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Abstract. We give tight upper and lower bounds of the cardinality of the index sets of certain hyperbolic crosses which
reflect mixed Sobolev-Korobov-type smoothness and mixed Sobolev-analytic-type smoothness in the infinite-dimensional case where
specific summability properties of the smoothness indices are fulfilled. These estimates are then applied to the linear approximation
of functions from the associated spaces in terms of the ε-dimension of their unit balls. Here, the approximation is based on linear
information. Such function spaces appear for example for the solution of parametric and stochastic PDEs. The obtained upper and
lower bounds of the approximation error as well as of the associated ε-complexities are completely independent of any parametric
or stochastic dimension. Moreover, the rates are independent of the parameters which define the smoothness properties of the
infinite-variate parametric or stochastic part of the solution. These parameters are only contained in the order constants. This way,
linear approximation theory becomes possible in the infinite-dimensional case and corresponding infinite-dimensional problems get
tractable.

Keywords: infinite-dimensional hyperbolic cross approximation, mixed Sobolev-Korobov-type smoothness, mixed Sobolev-
analytic-type smoothness, ε-dimension, parametric and stochastic elliptic PDEs, linear information.

1. Introduction. The efficient approximation of a function of infinitely many variables is an important
issue in a lot of applications in physics, finance, engineering and statistics. It arises in uncertainty quantification,
computational finance and computational physics and is encountered for example in the numerical treatment
of path integrals, stochastic processes, random fields and stochastic or parametric PDEs. While the problem
of quadrature of functions in weighted Hilbert spaces with infinitely many variables has recently found a lot of
interest in the information based complexity community, see e.g. [3, 15, 16, 17, 29, 30, 34, 35, 42, 44, 50, 51, 52,
58], there is much less literature on approximation. So far, the approximation of functions in weighted Hilbert
spaces with infinitely many variables has been studied for a properly weighted L2-error norm1 in [60]. In any case,
a reproducing kernel Hilbert space HK with kernel K =

∑
u γuku is employed with |u|-dimensional kernels ku

where u varies over all finite subsets of N. It involves a sequence of weights γ = (γu) that moderate the influence
of terms which depend on the variables associated with the finite-dimensional index sets u ⊂ {1, 2, . . .} = N.
Weighted spaces had first been suggested for the finite-dimensional case in [52], see also [53, 54]. For further
details, see [18] and the references cited therein. The approximation of functions with anisotropically weighted
Gaussian kernels has been studied in [27].

Moreover, there is work on sparse grid integration and approximation, see [8] for a survey and bibliography.
It recently has found applications in uncertainty quantification for stochastic and parametric PDEs, especially
for non-intrusive methods, compare [5, 6, 11, 12, 13, 14, 33, 36, 37, 43, 45, 46]. There, for the stochastic or
parametric part of the problem, an anisotropic sparse grid approximation or quadrature is constructed either
a priori from knowledge of the covariance decay of the stochastic data or a posteriori by means of dimension-
adaptive refinement. This way, the infinite-dimensional case gets truncated dynamically to finite dimensions
while the higher dimensions are trivially resolved by the constant one. Here, in contrast to the above-mentioned
approach using a weighted reproducing kernel Hilbert space, one usually relies on spaces with smoothness of
increasing order, either for the mixed Sobolev smoothness situation or for the analytic setting. Thus, as already
noticed in [49], one may have two options for obtaining tractability: either by using decaying weights or by

1There is also [59, 61, 62], where however a norm in a special Hilbert space was employed such that the approximation problem
indeed got easier than the integration problem.
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using increasing smoothness.

Sparse grids and hyperbolic crosses promise to break the curse of dimensionality which appears for conven-
tional approximation methods, at least to some extent. However, the approximation rates and cost complexities
of conventional sparse grids for isotropic mixed Sobolev regularity still involve logarithmic terms which grow
exponentially with the dimension. In [23, 31] it could be shown that the rate of the approximation error and the
cost complexity get completely independent of the dimension for the case of anisotropic mixed Sobolev regularity
with sufficiently fast rising smoothness indices. This also follows from results on approximation for anisotropic
mixed smoothness, see, e.g., [22, 55] for details. But the constants in the bounds for the approximation error
and the cost rate could not be estimated sharply and still depend on the dimension d. Therefore, this result
can not straightforwardly be extended to the infinite-dimensional case, i.e. to the limit of d going to ∞.

This will be achieved in the present paper. To this end, we rely on the infinite-variate space H which is the
tensor product H := Hα(Gm)⊗Kr(D∞) of the Sobolev space Hα(Gm) and the infinite-variate space Kr(D∞)
of mixed smoothness with varying Korobov-type smoothness indices r = r1, r2, . . ., or we rely on the tensor
product H := Hα(Gm) ⊗ Ar,p,q(D∞) of Hα(Gm) with the infinite-variate space Ar,p,q(D∞) of mixed smooth-
ness with varying analytic-type smoothness indices r = r1, r2, . . . (and p and q entering algebraic prefactors).
The approximation error is measured in the tensor product Hilbert space G := Hβ(Gm) ⊗ L2(D∞, µ) with
β ≥ 0, which is isomorphic to the Bochner space L2(D∞, Hβ(Gm)). Here, G denotes either the unit circle
(one-dimensional torus) T in the periodic case or the interval I := [−1, 1] in the nonperiodic case. Furthermore,
D is either T, I or R, depending on the respective situation under consideration. Altogether, Gm denotes the
m-fold (tensor-product) domain where the m-dimensional physical coordinates live, whereas D∞ denotes the
infinite-dimensional (tensor-product) domain where the infinite-dimensional stochastic or parametric coordi-
nates live. Moreover, L2(D∞) := L2(D∞, µ) is the space of all infinite-variate functions f on D∞ such that∫
D∞ |f(y)|2 dµ(y) < ∞ with the infinite tensor product probability measure dµ which is based on properly

chosen univariate probability measures.

Here, the spaces Hα(Gm)⊗Kr(D∞) generalize the usual d-variate Korobov spaces K(r1,...,rd)(Dd) of mixed
smoothness with different smoothness indices r1, . . . , rd to the infinite-variate case and additionally contain
in a tensor product way also the Sobolev space Hα(Gm). Moreover, the (m + d)-variate Sobolev-Korobov-
type spaces Hd := Hα(Gm) ⊗ Kr(Dd) of mixed smoothness with different weights for arbitrary but finite d
are naturally contained. Similarly, the spaces Hα(Gm) ⊗ Ar,p,q(D∞) generalize the d-variate spaces of mixed
analytic smoothness with smoothness indices p, q and r1, . . . , rd (for a precise definition, see Subsection 2.2) to
the infinite-variate case and additionally contain in a tensor product way the Sobolev space Hα(Gm). Moreover,
the (m + d)-variate Sobolev-analytic-type spaces Hd := Hα(Gm) ⊗ Ar,p,q(Dd) of mixed Sobolev and analytic
smoothnesses with different weights for arbitrary d are naturally contained. Thus, the problem of approximating
functions from H in the G = Hβ(Gm)⊗L2(D∞)−norm directly governs the problem of approximating functions
from Hd in the Gd := Hβ(Gm)⊗ L2(Dd)−norm in both cases, where d may be large but finite.

Now, let us fix some notation which is needed to describe the cost complexity of an approximation. In
general, if X is a Hilbert space and W a subset of X, the Kolmogorov n-width dn(W,X) [38] is given by

dn(W,X) := inf
Mn

sup
f∈W

inf
g∈Mn

‖f − g‖X , (1.1)

where the outer infimum is taken over all linear manifolds Mn in X of dimension at most n.2 Furthermore,
the so-called ε-dimension nε = nε(W,X) is usually employed to quantify the computational complexity. It is
defined as

nε(W,X) := inf

{
n : ∃ Mn : dimMn ≤ n, sup

f∈W
inf
g∈Mn

‖f − g‖X ≤ ε

}
,

where Mn is a linear manifold in X of dimension ≤ n. This quantity is just the inverse of dn(W,X). Indeed,
nε(W,X) is the minimal number nε such that the approximation of W by a suitably chosen nε-dimensional

2A different worst-case setting is represented by the linear n-width λn(W,X) [56]. This corresponds to a characterization of
the best linear approximation error, see, e.g., [26] for definitions. Since X is here a Hilbert space, both concepts coincide, i.e., we
have dn(W,X) = λn(W,X).
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subspace Mn in X yields the approximation error to be less or equal to ε. Moreover, nε(W,X) is the smallest
number of linear functionals that is needed by an algorithm to give for all f ∈W an approximation with an error
of at most ε. From the computational point of view it is more convenient to study nε(W,X) than dn(W,X)
since it is directly related to the computational cost.

The approximation of functions with anisotropic mixed smoothness goes back to papers by various authors
from the former Soviet Union, initiated in [1]. We refer the reader to [22, 55] for a survey and bibliography.
In particular, in [21], the rate of the cardinality of anisotropic hyperbolic crosses was computed and used
in the estimation of dn(Ur(Td), L2(Td)), where Ur(Td) is the unit ball of the space of functions of bounded
anisotropic mixed derivatives r with respect to the L2(Td)-norm. Moreover, the ε-dimensions of classes of
mixed smoothness were investigated in [19, 20, 24, 25]. Recently, n-widths and ε-dimensions in the classical
isotropic Sobolev space Hr(Td) of d-variate periodic functions and of Sobolev classes with mixed and other
anisotropic smoothness have been studied for high-dimensional settings [9, 26]. There, although the dimension
n of the approximating subspace is the main parameter of the convergence rate, where n is going to infinity,
the parameter d may seriously affect this rate when d is large.

Now, let U and Ud be the unit ball in H and Hd, respectively. In the present paper, we give upper and lower
bounds for nε(U ,G) and nε(Ud,Gd) for both, the Sobolev-Korobov and the Sobolev-analytic mixed smoothness
spaces. To this end, we first derive tight estimates of the cardinalities of hyperbolic cross index sets which are
associated to the chosen accuracy ε. Since the corresponding approximations in infinite tensor product Hilbert
spaces then possess the accuracy ε, this indeed gives bounds on nε(U ,G) and nε(Ud,Gd). Here, depending on
the underlying domain, we focus on approximations by trigonometric polynomials (periodic case) and Legendre
and Hermite polynomials (nonperiodic case, bounded and non-bounded domain) with indices from hyperbolic
crosses that correspond to frequencies and powers in the infinite-dimensional case. Altogether, we are able to
show estimates that are completely independent on any dimension d in both, rates and order constants, provided
that a moderate summability condition on the sequence of smoothness indices r holds.

In the following, as example, let us mention one of our main results on the cardinality of hyperbolic crosses
in the infinite-dimensional case and on the related ε-dimension. To this end, let m,α, β, r, p, q be given by

m ∈ N; α > β ≥ 0; r = (rj)
∞
j=1 ∈ R∞+ , 0 < r1 ≤ r2 ≤ · · · ≤ rj · · · ; p ≥ 0, q > 0. (1.2)

(with the additional restriction (α− β)/m < r1 for the Sobolev-Korobov smoothness case). Then, if moderate
summability conditions on the sequence of smoothness indices r hold, we have for every d ∈ N and every
ε ∈ (0, 1]

bε−1/(α−β)cm − 1 ≤ nε(Ud,Gd) ≤ nε(U ,G) ≤ C ε−m/(α−β), (1.3)

where C depends onm,α, β, r, p, q but not on d. Thus, the upper and lower bounds on the ε-dimension nε(Ud,Gd)
are completely free of the dimension for any value of d. These estimates are derived from the relations

|G(ε−1)| − 1 ≤ nε(U ,G) ≤ |G(ε−1)|,

and

bT 1/(α−β)cm ≤ |G(T )| ≤ C Tm/(α−β), (1.4)

where G(T ) is the relevant hyperbolic cross induced by T = ε−1 and C is as in (1.3). Throughout this paper,
|G| denotes the cardinality of a finite set G.

Note here the following properties of (1.3):

(i) The upper and lower bounds of nε(Ud,Gd) and nε(U ,G) are tight and independent of d.
(ii) The term ε−m/(α−β) depends on ε, on the dimension m and on the smoothnesses indices α and β of

the Sobolev component parts Hα(Gm) and Hβ(Gm) of the spaces H and G only.
(iii) The infinite series of smoothness indices r in the Korobov or analytic component parts is contained in

C only and does not show up in the rates.
(iv) The necessary summability conditions on m,α, β, r, p, q are natural and quite moderate (see e.g. the

assumptions of Theorem 3.6).
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Altogether, the right-hand side of (1.3) is (up to the constant) just the same as the rate which we would obtain
from an approximation problem in the energy norm Hβ(Gm) of functions from the Sobolev space Hα(Gm)
alone, i.e. nε(U

α(Gm), Hβ(Gm)) � ε−m/(α−β), where Uα(Gm) is the unit ball in Hα(Gm). Therefore, the
ε-dimension and thus the complexity of our infinite-dimensional approximation problem is (up to the constant)
just that of the m-dimensional approximation problem without the infinite-variate component.

