following simulation. In order to obtain the M -term KL truncation estimate

to log κ(y, x) in the form of (2.14), we employ the fast CBC construction of randomly shifted lattice rules

in the unanchored space [20] to estimate the kernel RN (x, x′) ∈ L2(D ×D) defined in (2.9). To this end,

we employ the unanchored space F(Rd′) as defined by (3.2), where the weight function and the weight

parameters are 



ψ(yj) := 1 for all j = 1, · · · , d′

γα := (|α|!)2Πj∈α
0.01

j3
for all α ⊂ {1, · · · , d′}.

We apply the CBC method [20, Algorithm 6] to derive the generating vector z ∈ [0, 1)d
′
with the number

of sampling points being N = 1009. To this end, let the shift ∆ ∈ [0, 1]d
′

be an i.i.d uniformly distributed

vector. Then we obtain the randomly shifted (rank-1) lattice rule by formula (3.3). Now, RN (x, x′) in (2.9)

can be approximated by taking yi := φ−1(ξi) for i = 1, 2, · · · , N .
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The bivariate functions log κ(·, x) employed in the following examples belong to F(Rd′) for all x ∈ D.

Thus, using the CBC Algorithm to calculate RN (x, x′) ∈ L2(D ×D) as defined in (2.9) yields a shifted-

averaged worse-case error of O(N−1+δ) for any δ > 0 with the construction cost of O(d′N log(N)).

7.1 Example 1: d′ = 1 and N = 1009

Let

log κ(y, x) := e−|x−y| with x ∈ [0, 1] and y ∈ R, (7.1)

see Fig. 1 for an illustration. One can verify that log κ(y, x) ∈ L2(Ω, H3/2−δ(D)) for any δ > 0 with the

physical domain D := [0, 1] and the stochastic domain Ω := R. Thus, we have s := 3/2 − δ in this case.

According to the definition of the finite element space Vh, we will use conforming quadratic finite element.

Now as in Remark 5.1, let the tolerance be chosen as ǫ := 0.1. Note that we always fix the sampling points

N = 1009. Then we can take the number of truncation terms M ≈ 5 and the mesh size h ≈ 1/101.

x

z

exp(−|x−φ−1
(z)|)
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Figure 1: An illustration of the bivariate function in (7.1).

Since the dimension of the stochastic domain equals to one, we can choose the generating vector

z := 1. We then can derive the sampling points {yi}Ni=1 := {φ−1(ξi)}Ni=1 from formula (3.3). The

shifted-averaged worse-case error is 8.0171e-6. We present in Table 1 the root mean square error be-

tween log κ and log κN,h
M for different numbers of truncation terms M = 2, 4, 8 and different mesh sizes

h := 1/16, 1/64, 1/128, 1/256.
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Table 1: The root mean square error between log κ and log κN,h
M for different numbers of truncation terms

M and different mesh sizes h. Here, the number of sampling points is N = 1009 and the dimension d′ = 1
with the optimal parameters being (M,h) := (5, 1/101) and the corresponding root mean square error being

8.0493e-3.
h\M 2 4 8

1/16 4.1217e-2 1.1933e-2 3.6194e-3

1/64 4.1216e-2 1.1931e-2 3.6060e-3

1/128 4.1216e-2 1.1931e-2 3.6059e-3

1/256 4.1216e-2 1.1931e-2 3.6059e-3

Now, let us compare these computed results with the values that were predicted from our theory. To this

end, we plug the fixed number of sampling points N = 1009 into Remark 5.1 and derive that we can take

the accuracy ǫ := 0.1, the number of truncation terms M := 5 and the mesh size h := 1/101. Indeed, for

(M,h) := (5, 1/101), we also obtain the optimal error in Table 1. This shows that our estimates are quite

sharp and involve just small constants.

7.2 Example 2: d′ = 10, 100 and N = 1009

Let the bivariate function κ(y, x) be given by

log κ(y, x) := e−|x−1/2|×‖y‖ℓ1 with x ∈ [0, 1] and y ∈ R
d′ . (7.2)

Then one can verify that log κ(y, x) ∈ L2(D,Ht(Ω)) for any t > 0, with the physical domain D := [0, 1]
and the stochastic domain Ω := R

d′ . According to the definition of the finite element space Vh, we will

use spectral element up to degree 10. The basis functions are Lagrange interpolation polynomials through

the local Gauss-Lobatto integration points defined per element. Due to Theorem 2.1, the eigenvalues decay

very fast since s = ∞ in this case.

We present the root mean square errors between log κ and log κN,h
M in Tables 2 and 3 for different mesh

sizes h := 1/16, 1/64, 1/128 and 1/256 and different numbers of truncation terms M := 2, 4 and 8 with

d′ = 10 and d′ = 100, respectively.

Table 2: The root mean square error between log κ and log κN,h
M for different numbers of truncation terms

M and different mesh sizes h. Here, the number of sampling points is N = 1009, dimension d′ = 10 and

the shifted-averaged worse-case error is 3.0987e-3.

h\M 2 4 8

1/16 6.0723e-3 1.8676e-4 1.7078e-4

1/64 7.2336e-3 1.0267e-4 1.0837e-5

1/128 6.2803e-3 7.9009e-5 2.7146e-6

1/256 6.1652e-3 6.6978e-5 2.7102e-6
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Table 3: The root mean square error between log κ and log κN,h
M for different numbers of truncation terms

M and different mesh sizes h. Here, the number of sampling points N = 1009, dimension d′ = 100 and

the shifted-averaged worse-case error is 3.1045e-3.

h\M 2 4 8

1/16 2.8446e-3 2.8332e-3 2.8335e-3

1/64 3.7890e-4 2.9770e-4 2.9743e-4

1/128 2.8832e-4 7.8182e-5 7.8268e-5

1/256 2.2743e-4 1.9821e-5 1.9772e-5

Furthermore, for our fixed number of sampling points N := 1009 and for the accuracy ǫ := 0.1, we

can compare our computed results with the predicted ones due to Remark 5.1. We see that our estimates are

again qualitatively quite sharp and involve just small constants.

8 Concluding remarks

In this work, we have analyzed the numerical approximation error in the Karhunen-Loève expansion to

log normal random coefficients. We derived the numerical error in terms of the number M of terms in the

Karhunen-Loève expansion, the numberN of QMC sampling points to estimate the covariance function and

the mesh size h for the conforming Galerkin approximation to the eigenvalue problem. Our results show the

basic relation

M ≤ N
1

2s/d+1 and h≪ N−1/s

among those three parameters, where d is the dimension of the physical domain and s denotes the regularity

of the bivariate function in the physical domain. These results are also useful for the study of stochastic

elliptic problems. We presented numerical results for one and multiple stochastic dimensions to support our

theory.

The QMC method can be replaced by some properly adapted sparse grid method, if there is higher mixed

regularity in log κ present with respect to the stochastic variables. Analogously, if the physical problem

possesses higher regularity, then a more suitable FEM of higher order can be utilized. Then, of course, the

sampling estimate, the Galerkin estimate and the resulting error estimates have to be modified accordingly.

This would lead to a different balancing of the terms that in Remark 5.1.
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