From (1.3) we can see that the d-dimensional problem nε(Ud,Gd) is strongly polynomially tractable. This
property crucially depends on the chosen norm as well on certain restrictions on the mixed smoothness, see
for instance the prerequisites of Theorem 2.6 and of Theorem 4.1 in the case of mixed Sobolev-Korobov-type
smoothness. If a different type of norm definition is employed, completely different results are obtained. For an
example, see [49], where it is shown that increasing the smoothness (no matter how fast) does not help there.
Moreover, the effect of different norm definitions on the approximation numbers of Sobolev embeddings with
particular emphasis on the dependence on the dimension is studied for the periodic case in [39, 40, 41].

For an application of our approximation error estimate, let us now assume that an infinite-variate function
u is living in G which is isomorphic to the Bochner space L2(D∞, Hβ(Gm)). Let us furthermore assume that u
possesses some higher regularity, i.e., to be precise, assume that u ∈ H with either H = Hα(Gm)⊗Kr(D∞) or
H = Hα(Gm)⊗Ar,p,q(D∞). Let n = |G(T )| and Ln be the projection onto the subspace of suitable polynomials
with frequencies or/and powers in G(T ). Then, with the above notation and assumptions for ε-dimensions, we
have

‖u− Ln(u)‖G ≤ C(α−β)/m n−(α−β)/m ‖u‖H,

where C is as in (1.3). Indeed, such functions u are, for certain σ(x,y) and f(x,y), the solution of the parametric
or stochastic elliptic PDE

−divx(σ(x,y)∇xu(x,y)) = f(x,y) x ∈ Gm y ∈ D∞, (1.5)

with homogeneous boundary conditions u(x,y) = 0, x ∈ Gm, y ∈ D∞. Here, we have to find a real-valued
function u : Gm × D∞ → R such that (1.5) holds µ-almost everywhere. Thus, our results also shed light on
the ε-dimension and the complexity of properly defined linear approximation schemes for infinite-dimensional
stochastic/parametric PDEs in the case of linear information.

The remainder of this paper is organized as follows: In Section 2, we establish tight upper and lower bounds
for the cardinality of hyperbolic crosses with varying smoothness weights in the infinite-dimensional setting. In
Section 3, we study hyperbolic cross approximations and their ε-dimensions in infinite tensor product Hilbert
spaces. In Section 4, we consider hyperbolic cross approximations of infinite-variate functions in particular for
periodic functions from periodic Sobolev-Korobov-type mixed spaces and for nonperiodic functions from the
Sobolev-analytic-type mixed smoothness spaces. In Section 5, we discuss the application of our results to a
model problem from parametric/stochastic elliptic PDEs. Finally, we give some concluding remarks in Section
6.

2. The cardinality of hyperbolic crosses in the infinite-dimensional case. In this section, we
establish upper and lower bounds for the cardinality of various index sets of hyperbolic crosses in the infinite-
dimensional case. First, we consider index sets which correspond to the mixed Sobolev-Korobov-type setting
with varying polynomial smoothness, then we consider cases with mixed Sobolev-analytic smoothness where
also exponential smoothness terms appear.

We will use the following notation: R∞ is the set of all sequences y = (yj)
∞
j=1 with yj ∈ R and Z∞ is the

set of all sequences s = (sj)
∞
j=1 with sj ∈ Z. Furthermore, Z∞+ := {s ∈ Z∞ : sj ≥ 0, j = 1, 2, ...}, yj is the jth

coordinate of y ∈ R∞. Moreover, Z∞∗ is a subset of Z∞ of all s such that supp(s) is finite, where supp(s) is the
support of s, that is the set of all j ∈ N such that sj 6= 0. Finally, Z∞+∗ := Z∞∗ ∩ Z∞+ .

2.1. Index sets for mixed Sobolev-Korobov-type smoothness. Let m ∈ Z+, a > 0 be given and let
r = (rj)

∞
j=1 ∈ R∞+ be given with

0 < r = r1 · · · = rt+1; rt+2 ≤ rt+3 ≤ · · · .
4



For each (k, s) ∈ Zm × Z∞∗ with k ∈ Zm and s ∈ Z∞∗ , we define the scalar λ(k, s) by

λ(k, s) := max
1≤j≤m

(1 + |kj |)a
t+1∏
j=1

(1 + |sj |)r
∞∏

j=t+2

(1 + |sj |)rj . (2.1)

Here, the associated functions will possess isotropic smoothness of index a for the coordinates kj , they will
possess mixed smoothness of index r for the first t+ 1 coordinates sj of s and they will possess monotonously
rising mixed smoothness indices rj for the following coordinates sj .

Now, for T > 0, consider the hyperbolic crosses in the infinite-dimensional setting Zm+ × Z∞+∗ with indices
a, r

G(T ) :=
{

(k, s) ∈ Zm+ × Z∞+∗ : λ(k, s) ≤ T
}
. (2.2)

The cardinality of G(ε−1) will later describe the necessary dimension of the approximation spaces of the asso-
ciated linear approximation with accuracy ε.

We want to derive estimates for the cardinality of G(T ). To this end, we will make use of the following
lemmata.

Lemma 2.1. Let µ, ν ∈ N with µ ≥ ν, and let ϕ be a convex function on the interval (0,∞). Then, we have

µ∑
k=ν

ϕ(k) ≤
∫ µ+1/2

ν−1/2
ϕ(x) dx, and

∞∑
k=ν

ϕ(k) ≤
∫ ∞
ν−1/2

ϕ(x) dx, (2.3)

Proof. Observe that, for a convex function g on [0, 1], there holds true the inequality

g(1/2) ≤ 1

2

∫ 1

0

[g(x) + g(1− x)] dx =

∫ 1

0

g(x) dx. (2.4)

Applying this inequality to the functions gk(x) := ϕ(x+ k − 1/2), k ∈ N, we obtain

ϕ(k) = gk(1/2) ≤
∫ 1

0

gk(x) dx =

∫ k+1/2

k−1/2
ϕ(x) dx. (2.5)

Hence, we have for any µ, ν ∈ N with µ ≥ ν,

µ∑
k=ν

ϕ(k) ≤
µ∑
k=ν

∫ k+1/2

k−1/2
ϕ(x) dx =

∫ µ+1/2

ν−1/2
ϕ(x) dx (2.6)

which proves the first and, with µ→∞, the second inequality of the lemma.

Lemma 2.2. Let η > 1. Then, we have

∞∑
k=2

k−η <
1

η − 1

(
3

2

)−(η−1)
. (2.7)

Proof. Since the function x−η is non-negative and convex on (0,∞), we obtain

∞∑
k=2

k−η ≤
∫ ∞
3/2

x−η dx =
1

η − 1

(
3

2

)−(η−1)
by applying Lemma 2.1 for ν = 2.

Lemma 2.3. Let η ∈ R \ (0, 1) and µ ∈ N. Then, we have

µ∑
k=1

kη ≤


1
η+1

(
3
2

)η+1
µη+1, η > −1,

log(2µ+ 1), η = −1,

1
|η|−12|η|−1, η < −1.

(2.8)
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Proof. The function xη is non-negative and convex in the interval (0,∞) for η ∈ R \ (0, 1). Thus, there holds
by Lemma 2.1

µ∑
k=1

kη ≤
∫ µ+1/2

1/2

xη dx =


1
η+1x

η+1
∣∣∣µ+1/2

1/2
, η 6= −1,

log x
∣∣∣µ+1/2

1/2
, η = −1.

(2.9)

Hence,

µ∑
k=1

kη ≤


1
η+1 (µ+ 1/2)η+1, η > −1,

log(µ+ 1/2) + log 2, η = −1,

1
|η|−12|η|−1, η < −1,

(2.10)

which implies (2.8).

First of all, for T ≥ 1, m ∈ N, we consider the hyperbolic cross in the finite, m-dimensional case

Γ(T ) :=

{
l ∈ Nm :

m∏
j=1

lj ≤ T
}
.

We have the following bound for the cardinality |Γ(T )|:
Lemma 2.4. For T ≥ 1, it holds

|Γ(T )| ≤ 2m

(m− 1)!
T (log T +m log 2)m−1. (2.11)

Proof. Observe that |Γ(T )| = |Γ∗(T )|, where

Γ∗(T ) :=

{
l ∈ Zm+ :

m∏
j=1

(1 + lj) ≤ T
}
. (2.12)

Thus, we need to derive an estimate for |Γ∗(T )|. From [9, Lemma 2.3, Corollary 3.3], it follows3 that for every
T ≥ 1,

|Γ∗(T )| ≤ 2m

(m− 1)!

T (log T +m log 2)m

log T +m log 2 +m− 1
. (2.13)

Since m ≥ 1 we immediately obtain the desired estimate.

Now, for given m, t ∈ N and a, r > 0, put

B(a, r,m, t) :=



(
3
2

)m (
1 + 1

rm/a−1
(
3
2

)−(rm/a−1))t
, r > a/m,

m 2t+1

t! , r = a/m,

m 2t+1

t! (a/r −m)−1 2a/r−m, r < a/m.

(2.14)

3There, the set {l ∈ Zm :
∏m
j=1(1 + lj) ≤ T} is analyzed. Since our Γ∗(T ) is a subset, (2.13) clearly holds. A direct bound for

(2.12) might be possible without the multiplier 2m, but only for T = T (m) large enough. See [9] for details.
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Furthermore, define

A(a, r,m, t, T ) :=


Tm/a, r > a/m,

Tm/a log(2T 1/a + 1)[r−1 log T + (t+ 1) log 2]t, r = a/m,

T 1/r[r−1 log T + (t+ 1) log 2]t, r < a/m.

(2.15)

Next, for T ≥ 1, we consider the hyperbolic crosses in the finite, (m+ t+ 1)-dimensional case

H(T ) :=

{
n ∈ Nm+t+1 : max

1≤j≤m
naj

m+t+1∏
j=m+1

nrj ≤ T
}
. (2.16)

We have the following bound for the cardinality |H(T )|:
Lemma 2.5. For T ≥ 1, it holds

|H(T )| ≤ B(a, r,m, t)A(a, r,m, t, T ) (2.17)

Proof. Let us introduce the following notation for convenience: For n ∈ Nm+t+1, we write n = (n′,n
′′
) with

n′ = (n1, ..., nm) and n
′′

= (nm+1, ..., nm+t+1). We then represent Nm+t+1 as

Nm+t+1 = Nm × Nt+1.

We first consider the case r ≤ a/m. Note that, for every n ∈ H(T ), we have that nj ≤ T 1/a, j = 1, ...,m.
For a n′ ∈ Nm put

Tn′ =

(
T ( max

1≤j≤m
nj)
−a
)1/r

.

Hence, by symmetry of the variables, we have for every T ≥ 1,

|H(T )| =
∑

n′: nj≤T 1/a

j=1,...,m

∑
n′′ :

∏m+t+1
j=m+1 nj ≤ Tn′

1 ≤ m
∑

n′: nm≤T 1/a

nj≤nm, j=1,...,m−1

∑
∏m+t+1
j=m+1 nj ≤ (Tn−am )

1/r

1.
(2.18)

The inner sum in the last expression is |Γ(Tn′)| from (2.12) with m = t+ 1. The application of Lemma 2.4 then
gives for every T ≥ 1

|H(T )| ≤ m
∑

n′: nm≤T 1/a

nj≤nm, j=1,...,m−1

|Γ(Tn′)|

≤ m
∑

n′: nm≤T 1/a

nj≤nm, j=1,...,m−1

2t+1

t!
Tn′ (log Tn′ + (t+ 1) log 2)

t

≤ m
∑

n′: nm≤T 1/a

nj≤nm, j=1,...,m−1

2t+1

t!

(
Tn−am

)1/r (
log((Tn−am )1/r) + (t+ 1) log 2

)t

≤ m
2t+1

t!
T 1/r

(
log(T 1/r) + (t+ 1) log 2

)t ∑
nm≤T 1/a

∑
nj≤nm

j=1,...,m−1

n−a/rm

≤ m
2t+1

t!
T 1/r

(
log(T 1/r) + (t+ 1) log 2

)t ∑
nm≤T 1/a

nm−1−a/rm .

(2.19)
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Now, by applying Lemma 2.3 with k = nm, η = m − 1 − a/r and µ = bT 1/ac to the sum in the last line of
(2.19), we derive

∑
nm≤T 1/a

nm−1−a/rm ≤

log(2bT 1/ac+ 1), r = a/m,

(a/r −m)−1 2a/r−m, r < a/m,
(2.20)

which, together with (2.19) and the definitions (2.14) and (2.15), proves (2.17) in the case r ≤ a/m.

Let us now consider the case r > a/m. For a n
′′ ∈ Nt+1 we put

Tn′′ = T 1/a
m+t+1∏
j=m+1

n
−r/a
j .

Note that, for every n ∈ H(T ), we have that nj ≤ T 1/r, j = m+ 1, ...,m+ t+ 1. By symmetry of the variables,
we have for every T ≥ 1,

|H(T )| =
∑

n
′′
: nj≤T 1/r

j=m+1,...,m+t+1

∑
n′: max1≤j≤m nj ≤ T

n
′′

1

≤ m
∑

n
′′
: nj≤T 1/r

j=m+1,...,m+t+1

∑
n′: nm≤Tn

′′

nj≤nm, j=1,...,m−1

1

≤ m
∑

n
′′
: nj≤T 1/r

j=m+1,...,m+t+1

∑
nm≤Tn

′′

nm−1m .

(2.21)

From (2.10) and the inequality Tn′′ ≥ 1 it follows that

∑
nm≤Tn

′′

nm−1m ≤ 1

m
(Tn′′ + 1/2)m ≤ 1

m
(Tn′′ + Tn′′ /2)m ≤ 1

m

(
3

2

)m
Tm/a

m+t+1∏
j=m+1

n
−rm/a
j . (2.22)

Hence,

|H(T )| ≤
(

3

2

)m
Tm/a

∑
n′′ : nj≤T 1/r, j=m+1,...,m+t+1

m+t+1∏
j=m+1

n
−rm/a
j

=

(
3

2

)m
Tm/a

m+t+1∏
j=m+1

∑
nj≤T 1/r

n
−rm/a
j

≤
(

3

2

)m
Tm/a

m+t+1∏
j=m+1

1 +

∞∑
nj=2

n
−rm/a
j



<

(
3

2

)m
Tm/a

m+t+1∏
j=m+1

(
1 +

1

rm/a− 1

(
3

2

)−(rm/a−1))

=

(
3

2

)m
Tm/a

(
1 +

1

rm/a− 1

(
3

2

)−(rm/a−1))t
.

(2.23)
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With the definitions (2.14) and (2.15), this proves (2.17) in the case r > a/m.

We will frequently use the following well-known bound for infinite products: Let (pj)
∞
j=1 be a summable

sequence of positive numbers, that is
∑∞
k=1 pk < ∞. Then, we have

∞∏
k=1

(1 + pk) ≤ exp

( ∞∑
k=1

pk

)
. (2.24)

Now we are in the position to state the main result of this section, i.e. we will give explicit bounds on the
cardinality of the infinite-dimensional hyperbolic cross G(T ) defined in (2.2). To this end, let the triple m, a, r
be given by

m ∈ N; a > 0; r = (rj)
∞
j=1, 0 < r = r1 · · · = rt+1, rt+2 ≤ rt+3 ≤ · · · . (2.25)

We put

λ := max{m/a, 1/r} (2.26)

and define, for a nonnegative integer t, the terms

M(t) :=

∞∑
j=t+2

1

λ rj − 1

(
3

2

)−(λ rj−1)
(2.27)

and

C(a, r,m, t) := eM(t)B(a, r,m, t). (2.28)

Theorem 2.6. Assume that λ rt+2 > 1 and M(t) <∞. Then, we have for every T ≥ 1

|G(T )| ≤ C(a, r,m, t)A(a, r,m, t, T )

= C(a, r,m, t)


Tm/a, r > a/m,

Tm/a log(2T 1/a + 1)[r−1 log T + (t+ 1) log 2]t, r = a/m,

T 1/r[r−1 log T + (t+ 1) log 2]t, r < a/m.

(2.29)

Proof. Let us show, for example, the last inequality in (2.29) where r < a/m. Let T ≥ 1 be given. Observe that

|G(T )| = |G∗(T )|, (2.30)

where

G∗(T ) :=

{
(n, s′) ∈ Nm+t+1 × N∞∗ (t) : max

1≤j≤m
naj

m+t+1∏
j=m+1

nrj

∞∏
j=t+2

s
rj
j ≤ T

}
, (2.31)

and N∞∗ (t) denotes the set of all indices s′ = (st+2, st+3, ...) with sj ∈ N such that the set of j ≥ t + 2 with
sj 6= 1 is finite. Here, G∗ builds with (n, s′) ∈ Nm+t+1 ×N∞∗ (t) on a different index splitting than G from (2.2)
with (k, s) ∈ Zm+ × Z∞+∗. This will allow for an easier decomposition later on. But their cardinalities are the
same.

Note that, for every (n, s′) ∈ G∗(T ), it follows from the definition

H(T, t) :=

s′ ∈ N∞∗ (t) :

∞∏
j=t+2

s
rj
j ≤ T

 (2.32)
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that s′ ∈ H(T, t). Hence,

|G∗(T )| =
∑

s′∈H(T,t)

∑
n∈Nm+t+1: (max1≤j≤m nj)a

∏m+t+1
j=m+1 n

r
j ≤ T

∏∞
j=t+2 s

−rj
j

1. (2.33)

We now fix a s′ ∈ N∞∗ (t) for the moment, and put

Ts′ = T
∏

j∈J(s′)

s
−rj
j ,

where J(s′) := {j ∈ N : j ≥ t + 2, sj 6= 1}. Note that J(s′) is a finite set by definition. We then have Ts′ ≥ 1
and

|G∗(T )| =
∑

s′∈H(T,t)

|H(Ts′)|, (2.34)

where H(Ts′) is defined as in (2.16). For ease of notation, we now use the abbreviation B := B(a, r,m, t).
Lemma 2.5 for the case r < a/m gives

|H(Ts′)| ≤ BA(a, r,m, t, Ts′) = B T
1/r
s′ [r−1 log Ts′ + (t+ 1) log 2]t. (2.35)

Hence, by (2.34) and with s′ ∈ N∞∗ (t), we have for every T ≥ 1 that there holds

|G∗(T )| ≤
∑

s′∈H(T,t)

B T
1/r
s′ [r−1 log Ts′ + (t+ 1) log 2]t

= B
∑

s′∈H(T,t)

T ∏
j∈J(s′)

s
−rj
j

1/r r−1 log

T ∏
j∈J(s′)

s
−rj
j

+ (t+ 1) log 2

t

≤ B T 1/r[r−1 log T + (t+ 1) log 2]t
∑

s′∈H(T,t)

∏
j∈J(s′)

s
−λrj
j ,

(2.36)

where we used the inequality
∏
j∈J(s′) s

−rj
j ≤ 1 in the last step. Next, let us estimate the sum in the last line.

Note that, for every s′ ∈ H(T, t), it follows from definition (2.31) that sj ≤ T 1/rj , j ≥ t + 2. The condition
M(t) < ∞ yields that rj → ∞ as j → ∞. Hence, there exists j∗ such that sj = 1 for every s′ ∈ H(T, t) and
every j > j∗. From this observation we get

∑
s′∈H(T,t)

∏
j∈J(s′)

s
−λrj
j ≤

∑
sj≤T 1/rj , j≥t+2

j∗∏
j=t+2

s
−λrj
j

≤
j∗∏

j=t+2

∑
sj≤T 1/rj , j≥t+2

s
−λrj
j ≤

j∗∏
j=t+2

∞∑
sj=1

s
−λrj
j .

(2.37)

The application of Lemma 2.2 gives

∞∑
sj=1

s
−λrj
j = 1 +

∞∑
sj=2

s
−λrj
j < 1 +

1

λrj − 1

(
3

2

)−(λrj−1)
. (2.38)

Hence, by (2.24), we get the inequality

∑
s′∈H(T,t)

∞∏
j=t+2

s
−λrj
j ≤

∞∏
j=t+2

[
1 +

1

λrj − 1

(
3

2

)−(λrj−1)]
≤ eM(t),
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which, together with (2.36), proves the theorem for the case r < a/m. The other cases can be shown in a similar
way.

2.2. Index sets for mixed Sobolev-analytic-type smoothness. In this subsection we consider hy-
perbolic crosses of a different type with the replacement of λ(k, s) by ρ(k, s) in its definition, where ρ(k, s)
now also involves exponentials in the s-dependent part. Such situations appear for example in applications
with elliptic stochastic PDEs from uncertainty quantification. There, the arising functions are analytic for the
stochastic/parametric y-part of the coordinates where, in many cases, a product structure still appears. In the
x-coordinates we will keep our previous Sobolev-type setting, but in the y-coordinates we will switch to expo-
nential terms involving certain weights in the exponents. Furthermore, the exponential terms are multiplied by
a polynomial prefactor. To this end, let the 5-tuple m, a, r, p, q be given by

m ∈ N; a > 0; r = (rj)
∞
j=1, rj > 0, j ∈ N; p ≥ 0, q > 0. (2.39)

For each (k, s) ∈ Zm × Z∞∗ , we define the scalar ρ(k, s) by

ρ(k, s) := max
1≤j≤m

(1 + |kj |)a
∞∏
j=1

(1 + p|sj |)−q exp ((r, |s|)) , (r, |s|) :=

∞∑
j=1

rj |sj |. (2.40)

Note that polynomial prefactors of the type (1 + p|sj |)−q indeed appear with values p = 2 and q = 1/2 in
estimates for the coefficients of Legendre expansions in specific situations for stochastic elliptic PDEs under the
assumption of polyellipse analytic regularity, see e.g. [6, 10, 13, 14]. Also, more general forms of prefactors
exist, involving factorials or the gamma function. Furthermore, one may consider individual values pj , qj for
each j. For reasons of simplicity, we stick to the case of constant p, q. Here and in what follows, |s| := (|sj |)∞j=1

for s ∈ Z∞∗ .

Now, for T > 0, consider the following hyperbolic cross in the infinite-dimensional case

E(T ) :=
{

(k, s) ∈ Zm+ × Z∞+∗ : ρ(k, s) ≤ T
}
. (2.41)

Again, the cardinality of E(ε−1) will later describe the necessary dimension of the approximation spaces of the
associated linear approximation with accuracy ε. We want to derive an estimate for the cardinality of E(T ).

Theorem 2.7. Let m ∈ N, a > 0, r = (rj)
∞
j=1 ∈ R∞ with rj > 0 and let p = 0, q ≥ 0. Assume that there

holds the condition

M0,q(m) :=

∞∑
j=1

1

emrj/a − 1
< ∞. (2.42)

Then we have for every T ≥ 1

|E(T )| ≤
(

3

2

)2m

exp[M0,q(m)] Tm/a. (2.43)

Proof. Let T ≥ 1 be given. Observe that |E(T )| = |E∗(T )|, where

E∗(T ) :=
{

(k, s) ∈ Nm × Z∞+∗ : ρ∗(k, s) ≤ T
}
,

and

ρ∗(k, s) := max
1≤j≤m

kaj exp

 ∞∑
j=1

rjsj

 = max
1≤j≤m

kaj exp ((r, s)) . (2.44)

Thus, we need to derive an estimate for |E∗(T )|. To this end, for s ∈ Z∞+∗, we put

Ts := T 1/a exp[−(r, s)/a].
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Note that, for every (k, s) ∈ E∗(T ), it follows from the definition of E∗(T ) that s ∈ H(T ) where

H(T ) :=
{
s ∈ Z∞+∗ : exp ((r, s)) ≤ T

}
. (2.45)

By definition and the symmetry of the variable kj we have

|E∗(T )| =
∑

s∈H(T )

∑
k∈Nm: max1≤j≤m kj ≤ Ts

1 ≤ m
∑

s∈H(T )

∑
k∈Nm: km ≤ Ts

kj≤km, j=1,...,m−1

1

≤ m
∑

s∈H(T )

∑
k∈N: k ≤ Ts

km−1.

(2.46)

Hence, since Ts ≥ 1, the application of Lemma 2.3 gives

|E∗(T )| ≤ m
∑

s∈H(T )

1

m

(
3

2

)m
(Ts + 1/2)m ≤ m

∑
s∈H(T )

1

m

(
3

2

)m
(Ts + Ts/2)m

≤
(

3

2

)m ∑
s∈H(T )

(
3

2

)m
Tms ≤

(
3

2

)2m ∑
s∈H(T )

Tms

=

(
3

2

)2m

Tm/a
∑

s∈H(T )

exp[−m(r, s)/a].

(2.47)

Note furthermore that, for every s ∈ H(T ), it follows from definition (2.41) that sj ≤ (log T )/rj , j ∈ N. The
condition M0,q(m) < ∞ yields that rj → ∞ as j → ∞. Hence, there exists a j∗ such that sj = 0 for every
s ∈ H(T ) and every j > j∗. From this observation we get

∑
s∈H(T )

exp[−m(r, s)/a] ≤
j∗∏
j=1

∑
sj≤(log T )/rj

exp(−mrjsj/a)

≤
j∗∏
j=1

1 +

∞∑
sj=1

exp(−mrjsj/a)

 =

j∗∏
j=1

[
1 + (emrj/a − 1)−1

]
.

(2.48)

By use of the inequality (2.24) we finally obtain the bound

|E∗(T )| ≤
(

3

2

)2m

Tm/a exp

 ∞∑
j=1

(emrj/a − 1)−1

 , (2.49)

which gives the desired result.

In order to estimate E(T ) for the case p > 0, we need an auxiliary lemma.

Lemma 2.8. Let η > 0 and let p, q > 0. Assume that

η ≥
q +
√
q

p
and η > pq. (2.50)

Then, we have

∞∑
k=1

e−ηk(1 + pk)q ≤ (1 + p/2)q

η − pq
e−η/2. (2.51)
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Proof. Set ϕ(x) := e−ηx(1 + px)q. Let us first show that the assumption (2.50) provides the convexity of ϕ on
(0,∞). Changing variables by putting t = 1 + px, we have ϕ(x) = eδg(t), where δ := η/p and g(t) := e−δt tq.

Observe that the function g is convex for t ≥ q+
√
q

δ . Since the change of variables is linear and p > 0, this

implies that the function ϕ is convex for x ≥ q+
√
q

η − 1
p . Hence, for η ≥ q+

√
q

p , ϕ is a non-negative convex

function in (0,∞).

By applying Lemma 2.1, we have

∞∑
k=1

e−ηk(1 + pk)q ≤
∫ ∞
1/2

e−ηx(1 + px)q dx =
eη/p

p

∫ ∞
1+p/2

e−ηt/p tq dt.

Observing that ∫ ∞
1+p/2

e−ηt/p tq dt ≥
∫ ∞
1+p/2

e−ηt/p tq−1 dt,

the integral in the last expression can be estimated as∫ ∞
1+p/2

e−ηt/p tq dt =
p

η
e−(η/p)(1+p/2) (1 + p/2)q +

pq

η

∫ ∞
1+p/2

e−ηt/p tq−1 dt

≤ p

η
e−(η/p)(1+p/2) (1 + p/2)q +

pq

η

∫ ∞
1+p/2

e−ηt/p tq dt.

Hence, ∫ ∞
1+p/2

e−ηt/p tq dt ≤ p(1 + p/2)q

η − pq
e−(η/p)(1+p/2)

Summing up we obtain

∞∑
k=1

e−ηk(1 + pk)q ≤ (1 + p/2)q

η − pq
e−η/2

which proves the lemma.

Theorem 2.9. Let m ∈ N, a > 0, r = (rj)
∞
j=1 ∈ R∞ with rj > 0 and let p, q > 0. Assume that there hold

the conditions

rj ≥
q +

√
qa/m

p
rj > pq j ∈ N, (2.52)

and

Mp,q(m) := (1 + p/2)qm/a
∞∑
j=1

e−mrj/2a

mrj/a− pqm/a
< ∞. (2.53)

Then we have for every T ≥ 1,

|E(T )| ≤
(

3

2

)2m

exp[Mp,q(m)] Tm/a. (2.54)

Proof. As in the proof of Theorem 2.7, observe that |E(T )| = |E∗(T )|, where

E∗(T ) :=
{

(k, s) ∈ Nm × Z∞+∗ : ρ∗(k, s) ≤ T
}
,
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and

ρ∗(k, s) := max
1≤j≤m

kaj

∞∏
j=1

(1 + psj)
−q exp ((r, s)) . (2.55)

Thus, we need to derive an estimate for |E∗(T )|. To this end, for s ∈ Z∞+∗, we put

Ts := T 1/a
∞∏
j=1

(1 + psj)
q/a exp[−(r, s)/a].

In a completely similar way to the proof of Theorem 2.7, we can show that

|E∗(T )| ≤
(

3

2

)2m

Tm/a
∞∏
j=1

1 +

∞∑
sj=1

(1 + psj)
qm/a exp(−mrjsj/a)

 . (2.56)

By use of Lemma 2.8 with η := mrj/a and q := mq/a, and the inequality (2.24), we continue the estimation as

|E∗(T )| ≤
(

3

2

)2m

Tm/a
∞∏
j=1

[
1 +

(1 + p/2)qm/a

mrj/a− pqm/a
e−mrj/2a

]

≤
(

3

2

)2m

Tm/a exp

(1 + p/2)qm/a
∞∑
j=1

e−mrj/2a

mrj/a− pqm/a

 (2.57)

which gives the desired result.

Note at this point that the assumption m > 0 is crucial. For the case m = 0, our theorem would no longer
give a rate in terms of T but merely a constant. Therefore, we shortly consider the case m = 0 with p = 0 in
more detail. To this end, we first focus on the d-dimensional case, i.e. we consider

Ed(T ) :=
{
s ∈ Zd+ : exp((r, s)) ≤ T

}
.

We have the following bound for the cardinality |Ed(T )|:
Lemma 2.10. For T ≥ exp(rj), j = 1, . . . , d, it holds d∏

j=1

1

r j

 (log T )
d

d!
≤ |Ed(T )| ≤

 d∏
j=1

1

r j


(

log T +
∑d
j=1 rj

)d
d!

. (2.58)

Proof. We have

log

 d∏
j=1

erjsj

 =

d∑
j=1

rjsj ≤ log T := T̃

which describes just an index set which is a weighted discrete simplex in d dimensions of size T̃ . Then we obtain
with [4] the desired result. For further aspects and a slight improvement on the lower bound, see also [48].

This directly shows that we now only have a logarithmic cost rate in T , which is however exponential in
the dimension d. Moreover, the order constant depends on d. Thus, we can not directly go to the infinite-
dimensional limit d → ∞. If we settle for a slightly higher cost rate instead, then, in certain cases, upper
bounds can still be derived, which are completely independent of d and also hold in the infinite-dimensional
case. To this end, note that we need to resolve for a given T only up to a certain active dimension d = d(T )
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since in the higher dimensions d + j, j > 0, we encounter just index values sd+j = 0 due to the definition of
E(T ). Therefore, it holds rj ≤ log T, j = 1, . . . d. Then, we get

d∑
j=1

rj ≤ d log T .

Thus, with Lemma 2.10, using the lower bound of Stirling’s formula d! ≥
√

2πd(d/e)d and ((d+ 1)/d)d ≤ e, we
obtain

|Ed(T )| ≤
d∏
j=1

1

rj

(d+ 1)d(log T )d

d!
≤

d∏
j=1

1

rj

ed√
2πd

(d+ 1)d

dd
(log T )d ≤

d∏
j=1

1

rj

ed+1

√
2πd

(log T )d. (2.59)

Now we consider the asymptotic behavior of the rj in more detail. For example, in the situation rj ≥ e · j,
we have

∏d
j 1/rj ≤ e−d/d! and get

d∏
j=1

1

rj

ed+1

√
2πd

(log T )d ≤ e−d

d!

ed+1

√
2πd

(log T )d =
e√
2πd

(log T )d

d!
≤ e√

2πd
exp(log T ) ≤ 1√

d

e

2π
T ≤ e

2π
T,

i.e. we obtain a cost rate bound of e
2πT . In the situation rj ≥ e · j2 we get analogously the bound

d∏
j=1

1

rj

ed+1

√
2πd

(log T )d ≤ e−d

(d!)2
ed+1

√
2πd

(log T )d =
e√
2πd

(√
log T

d

d!

)2

≤ e√
2πd

e(2
√
log T ) ≤ e√

2π
e(2
√
log T ),

which grows slower than any polynomial in T . If necessary, this bound can be further improved by a factor of
1/
√

log T .

In the general case, we have the following lemma:

Lemma 2.11. Let m = 0 and p = 0. Furthermore, let rj ≥ ωjτ , where ω, τ > 0, and let

cω,τ := τ + ω−1/τ log
( e
ω

)
> 0.

Then, for the cardinality of the hyperbolic cross E(T ) in the infinite-dimensional case, there holds the bound

|E(T )| ≤ exp
(
cω,τ (log T )

1/τ
)
. (2.60)

Proof. Consider again the finite-dimensional setting from Lemma 2.10. From the assumption rj ≥ ωjτ it
follows that

d∏
j=1

1

rj
≤

d∏
j=1

ω−1j−τ = ω−d(d!)−τ ,

where d = d(T ) again denotes the active dimension of E(T ). Furthermore, since rd ≤ log T it holds d ≤(
log T
ω

)1/τ
. Now, recall the upper bound from (2.59). By employing xd

d! ≤ exp(x) we obtain for d > 1, i.e. for
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log(T ) > r1, the estimate

|Ed(T )| ≤
d∏
j=1

1

rj

ed+1

√
2πd

(log T )d ≤ ed+1

√
2πdωd(d!)τ

(log T )d =
ed+1

ωd
√

2πd

(
(log T )d/τ

d!

)τ
≤ ed+1

ωd
√

2πd
exp

(
τ(log T )1/τ

)
=

e√
2πd

exp
(
τ(log T )1/τ + d log

( e
ω

))
≤ e√

2πd
exp

(
τ(log T )1/τ +

(
log T

ω

)1/τ

log
( e
ω

))
=

e√
2πd

exp
[
(log T )1/τ

(
τ + ω−1/τ log

( e
ω

))]
≤ exp

(
cω,τ (log T )1/τ

)
.

Therefore, this is also a bound on |E(T )|.
Altogether this shows a cost rate which is for τ > 1 better than any algebraic rate and only slightly worse

than any logarithmic rate.4 Moreover, for 0 < τ < 1, we get a meaningful estimate from our approach at
all. This has to be compared to results which were derived elsewhere by means of Stechkin’s Lemma using so
called p-summability and δ-admissibility conditions that are based on complex analytic regularity assumptions
on polydiscs/polyellipses. In contrast to that, we only have to count the cardinality of the respective hyperbolic
cross induced by T and the smoothness indices r. But we will have to use a Hilbert space structure (and not
just a Banach space). Moreover, we have to assume a monotone ordering of the smoothness indices r to be
given in the first place.

2.3. Extensions. In the previous two subsections, we gave upper bounds for the cardinality of hyperbolic
crosses in the infinite-dimensional case for the setting of nonperiodic mixed Sobolev-Korobov-type and nonpe-
riodic Sobolev-analytic-type smoothness indices, i.e. we specifically considered the subsets G(T ) ⊂ Zm+ × Z∞+∗
and E(T ) ⊂ Zm+ × Z∞+∗ from (2.2) and (2.41), respectively, that involve only nonnegative values in k and s
which reflects the nonperiodic situation. Of course, periodic situations can be dealt with in an analogous way
which would involve the sets Zm and Z∞∗ instead. This will be discussed in this subsection. Here, altogether,
four different combinations of Zm+ or Zm with Z∞+∗ or Z∞∗ are possible. This leads, in addition to the fully
nonperiodic case which we already dealt with, to corresponding results for the fully periodic case and for the
nonperiodic-periodic and periodic-nonperiodic counterparts.

To simplify the presentation, we need some new notation. We use the letter I to denote either Zm+ or Zm,
and J to denote either Z∞+∗ or Z∞∗ . Furthermore, we use the letter S to denote either K or A, i.e. the Korobov
or the analytic setting. We then can define the hyperbolic crosses in the infinite-dimensional case

GSI×J (T ) :=
{

(k, s) ∈ I × J : λS(k, s) ≤ T
}

where S ∈ {K,A} . (2.61)

Here, the scalars λK(k, s) := λ(k, s) and λA(k, s) := ρ(k, s) are defined in (2.1) and (2.40), respectively, with
given and fixed corresponding parameters m, a, t, r, r, p, q. Furthermore, we denote by Jd the set of all s ∈ J
such that supp(s) ⊂ {1, ..., d}. With this notation we can identify Zd with Jd for J = Z∞∗ , and Zd+ with Jd
for J = Z∞+∗. Then, we can analogously define the hyperbolic crosses GKI×Jd(T ) and GAI×Jd(T ) in the finite-
dimensional case by replacing J with Jd in (2.61), respectively. We altogether obtain eight types of hyperbolic
crosses for the infinite-dimensional case and eight types of hyperbolic crosses for the m + d-dimensional case
which correspond to the different possible combinations. For example, for the index sets of nonperiodic mixed
Korobov-type and nonperiodic analytic smoothness, we now have GKZm+×Z∞+

(T ) = G(T ) and EAZm+×Z∞+
(T ) = E(T )

with G(T ) and E(T ) from (2.2) and (2.41), respectively.

4Or, vice versa, with cost M = |E(T )| and thus T ≥ exp
(
c−τω,τ (logM)τ

)
, this gives a bound ε ≤ exp(−c−τω,τ (logM)τ ) for the

accuracy ε = T−1 that is obtained for fixed cost M . Thus, we obtain a rate for the approximation error which is for τ > 1 better
than any algebraic rate and is only slightly worse than any exponential rate. For 0 < τ < 1, we get a meaningful rate at all.
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We now can formulate the results on the estimation of |GKI×J (T )| and |GAI×J (T )|. To this end, let us define
the following quantities which depend on the parameters m, a, t, r, r, p, q and T :

AS(T ) :=


A(a, r,m, t, T ), S = K,

Tm/a, S = A,
and MS :=

{
M(t), S = K,

Mp,q, S = A,
(2.62)

with A(a, r,m, t, T ) from (2.15), M(t) from (2.27) and Mp,q from (2.42) for p = 0 and from (2.53) for p > 0.
Furthermore, let us define

CSI×J :=



exp (MS)B(a, r,m, t), S = K, I = Zm+ , J = Z∞+∗,

2m exp (MS)B(a, r,m, t), S = K, I = Zm, J = Z∞+∗,

exp (2MS)B(a, r,m, t), S = K, I = Zm+ , J = Z∞∗ ,

2m exp (2MS)B(a, r,m, t), S = K, I = Zm, J = Z∞∗ ,

(3/2)2m exp (MS), S = A, I = Zm+ , J = Z∞+∗,

2m (3/2)2m exp (MS), S = A, I = Zm, J = Z∞+∗,

(3/2)2m exp (2MS), S = A, I = Zm+ , J = Z∞∗ ,

2m (3/2)2m exp (2MS), S = A, I = Zm, J = Z∞∗ ,

(2.63)

with B(a, r,m, t) from (2.14).

We are now in the position to state a generalized theorem which covers all different possible cases.

Theorem 2.12. For the case S = K, let the triple m, a, r be given as in (2.25), and, for the case S = A, let
the 5-tuple m, a, r, p, q be given as in (2.39). Suppose that there hold the assumptions of Theorem 2.6 if S = K,
and the assumptions of Theorem 2.7 if S = A, p = 0, and of Theorem 2.9 if S = A, p > 0. Then, we have for
every T ≥ 1

|GSI×Jd(T )| ≤ |GSI×J (T )| ≤ CSI×J A
S(T ). (2.64)

We here refrain from giving explicit proofs since they are similar to these of the last two subsections involving
just obvious modifications.

We finish this section by giving a simple lower bound for |GSI×Jd(T )| and |GSI×J (T )|.
Theorem 2.13. For the case S = K, let the triple m, a, r be given as in (2.25), and, for the case S = A,

let the 5-tuple m, a, r, p, q be given as in (2.39). Then, we have for every T ≥ 1

|GSI×J (T )| ≥ |GSI×Jd(T )| ≥ bT 1/acm. (2.65)

Proof. It is sufficient to treat the case I = Zm+ , Jd = Zd+. To this end, we consider the set Q of all elements

(k,0) ∈ Zm+ × Zd+ such that kj ≤ T 1/a − 1, j = 1, ...,m. Then, Q is a subset of GSZm+×Zd+
(T ) for T ≥ 1. Hence,

the obvious inequality |Q| ≥ bT 1/acm proves the assertion.

3. Hyperbolic cross approximation in infinite tensor product Hilbert spaces. In this section, we
present the basic framework for our approximation theory in the infinite-dimensional case which is based on
infinite tensor product Hilbert spaces. Then, we consider specific instances of our general theory and define the
mixed Sobolev-Korobov-type and mixed Sobolev-analytic-type spaces mentioned in the introduction.

3.1. Infinite tensor product Hilbert spaces and general approximation results. We recall the
notion of the infinite tensor product of separable Hilbert spaces. Let Hj , j = 1, ...,m, be separable Hilbert
spaces with inner products 〈·, ·〉j . First, we define the finite-dimensional tensor product of Hj , j = 1, ...,m, as
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the tensor vector space H1 ⊗H2 ⊗ · · · ⊗Hm equipped with the inner product

〈⊗mj=1φj ,⊗mj=1ψj〉 :=

m∏
j=1

〈φj , ψj〉j for all φj , ψj ∈ Hj . (3.1)

By taking the completion under this inner product, the resulting Hilbert space is defined as the tensor product
space H1 ⊗H2 ⊗ · · · ⊗Hm of Hj , j = 1, ...,m. Next, we consider the infinite-dimensional case. If Hj , j ∈ N, is
a collection of separable Hilbert spaces and ξj , j ∈ N, is a collection of unit vectors in these Hilbert spaces then
the infinite tensor product ⊗j∈NHj is the completion of the set of all finite linear combinations of simple tensor
vectors ⊗j∈Nφj where all but finitely many of the φj ’s are equal to the corresponding ξj . The inner product of
⊗j∈Nφj and ⊗j∈Nψj is defined as in (3.1). For details on infinite tensor product of Hilbert spaces, see [7].

Now, we will need a tensor product of Hilbert spaces of a special structure. Let H1 and H2 be two given
infinite-dimensional separable Hilbert spaces. Consider the infinite tensor product Hilbert space

L := Hm
1 ⊗H∞2 where Hm

1 := ⊗mj=1H1, H∞2 := ⊗∞j=1H2. (3.2)

In the following, we use the letters I, J to denote either Z+ or Z. Recall also that we use the letter I to
denote either Zm+ or Zm and the letter J to denote either Z∞+∗ or Z∞∗ . Let {φ1,k}k∈I and {φ2,s}s∈J be given
orthonormal bases of H1 and H2, respectively. Then, {φ1,k}k∈I and {φ2,s}s∈J are orthonormal bases of Hm

1

and H∞2 , respectively, where

φ1,k := ⊗mj=1φ1,kj , φ2,s := ⊗∞j=1φ2,sj . (3.3)

Moreover, the set {φk,s}(k,s)∈I×J is an orthonormal basis of L, where

φk,s := φ1,k ⊗ φ2,s. (3.4)

Thus, every f ∈ L can by represented by the series

f =
∑

(k,s)∈I×J

fk,s φk,s, (3.5)

where fk,s := 〈f, φk,s〉 is the (k, s)th coefficient of f with respect to the orthonormal basis {φk,s}(k,s)∈I×J .
Furthermore, there holds Parseval’s identity

‖f‖2L =
∑

(k,s)∈I×J

|fk,s|2. (3.6)

Now let us assume that a general sequence of scalars λ := {λ(k, s)}(k,s)∈I×J with λ(k, s) 6= 0 is given. Then,

we define the associated space Lλ as the set of all elements f ∈ L such that there exists a g ∈ L such that

f :=
∑

(k,s)∈I×J

gk,s
λ(k, s)

φk,s. (3.7)

The norm of Lλ is defined by ‖f‖Lλ := ‖g‖L. From the definition (3.7) and Parseval’s identity we can see that

‖f‖2Lλ =
∑

(k,s)∈I×J

|λ(k, s)|2 |fk,s|2. (3.8)

We also consider the subspace Ld in L defined by Ld :=
{
f =

∑
(k,s)∈I×Jd fk,s φk,s

}
and the subspace Lλd :=

Lλ ∩ Ld, where Jd := { s ∈ J : supp(s) ⊂ {1, · · · , d} }.
Next, let us assume that the general nonzero sequences of scalars λ := {λ(k, s)}(k,s)∈I×J and ν :=

{ν(k, s)}(k,s)∈I×J are given with associated spaces Lλ and Lν with corresponding norms and subspaces Lλd
and Lνd. For T ≥ 0, we define the set

GI×J (T ) :=
{

(k, s) ∈ I × J :
λ(k, s)

ν(k, s)
≤ T

}
, (3.9)
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and the subspace P(T ) of all g ∈ L of the form

g =
∑

(k,s)∈GI×J (T )

gk,s φk,s. (3.10)

We are interested in the Lν-norm approximation of elements from Lλ by elements from P(T ). To this end, for
f ∈ L and T ≥ 0, we define the operator ST as

ST (f) :=
∑

(k,s)∈GI×J (T )

fk,s φk,s. (3.11)

We make the assumption throughout this section that GI×J (T ) is a finite set for every T > 0. Obviously, ST
is the orthogonal projection onto P(T ). Furthermore, we define the set GI×Jd(T ), the subspace Pd(T ) and the
operator Sd,T (f) in the same way by replacing J by Jd.

The following lemma gives an upper bound for the error of the orthogonal projection ST with respect to the
parameter T .

Lemma 3.1. For arbitrary T ≥ 1, we have

‖f − ST (f)‖Lν ≤ T−1‖f‖Lλ , ∀f ∈ Lλ ∩ Lν . (3.12)

Proof. Let f ∈ Lλ ∩Lν . From the definition of the spaces Lλ and Lν and the definition (3.8) of the associated
norms ‖.‖Lλ and ‖.‖Lν , we get

‖f − ST (f)‖2Lν =
∑

(k,s)6∈GI×J (T )

|ν(k, s)|2|fk,s|2

≤ sup
(k,s)6∈GI×J (T )

∣∣∣∣λ(k, s)

ν(k, s)

∣∣∣∣−2 ∑
(k,s)6∈GI×J (T )

|λ(k, s)|2 |fk,s|2

≤ T−2‖f‖2Lλ .

Now denote by Uλ the unit ball in Lλ, i.e., Uλ := {f ∈ Lλ : ‖f‖Lλ ≤ 1}, and denote by Uλd the unit ball in
Lλd , i.e., Uλd := {f ∈ Lλd : ‖f‖Lλd ≤ 1}. We then have the following corollary:

Corollary 3.2. For arbitrary T ≥ 1,

sup
f∈Uλ

inf
g∈P(T )

‖f − g‖Lν = sup
f∈Uλ

‖f − ST (f)‖Lν ≤ T−1. (3.13)

Next, we give a Bernstein-type inequality.

Lemma 3.3. For arbitrary T ≥ 1, we have

‖f‖Lλ ≤ T‖f‖Lν , ∀f ∈ P(T ). (3.14)

Proof. Let f ∈ P(T ). From the definition of Lλ and Lν and the definition (3.8) of the associated norms ‖.‖Lλ
and ‖.‖Lν , it follows that

‖f‖2Lλ =
∑

(k,s)∈GI×J (T )

|λ(k, s)|2|fk,s|2

≤ sup
(k,s)∈GI×J (T )

∣∣∣∣λ(k, s)

ν(k, s)

∣∣∣∣2 ∑
(k,s)∈GI×J (T )

|ν(k, s)|2|fk,s|2

≤ T 2‖f‖2Lν .
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Now we are in the position to give lower and upper bounds on the ε-dimension nε(Uλ,Lν).

Lemma 3.4. Let ε ∈ (0, 1]. Then, we have

|GI×J (1/ε)| − 1 ≤ nε(Uλ,Lν) ≤ |GI×J (1/ε)|. (3.15)

Proof. Put T = 1/ε and let

B(ε) := {f ∈ P(T ) : ‖f‖Lν ≤ ε}.

To prove the first inequality, we need the following result on Kolmogorov n-widths of the unit ball [56, Theorem
1]: Let Ln be an n-dimensional subspace in a Banach space X, and let Bn(δ) := {f ∈ Ln : ‖f‖X ≤ δ}, δ > 0.
Then

dn−1(Bn(δ), X) = δ. (3.16)

In particular, for n := dimP(T ) = |GI×J (1/ε)|, we get

dn−1(B(ε),Lν) = ε. (3.17)

Note furthermore that the definition (1.1) of the Kolmogorov n-width does not change if the outer infimum is
taken over all linear manifolds Mn in X of dimension n instead of dimension at most n. Hence, for every linear
manifold Mn−1 in Lν of dimension n− 1, equation (3.17) yields

sup
f∈B(ε)

inf
g∈Mn−1

‖f − g‖Lν ≥ ε.

From Lemma 3.3, we obtain

B(ε) ⊂ Uλ, (3.18)

which gives

nε(Uλ,Lν) ≥ nε(B(ε),Lν) ≥ sup

{
n′ : ∀ Mn′ : dimMn′ ≤ n′, sup

f∈B(ε)

inf
g∈Mn′

‖f − g‖Lν ≥ ε

}
.

Here, Mn′ is a linear manifold in Lν of dimension ≤ n′. Altogether, this proves the first inequality in (3.15).
The second inequality follows from Corollary 3.2.

In a similar way, by using the set GI×Jd(T ), the subspace Pd(T ) and the operator Sd,T (f), we can prove
the following lemma for nε(Uλd ,Lνd).

Lemma 3.5. Let ε ∈ (0, 1]. Then we have

|GI×Jd(1/ε)| − 1 ≤ nε(Uλd ,Lνd) ≤ |GI×Jd(1/ε)|. (3.19)

3.2. Results for mixed Sobolev-Korobov-type and mixed Sobolev-analytic-type spaces. So
far, we laid out the basic framework for our theory in the infinite-dimensional case, where the error of an
approximation is measured in the ‖.‖Lν -norm and the functions to be approximated are from the space Lλ with
associated, given general sequences ν and λ. In the following, we will get more specific and we will plug in
particular sequences ν and λ. They define the Sobolev-Korobov-type spaces and Sobolev-analytic-type spaces
mentioned in the introduction, whose indices were already used for the definition of the hyperbolic crosses in
Section 2. To this end, we will use Sobolev-type spaces for Hm

1 , Korobov-type spaces for H∞2 , and analytic-type
spaces for H∞2 in (3.2).

First, for given α ≥ 0, we define the scalar λm,α(k), k ∈ I, by

λm,α(k) := max
1≤j≤m

(1 + |kj |)α. (3.20)
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Recall the definition (3.2). The Sobolev-type space Kα is then defined as the set of all functions f ∈ Hm
1 such

that there exists a g ∈ Hm
1 such that

f =
∑
k∈I

gk
λm,α(k)

φ1,k, (3.21)

where gk := 〈g, φ1,k〉 is the kth coefficient of g with respect to the orthonormal basis {φ1,k}k∈I . The norm of
Kα is defined by

‖f‖Kα := ‖g‖L. (3.22)

Second, for given r ∈ R∞+ , we define the scalar ρr(s), s ∈ J , by

ρr(s) :=

∞∏
j=1

(1 + |sj |)rj . (3.23)

Recall the definition (3.2). The Korobov-type space Kr is then defined as the set of all functions f ∈ H∞2 such
that there exists a g ∈ H∞2 such that

f =
∑
s∈J

gs
ρr(s)

φ2,s, (3.24)

where gs := 〈g, φ2,s〉 is the sth coefficient of g with respect to the orthonormal basis {φ2,s}s∈J . The norm of
Kr is defined by

‖f‖Kr := ‖g‖L. (3.25)

Third, for given r ∈ R∞+ , p, q ≥ 0, we define the scalar ρr,p,q(s), s ∈ J , by

ρr,p,q(s) :=

∞∏
j=1

(1 + p|sj |)−q exp ((r, |s|)) , (r, |s|) :=

∞∑
j=1

rj |sj |. (3.26)

The analytic-type space Ar,p,q and its norm are then defined as in (3.24) and (3.25) by replacing ρr(s) with
ρr,p,q(s). Note at this point that the spaces Kα, Kr and Ar,p,q are themselves Hilbert spaces with their naturally
induced inner product. This means that if g, g′ represent f, f ′ as in (3.22) or (3.25), then 〈f, f ′〉 := 〈g, g′〉.

For α ≥ β ≥ 0, we now define the spaces G and H by

G := Kβ ⊗H∞2 H := Kα ⊗ F, where F is either Kr or Ar,p,q. (3.27)

Here, H∞2 is given in (3.2). The space H is called Sobolev-Korobov-type space if F = Kr in (3.27) and Sobolev-
analytic-type space if F = Ar,p,q. From these definitions we can see that G and H are special cases of L in (3.2).
Moreover,

G = Lν , where ν := {ν(k, s)}(k,s)∈I×J , ν(k, s) := λm,β(k). (3.28)

Furthermore, denoting by S either K or A (cf. Subsection 2.3), we see that

H = Lλ, where λ := {λ(k, s)}(k,s)∈I×J , λ(k, s) := λS(k, s), (3.29)

where λS(k, s) = λm,α(k)ρr(s) if S = K and λS(k, s) = λm,α(k)ρr,p,q(s) if S = A, respectively. We also consider
the subspaces Gd := G ∩ Ld and Hd := H ∩ Ld.

We are now in the position to state the properties of the hyperbolic cross approximation of functions from
H with respect to the G-norm. To this end, we fix the parameters m,α, β, r, p, q in the definition of G and H,
and put a = α− β. We will assume that, for S = K, the triple m, a, r is given as in (2.25) and, for S = A, the
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5-tuple m, a, r, p, q is given as in (2.39). Denote by U the unit ball in H, i.e., U := {f ∈ H : ‖f‖H ≤ 1}, and by
Ud the unit ball in Hd, i.e., Ud := {f ∈ Hd : ‖f‖H ≤ 1}. Then, from Corollary 3.2, Lemmata 3.4 and 3.5 and
Theorems 2.12 and 2.13, we obtain the following result:

Theorem 3.6. Let α > β ≥ 0, let a = α−β, let, for S = K, the triple m, a, r be given as in (2.25), and let,
for S = A, the 5-tuple m, a, r, p, q be given as in (2.39). Suppose that there hold the assumptions of Theorem
2.6 if S = K, and the assumptions of Theorem 2.7 if S = A, p = 0, and Theorem 2.9 if S = A, p > 0. Then,
we have for every d ∈ N and every ε ∈ (0, 1]

bε−1/(α−β)cm − 1 ≤ nε(Ud,Gd) ≤ nε(U ,G) ≤ CSI×J A
S(ε−1), (3.30)

where CSI×J and AS(T ) are as in (2.63) and (2.62), respectively. Moreover, it holds

sup
f∈Ud

‖f − Sd,ε−1(f)‖Gd ≤ sup
f∈U
‖f − Sε−1(f)‖G ≤ ε. (3.31)

4. Hyperbolic cross approximation of specific infinite-variate functions: Two examples. In
this section, we make the results of the previous section for hyperbolic cross approximation of infinite-variate
functions more specific. We will consider two situations as examples: First, the approximation of infinite-
variate periodic functions from Sobolev-Korobov-type spaces and, second, the approximation of infinite-variate
nonperiodic functions from Sobolev-analytic-type spaces. Note that the other possible cases can be treated in
an analogous way.

4.1. Approximation of infinite-variate periodic functions. Denote by T the one-dimensional torus
represented as the interval [0, 1] with identification of the end points 0 and 1. Let us define a probability measure
on T∞. It is the infinite tensor product measure µ of the univariate Lebesgue measures on the one-dimensional
T, i.e. dµ(y) =

⊗
j∈N dyj . Here, the sigma algebra Σ for µ is generated by the periodic finite rectangles∏

j∈Z Ij where only a finite number of the Ij are different from T and those that are different are periodic
intervals contained in T. Then, (T∞,Σ, µ) is a probability space.

Now, let L2(T∞) := L2(T∞, µ) denote the Hilbert space of functions on T∞ equipped with the inner product
〈f, g〉 :=

∫
T∞ f(y)g(y) dµ(y). The norm in L2(T∞) is defined as ‖f‖ := 〈f, f〉1/2. Furthermore, let L2(Tm) be

the usual Hilbert space of Lebesgue square-integrable functions on Tm. Then, we set

L2(Tm × T∞) := L2(Tm)⊗ L2(T∞).

Observe that this and other similar definitions become an equality if we consider the tensor product measure
in Tm × T∞. For (k, s) ∈ Zm × Z∞∗ , we define

e(k,s)(x,y) := ek(x)es(y), ek(x) :=

m∏
j=1

ekj (xj), es(y) :=
∏

j∈supp(s)

esj (yj),

where es(y) := ei2πsy. Note that {e(k,s)}(k,s)∈Zm×Z∞∗ is an orthonormal basis of L2(Tm × T∞). Moreover, for
every f ∈ L2(Tm × T∞), we have the following expansion

f =
∑

(k,s)∈Zm×Z∞∗

f̂(k, s)e(k,s),

where, for (k, s) ∈ Zm × Z∞∗ , f̂(k, s) := 〈f, e(k,s)〉 is the (k, s)th Fourier coefficient of f . Hence, putting
H1 = H2 = L2(T), we have

L2(Tm × T∞) = L := Hm
1 ⊗H∞2 .

Next, based on the orthonormal bases {φ1,k}k∈I := {ek}k∈Z and {φ2,s}s∈J := {es}s∈Z for the two spaces H1

and H2 in (3.2) with I = J = Z, respectively, we construct the associated Sobolev-type spaces Kβ(Tm × T∞)
and the associated Sobolev-Korobov-type spaces Kα,r(Tm × T∞) for the periodic case as

Kβ(Tm × T∞) := G, Kα,r(Tm × T∞) := H,
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where G and H are defined5 as in (3.27) with F = Kr and the triple m,α, r as in (2.25). Furthermore, we set

Kβ
d (Tm × T∞) := Gd, Kα,r

d (Tm × T∞) := Hd.

For T ≥ 0, let us denote by T (T ) the subspace of trigonometric polynomials g of the form

g :=
∑

(k,s)∈GKZm×Z∞∗
(T )

ĝ(k, s)e(k,s), (4.1)

where

GKZm×Z∞∗ (T ) :=
{

(k, s) ∈ Zm × Z∞∗ : λK(k, s) ≤ T
}
,

and, with a = α− β,

λK(k, s) := max
1≤j≤m

(1 + |kj |)a
t+1∏
j=1

(1 + |sj |)r
∞∏

j=t+2

(1 + |sj |)rj .

For f ∈ L2(Tm × T∞) and T ≥ 0, we define the Fourier operator ST as

ST (f) :=
∑

(k,s)∈GKZm×Z∞∗
(T )

f̂(k, s)e(k,s). (4.2)

Let Uα,r(Tm×T∞) := U and Uα,rd (Tm×T∞) := Ud be the unit ball in Kα,r(Tm×T∞) and Kα,r
d (Tm×T∞),

respectively. Now, from Theorems 3.6, 2.12 and 2.13, the results on the hyperbolic cross approximation in infinite
tensor product Hilbert spaces of Section 3 can be reformulated for the approximation of periodic functions in
Sobolev-Korobov-type spaces as follows.

Theorem 4.1. Let α > β ≥ 0, let a = α − β and let the triple m, a, r be given as in (2.25). Suppose that
there hold the assumptions of Theorem 2.6. With

nε(d) := nε(U
α,r
d (Tm × T∞),Kβ

d (Tm × T∞)), nε := nε(U
α,r(Tm × T∞),Kβ(Tm × T∞)),

we have for every d ∈ N and every ε ∈ (0, 1]

bε−1/(α−β)cm − 1 ≤ nε(d) ≤ nε ≤ C A(ε−1), (4.3)

where C := 2m e2M(t)B(α− β, r,m, t) with M(t) from (2.27) and B(a, r,m, t) from (2.14), and

A(T ) :=


Tm/(α−β), r > (α− β)/m,

Tm/(α−β) log(2T 1/(α−β) + 1)[r−1 log T + (t+ 1) log 2]t, r = (α− β)/m,

T 1/r[r−1 log T + (t+ 1) log 2]t, r < (α− β)/m.

Note at this point that we discussed here only the example involving the Sobolev-Korobov-type space. The
Sobolev-analytic-type space as well as other combinations for the periodic case can be defined and dealt with
in an analogous way if necessary.

5At this point, note a slight abuse of notation. In (3.27), the Kβ only relates to Hm
1 .
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4.2. Approximation of infinite-variate nonperiodic functions. In the following, we consider the
nonperiodic case in more detail. Here, we focus on two types of domains, R and I := [−1, 1]. To this end, we
use the letter D to denote either I or R. Let us define a probability measure µ on D∞. For D = I, a probability
measure on I∞ is the infinite tensor product measure µ of the univariate uniform probability measures on the one-
dimensional I, i.e. dµ(y) =

⊗
j∈Z

1
2dyj . For D = R, a probability measure on R∞ is the infinite tensor product

measure µ of the univariate Gaussian probability measure on R, i.e. dµ(y) =
⊗

j∈Z(2π)−1/2 exp(−y2j /2)dyj .
Here, the sigma algebra Σ for µ is generated by the finite rectangles

∏
j∈N Ij , where only a finite number of

the Ij are different from D and those that are different are intervals contained in D. Then, (D∞,Σ, µ) is a
probability space.

Now, let L2(D∞, µ) denote the Hilbert space of functions on D∞ equipped with the inner product 〈f, g〉 :=∫
D∞ f(y)g(y) dµ(y). The norm in L2(D∞, µ) is defined as ‖f‖ := 〈f, f〉1/2. In what follows, µ is fixed, and for

convention, we write L2(D∞, µ) := L2(D∞). Furthermore, let L2(Im) be the usual Hilbert space of Lebesgue
square-integrable functions on Im based on the univariate normed Lebesgue measure. Then, we define

L2(Im × D∞) := L2(Im)⊗ L2(D∞).

Let {lk}∞k=0 be the family of univariate orthonormal Legendre polynomials in L2(I) and let {hk}∞k=0 be the
family of univariate orthonormal Hermite polynomials in L2(R, µ) with associated univariate measure dµ(y) :=
(2π)−1/2 exp(−y2/2)dy. We set

{φ1,k}k∈Z+ := {lk}k∈Z+ , and {φ2,s}s∈Z+ :=

{
{ls}s∈Z+

, D = I,

{hs}s∈Z+
, D = R.

(4.4)

For (k, s) ∈ Zm+ × Z∞+∗, we define

φ(k,s)(x,y) := φ1,k(x)φ2,s(y), φ1,k(x) :=

m∏
j=1

φ1,kj (xj), φ2,s(y) :=
∏

j∈supp(s)

φ2,sj (yj).

Note that {φ(k,s)}(k,s)∈Zm+×Z∞+∗ is an orthonormal basis of L2(Im×D∞). Moreover, for every f ∈ L2(Im×D∞),
we have the following expansion

f =
∑

(k,s)∈Zm+×Z∞+∗

fk,sφ(k,s),

where for (k, s) ∈ Zm+×Z∞+∗, fk,s := 〈f, φ(k,s)〉 denotes the (k, s)th coefficient of f with respect to the orthonormal

basis {φ(k,s)}(k,s)∈Zm+×Z∞+∗ . Hence, by putting H1 = L2(I, 12dx) and H2 = L2(D), we have

L2(Im × D∞) = L := Hm
1 ⊗H∞2 .

Next, based on the orthonormal bases {φ1,k}k∈I and {φ2,s}s∈J for the two spaces H1 and H2 in (3.2)
with I = J = Z+ as defined in (4.4), respectively, we construct the associated Sobolev-Korobov-type spaces
Kβ(Im × D∞) and the associated Sobolev-analytic-type spaces Aα,r,p,q(Im × D∞) for the nonperiodic case as

Kβ(Im × D∞) := G, Aα,r,p,q(Im × D∞) := H,

where G and H are defined6 as in (3.27) with F = Ar,p,q and the 5-tuple m,α, r, p, q as in (2.39). Furthermore,
we set

Kβ
d (Im × D∞) := Gd, Aα,r,p,qd (Im × D∞) := Hd.

6Note again a slight abuse of notation here. In (3.27), the Kβ only relates to Hm
1 .
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For T ≥ 0, we denote by PA(T ) the subspace of polynomials g of the form

g :=
∑

(k,s)∈GAZm
+
×Z∞

+∗
(T )

gk,sφ(k,s), (4.5)

where

GAZm+×Z∞+∗(T ) :=
{

(k, s) ∈ Zm+ × Z∞+∗ : λA(k, s) ≤ T
}
, (4.6)

and

λA(k, s) := max
1≤j≤m

(1 + kj)
a
∞∏
j=1

(1 + psj)
−q exp((r, s)), (r, s) :=

∞∑
j=1

rjsj . (4.7)

For f ∈ L2(Im × D∞) and T ≥ 0, we define the operator SAT as

SAT (f) :=
∑

(k,s)∈GAZm
+
×Z∞

+∗
(T )

fk,sφ(k,s). (4.8)

Let Uα,r,p,q(Im×D∞) := U and Uα,r,p,qd (Im×D∞) := Ud be the unit ball in Aα,r,p,q(Im×D∞) and Aα,r,p,qd (Im×
D∞), respectively. Now, from the Theorems 3.6, 2.12 and 2.13, the results on hyperbolic cross approximation
in infinite tensor product Hilbert spaces of Section 3 can be reformulated for the approximation of nonperiodic
functions in Sobolev-analytic-type spaces as follows.

Theorem 4.2. Let α > β ≥ 0, let a = α − β and let the 5-tuple m, a, r, p, q be given as in (2.39). Suppose
that there hold the assumptions of Theorem 2.7 if p = 0, and the assumption of Theorem 2.9 if p > 0. With

nε(d) := nε(U
m,α,r,p,q
d (Im × D∞),Kβ

d (Im × D∞)), nε := nε(U
m,α,r,p,q(Im × D∞),Kβ(Im × D∞))

we have for every d ∈ N and every ε ∈ (0, 1]

bε−1/(α−β)cm − 1 ≤ nε(d) ≤ nε ≤ (3/2)m exp(Mp,q) ε
−m/(α−β), (4.9)

where Mp,q is as in (2.42) for p = 0, and as in (2.53) for p > 0.

Note at this point that we discussed here only the example involving the Sobolev-analytic-type space. Other
combinations can be defined and dealt with in an analogous way.

5. Application. We now give an example of the application of our approximation results in the field of
uncertainty quantification. We focus on the notorious model problem

−divx(σ(x,y)∇xu(x,y)) = f(x) x ∈ Im y ∈ D∞, (5.1)

with homogeneous boundary conditions u(x,y) = 0, x ∈ ∂Im, y ∈ D∞, i.e. we have to find a real-valued
function u : Im × D∞ → R such that (5.1) holds µ-almost everywhere, where D∞ is either I∞ or R∞ and
µ is the infinite tensor product probability measure on D∞ defined in Subsection 4.2. Here, Im represents
the domain of the physical space, which is usually m = 1, 2, 3-dimensional, and D∞ represents the infinite-
dimensional stochastic or parametric domain. We assume that there holds the uniform ellipticity condition
0 < σmin ≤ σ(x,y) ≤ σmax < ∞ for x ∈ Im and µ-almost everywhere for y ∈ D∞. In a typical case, σ(x,y)
allows for an expansion σ(x,y) = σ̄(x)+

∑∞
j=1 ψj(x)yj , where σ̄ ∈ L∞(Im) and (ψj)

∞
j=1 ⊂ L∞(Im). A choice for

(ψj)
∞
j=1 in sPDEs is the Karhúnen-Loève basis where σ̄ is the average of σ and the yj are pairwise decorrelated

random variables. Another situation is the case, where the logarithm of the diffusion coefficient σ(x,y) can be

represented by a centered Karhúnen-Loève expansion σ(x,y) := exp
(∑∞

j=1 yjψj(x)
)
.

Note here that u(x,y) can be seen as a map u(·, ·) : D∞ → Hβ(Im) of the second variable y. Usually, for
the elliptic problem (5.1), we consider the smoothness indices β = 0 or β = 1. In general, the solution u lives
in the Bochner space

Lp(D∞, Hβ(Im)) :=

{
u : D∞ → Hβ(Im) :

∫
D∞
‖u(x,y)‖p

Hβ(Im)
dµ(y) <∞

}
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(with a natural modification for p = ∞), where Hβ(Im) is the Sobolev space of smoothness β. For reasons
of simplicity, we restrict ourselves to the Hilbert space setting and consider p = 2. Then, since Hβ(Im) is a
Hilbert space as well, L2(D∞, Hβ(Im)) is isomorphic to the tensor product space Hβ(Im)⊗L2(D∞) and we can
measure u in the associated norm ‖ · ‖Hβ(Im)⊗L2(D∞).

Furthermore, depending on the properties of the diffusion function σ(x,y) and the right hand side f(x), we
have higher regularity of u in both, x and y. While we directly may assume that u(·,y) is in Hα(Im), α > β,
pointwise for each y, the regularity of u in y needs further consideration. It is known that, under mild
assumptions on σ(x,y), the solution of (5.1) depends analytically on the variables in y, see e.g. [2, 5, 13, 14].
Moreover, there are estimates that show a mixed-type analytic regularity of u in the y-part, i.e. we indeed have7

u(x, ·) ∈ Ar,p,q(D∞). For the simple affine case with a product Legendre expansion, this will be discussed in more
detail in the appendix. For estimates on the expansion coefficients, see e.g. [14], formula (4.9), [13], section 6, or
[10], subsection 1.3.2, for the case of uniformly elliptic diffusion and [36] for the case of log-normally distributed
diffusion, and see also [6, 57]. Analogous estimates and derivations hold (after some tedious calculations) for
more complicated non-affine settings and diffusions, see, e.g. [10, 57], provided that corresponding proper
assumptions on σ(x,y) and thus on u(x,y) are valid.

In addition, and this is less noticed, we also have a mixed-type regularity of u between the x− and the y−part.
To be precise, a calculation following the lines of [2] which involves successive differentiation of (5.1) with respect
to y reveals that the solution u belongs to the Bochner space Ar,p,q(D∞, Hα(Im)) provided that σ(x,y) and
f(x) are sufficiently smooth. Since Ar,p,q(D∞, Hα(Im)) is isomorphic to Hα(Im)⊗ Ar,p,q(D∞) we indeed have
mixed regularity between x and y. In the end, this is a consequence of the chain rule of differentiation with
respect to y and the structure of the sPDE (5.1) which involves derivatives with respect to x only. If there is
not enough smoothness, then Ar,p,q(D∞) has to be replaced by Kr(D∞) (with some different r), but the mixed
regularity structure between x− and y−part remains.8 Thus, we first consider the case where u(x, ·) is in a
space of analytic-type smoothness r, p, q for each x with certain smoothness indices r, p, q. Then, we consider
the case where u(x, ·) is in a space of Korobov-type smoothness r.

In what follows, we keep the notation of Sections 3 and 4, and in particular, the notation of Subsection 4.2.
Let α > β ≥ 0, a = α− β and the 5-tuple m, a, r, p, q be given as in (2.39). For convenience, we allow, again by
a slight abuse of notation, for the identification

Kβ(Im × D∞) = Kβ(Im)⊗ L2(D∞) = Hβ(Im)⊗ L2(D∞)

and allow for u to belong to the space of analytic-type smoothness

Aα,r,p,q(Im × D∞) = Kα(Im)⊗Ar,p,q(D∞) = Hα(Im)⊗Ar,p,q(D∞)

We then are just in the situations which we analyzed in Subsection 4.2. Let us combine Theorems 3.6, 2.7 and 2.9
and reformulate them in a more conventional form. Taking the hyperbolic cross GA(T ) := GAZm+×Z∞+∗

(T ) = E(T )

as in (2.41) and (4.6), using the orthogonal projection SAT as in (4.8) and putting n := |GA(T )|, we redefine SAT
as a linear operator of rank n

Ln : Kβ(Im)⊗ L2(D∞)→ PA(T ),

where PA(T ) is defined by (4.5). Suppose that there hold the assumptions of Theorem 2.7 if p = 0, and
the assumptions of Theorem 2.9 if p > 0. From Theorems 3.6, 2.7 and 2.9 we obtain an error bound of the
approximation of the solution u by Ln as

‖u− Ln(u)‖Kβ(Im)⊗L2(D∞) ≤ 2α−β exp[ (α− β)Mp,q/m]n−(α−β)/m ‖u‖Kα(Im)⊗Ar,p,q(D∞).

Next, we consider the case where u(x, ·) is only in a space of Korobov-type smoothness r. To this end, recall
the details of Subsection 4.2. Again, based on the orthonormal bases {φ1,k}k∈I and {φ2,s}s∈J for the two spaces

7Consequently, there is here no issue with our specific choice of norm as in [49].
8The determination of r from e.g. the covariance structure of σ(x,y) is however not an easy task. In general, a direct functional

map from the covariance eigenvalues (if allocatable) to the sequence r is not available at least to our knowledge, and only estimates
can be derived.
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H1 and H2 in (3.2) with I = J = Z+ as defined in (4.4), respectively, we construct the Korobov-type spaces

Kβ(Im × D∞) := G, Kα,r(Im × D∞) := H,

where G and H are defined as in (3.27) with F = Kα,r and the triple m,α, r is from (2.25).

For T ≥ 0, we denote by PK(T ) the subspace of polynomials g of the form

g =
∑

(k,s)∈GK(T )

gk,sφ(k,s), (5.2)

where

GK(T ) = GKZm+×Z∞+∗(T ) :=
{

(k, s) ∈ Zm+ × Z∞+∗ : λK(k, s) ≤ T
}
, (5.3)

and

λK(k, s) := max
1≤j≤m

(1 + |kj |)a
∞∏
j=1

(1 + sj)
rj .

For f ∈ L2(Im × D∞) and T ≥ 0, we define the operator SKT as

SKT (f) :=
∑

(k,s)∈GK(T )

fk,sφ(k,s). (5.4)

Then, we see from Theorem 3.6 that for arbitrary T ≥ 1

‖f − SKT (f)‖Kβ(Im)⊗L2(D∞) ≤ T−1‖f‖Kα(Im)⊗Kr(D∞) , ∀f ∈ Kα,r(Im × D∞). (5.5)

On the other hand, let α > β ≥ 0, let a = α − β and let the triple m, a, r be given as in (2.25). Suppose that
there hold the assumptions of Theorem 2.6 and moreover, r > (α − β)/m. Then, we have by Theorem 2.6 for
every T ≥ 1,

|GK(T )| ≤ C Tm/(α−β), (5.6)

where C := C(a, r,m, t) is as in (2.28) (and with GK(T ) = G(T ) in (2.2)). Setting n := |GK(T )|, we redefine
the orthogonal projection SKT as a linear operator of rank n

Ln : Kβ(Im)⊗ L2(D∞)→ PK(T ).

From (5.5) and Theorem 2.6, we obtain an error bound of the approximation of u by Ln as

‖u− Ln(u)‖Kβ(Im)⊗L2(D∞) ≤ C(α−β)/m n−(α−β)/m ‖u‖Kα(Im)⊗Kr(D∞).

Note finally that the results in this section can be extended without difficulty to the periodic setting or to mixed
periodic and nonperiodic settings of (5.1).

6. Concluding remarks. In this article we have shown how the determination of the ε-dimension for
the approximation of infinite-variate function classes with anisotropic mixed smoothness can be reduced to
the problem of tight bounds of the cardinality of associated hyperbolic crosses in the infinite-dimensional
case. Moreover, we explicitly computed such bounds for a range of function classes and spaces. Here, the
approximation was based on linear information. The obtained upper and lower bounds of the ε-complexities
as well as the convergence rates of the associated approximation error are completely independent of any
parametric or stochastic dimension provided that moderate and quite natural summability conditions on the
smoothness indices of the underlying infinite-variate spaces are valid. These parameters are only contained in
the order constants. This way, linear approximation theory becomes possible in the infinite-dimensional case
and corresponding infinite-dimensional problems get manageable.
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For the example of the approximation of the solution of an elliptic stochastic PDE it indeed turned out
that the infinite-variate stochastic part of the problem has completely disappeared from the cost complexities
and the convergence rates and influences only the constants. Hence, these problems are strongly polynomially
tractable (see [47] for a definition). Note at this point that the m-variate physical part of the problem and
the infinite-variate stochastic part are not separately treated in our analysis but are collectively approximated
where the hyperbolic cross approximation involves a simultaneous projection onto both parts which profits from
the mixed regularity situation and the corresponding product construction. Here, we restricted ourselves to a
Hilbert space setting and to linear information. Furthermore, we considered an a priori, linear approximation
approach.

We believe that our analysis can be generalized to the Banach space situation, in particular, to the L1- and
L∞-setting which is related to problems of interpolation, integration and collocation. Then, instead of linear
information, standard information via point values is employed and non-intrusive techniques can be studied,
which are widely used in practice. To this end, the efficient approximative computation of the coefficients fk,s
still needs to be investigated and analyzed in detail. We hope that some of the ideas and techniques presented
in the this paper will be useful there.

For our analysis, we assumed the a priori knowledge of the smoothness indices and their monotone ordering.
This is sound if these smoothness indices stem from an eigenvalue analysis of the covariance structure of the
underlying problem and are explicitly known or at least computable. If this is however not the case, then, instead
of our a priori definition of the hyperbolic crosses from the smoothness indices, we may generate suitable sets
of active indices in an a posteriori fashion by means of dimension-adaptivity in a way which is similar to
dimension-adaptive sparse grid methods [28, 32].

Finally, recall that we assume linear information and an associated cost model which assigns a cost of O(1)
to each evaluation of a coefficient fk,s. Or, the other way around, we just count each index (k, s) in a hyperbolic
cross as one. We may also consider more refined cost models which take into account that the number #(k, s)
of non-zero entries of an index (k, s) is always finite. This would allow to relate the cost of an approximation
of the coefficient fk,s to the number of non-zero entries of each (k, s) in a hyperbolic cross induced by T . For
examples of such refined cost models, see e.g. the discussion in [18] and the references cited therein. In our case,
this would lead to a cost analysis where the cardinality of the respective hyperbolic cross is not just counted by
adding up ones in the summation, but by instead adding up values which depend on #(k, s) via e.g. a function
thereof, which reflects the respective cost model.
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Appendix. We now show for a simple model problem of the type (5.1) that its solution u belongs to the
space Kα(Im)⊗Ar,p,q(D∞) for any p, q ≥ 0 provided that a certain assumption on σ and thus a certain condition
on r is satisfied. Consequently, our theory is indeed applicable here.

We consider the problem

−divx (σ(x,y)∇xu(x,y)) = f(x), u|∂Im = 0. (6.1)

Here, we assume that 0 < σmin ≤ σ(x,y) ≤ σmax < ∞ for all x ∈ Im and all y ∈ D∞. Moreover, we follow
closely the seminal article [13] and consider the linear affine setting

σ(x,y) = σ̄(x) +

∞∑
j=1

ψj(x)yj . (6.2)
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We furthermore assume that there is 0 < β < α <∞ and a := α− β such that9

H1
0 (Im) ↪→ Kβ and

{
w ∈ H1

0 (Im) : ∆w ∈ L2(Im)
}
↪→ Kα.

Recall our definitions (3.2) and (3.7) of the spaces L and Lλ. Also recall our definition (2.40) of the scalar

ρ(k, s) := max
1≤j≤m

(1 + |kj |)a
∞∏
j=1

(1 + p|sj |)−q exp

 ∞∑
j=1

rj |sj |

 =: λm,a(k)ρr,p,q(s) =: λA(k, s) (6.3)

together with the notations of λm,a(k) from (3.20), ρ(r, p, q) from (3.26) and λA(k, s) from (4.7), respectively.
We encounter the non-periodic setting here and thus have only non-negative values for the indices k and s in
the sets I,J , i.e. (k, s) ∈ Zm+ ×Z∞+ . Now, for the orthogonal basis φk,s := φ1,k ⊗ φ2,s of (3.4) for L from (3.2),
we assume for reasons of simplicity some suitable orthogonal basis for φ1,k and we specifically use products of
Legendre polynomials for φ2,s. We set

φ2,n(y) =
(−1)n

√
2n+ 1

2nn!

dn

dyn
(
1− y2

)n
and φ2,s =

⊗
j∈J
sj 6=0

φ2,sj , c.f. (3.3). Furthermore, we have that

∫ 1

−1
φ2,sj (y)φ2,sk(y)

dt

2
= δk,s, and max

−1≤y≤1

∣∣φ2,sj (y)
∣∣ =

√
2sj + 1.

We consider a series representation of the solution of (6.1) as

u(x,y) =
∑
s∈J

û2,s(x)φ2,s(y).

For our simple affine case with product Legendre expansion, explicit estimates for the expansion coefficients
û2,s(x) can be found in [13], section 6, or [10], subsection 1.3.2. To be precise, we can use Corollary 6.1. of [13]
to obtain

‖û2,s‖H1
0 (Im) ≤

(
‖f‖H−1(Im)

σmin

)
|s|!
s!

∞∏
j=1,sj 6=0

(
‖ψj‖L∞(Im)√

3σmin

)sj
=: B

|s|!
s!

bs. (6.4)

Next, we have

ρr,p,q(s) ‖û2,s‖H1
0 (Im) =

∞∏
j=1,sj 6=0

(1 + psj)
−q

exp

 ∞∑
j=1

rjsj

 ‖û2,s‖H1
0 (Im)

≤ B |s|!
s!

∞∏
j=1,sj 6=0

(
(1 + psj)

−q
exp (rjsj) b

sj
j

)
.

Moreover, since (1 + psj)
−q ≤ 1, this yields

ρr,p,q(s) ‖û2,s‖H1
0 (Im) ≤ B

|s|!
s!

∞∏
j=1

exp (rjsj) b
sj
j = B

|s|!
s!

∞∏
j=1

(exp (rj) bj)
sj =: B

|s|!
s!

b̃(r)s

with

b̃j(r) :=
‖ψj‖L∞(Im)√

3amin

exp (rj) .

9Especially, we even may assume here Kβ ' H1
0 (Im), i.e. β = 1, and Kα ' H2(Im) ∩H1

0 (Im), i.e. α = 2, and thus a = 1.
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Now, we have

‖u‖Kα(Im)⊗Ar,p,q(D∞) ' ‖u‖Ar,p,q(D∞,Kα(Im)) =

∥∥∥∥(‖û2,s‖Kα(Im)

)
s∈J

∥∥∥∥
`2(J )

≤
∥∥∥∥(B |s|!s!

b̃(r)s
)

s∈J

∥∥∥∥
`2(J )

and we want to derive a condition for it to be finite. To this end, we have∥∥∥∥(B |s|!s!
b̃(r)s

)
s∈J

∥∥∥∥
`2(J )

≤
∥∥∥∥(B |s|!s!

b̃(r)s
)

s∈J

∥∥∥∥
`∞(J )

∥∥∥∥(B |s|!s!
b̃(r)s

)
s∈J

∥∥∥∥
`1(J )

≤
∥∥∥∥(B |s|!s!

b̃(r)s
)

s∈J

∥∥∥∥2
`1(J )

.

Now, we can apply Theorem 7.2. of [13] and get∥∥∥∥(B |s|!s!
b̃(r)s

)
s∈J

∥∥∥∥
`1(J )

=
∑
s∈J

∣∣∣∣B |s|!s!
b̃(r)s

∣∣∣∣ <∞
⇐⇒

∥∥∥∥(b̃j(r)
)
j∈N

∥∥∥∥
`1(N)

=

∞∑
j=1

‖ψj‖L∞(Im)√
3σmin

exp (rj) < 1.

Furthermore, we obtain in this case∥∥∥∥(B |s|!s!
b̃(r)s

)
s∈J

∥∥∥∥
`1(J )

=
∑
s∈J

∣∣∣∣B |s|!s!
b̃(r)s

∣∣∣∣ =
B

1−
∥∥∥∥(b̃j(r)

)
j∈N

∥∥∥∥
`1(N)

.

Thus, it finally holds that

‖u‖2Kα(Im)⊗Ar,p,q(D∞) '
∥∥∥∥(‖û2,s‖Kα(Im)

)
s∈J

∥∥∥∥2
`2(J )

≤
∥∥∥∥(B |s|!s!

b̃(r)s
)

s∈J

∥∥∥∥2
`2(J )

<∞

is equivalent to

1√
3σmin

∞∑
j=1

‖ψj‖L∞(Im) exp (rj) < 1. (6.5)

In other words, we have derived that u ∈ Kα(Im) ⊗ Ar,p,q(D∞) for any p, q ≥ 0 provided that the condition
(6.5) is satisfied.

For the case p, q > 0, it remains to check the condition (2.53) from Theorem 2.9. If we assume rj > pq and

rj ≥
q+
√
qa/m

p , then we have with a = α− β that

Mp,q(m) := (1 + p/2)qm/a
∞∑
j=1

exp
(
−m

2arj
)

rj
m
a − pq

m
a

is finite if

∞∑
j=1

exp
(
−m

2arj
)

rj
m
a − pq

m
a

≤ 1

r1 − pq
a

m

∞∑
j=1

exp
(
−m

2a
rj

)
<∞. (6.6)

Hence, with suitable constant c, we have for any bounded σ(x,y) of the form (6.2) with

‖ψj‖L∞(Im) ≤ c · exp
(
−
(

1 +
m

2a

)
rj

)
that both conditions, i.e. (6.5) and (6.6), are fulfilled.
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Analogously, for the case p = 0, q ≥ 0, it remains to check the condition (2.42) from Theorem 2.7. Then we
have that

M0,q(m) :=

∞∑
j=1

1

emrj/a − 1

is finite if

∞∑
j=1

1

emrj/a − 1
≤ 1

1− e−mr1/a
∞∑
j=1

exp
(
−m
a
rj

)
<∞. (6.7)

Hence, with suitable constant c, we have for any bounded σ(x,y) of the form (6.2) with

‖ψj‖L∞(Im) ≤ c · exp
(
−
(

1 +
m

a

)
rj

)
that both conditions, i.e. (6.5) and (6.7), are fulfilled. Moreover, in this case we do not encounter the factor
1 +m/(2a) in the exponent but merely the improved factor 1 +m/a.

Let us finally mention that, for our affine case with a product Legendre expansion and additionally using a
δ-admissibility condition (c.f. [14], formula (2.8)), there are explicit estimates for the corresponding expansion
coefficients in [14], subsection 4.2, or [10], subsection 1.3.2, see also [6], proposition 7. In contrast to (6.4), these
bounds now have product structure. They match (3.26) with associated values r and p = 2, q = 1/2 up to an
r-dependent product-type prefactor. It has the form

∏∞
j=1,sj 6=0 φ(erj ) with φ(t) = πt

2(t−1) and looks independent

of sj at first sight. But, due to the condition sj 6= 0, it is indeed dependent on s. After some calculation, it
can be shown that there exist a modified sequence r̃ and modified p̃, q̃ such that (3.26) with, for example, the
values r̃ = r− 1+ε

2 log(j), ε > 0 and p̃ = 2, q̃ = 3/2 is exactly matched. It is now a straightforward calculation

to derive u(x, ·) ∈ Ar̃,2,3/2(D∞) due to its definition via (3.24) and (3.25). Of course, it remains to show that
Mp̃,q̃(m) < ∞ is valid for these r̃, compare (2.53). To this end, we obtain for

∑∞
j=1 exp(−m

2a r̃j)/(r̃j − p̃q̃) the

upper bound
∑∞
j=1 exp(−m

2arj)j
m(1+ε)

4a (up to a constant). Thus, for example in the case m = 3, a = 1, a growth
of r like rj ≥ (7/6 + ε) log(j), ε > 0 is sufficient. Note that this is indeed a quite mild condition.
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