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TANGENT AND NORMAL CONES FOR LOW-RANK MATRICES

SEYEDEHSOMAYEH HOSSEINI∗, D. RUSSELL LUKE†, AND ANDRÉ USCHMAJEW‡

Abstract. In [D. R. Luke, J. Math. Imaging Vision, 47(3):231-238, 2013] the structure of the

Mordukhovich normal cone to varieties of low rank matrices at rank-deficient points has been
determined. A simplified proof of that result is presented here. As a corollary we obtain the
corresponding Clarke normal cone. The results are put into context of first-order optimality

conditions for low-rank matrix optimization problems.

1. Introduction

In continuous minimization problems, necessary conditions for local minima relate the first-
order geometries of a constraint set M and a sublevel set of a cost function f with each other in
order to give the geometric intuition that descent direction of f should point “away” from M a
mathematically rigorous meaning. If M is a smooth submanifold in Rn and f is continuously
differentiable in a neighborhood of x ∈M, then a necessary condition for x being a local minimum
of f on M is that the anti-gradient −∇f(x) belongs to the normal space, that is, the orthogonal
complement of the tangent space TM(x) at x:

−∇f(x) ∈ NM(x) := (TM(x))⊥.

When the set M is just closed, but not necessarily smooth, the normal space in this optimality
condition has to be replaced by the polar of the Bouligand tangent cone [4], which we will call
the Bouligand normal cone:

−∇f(x) ∈ NB
M(x) := (TB

M(x))◦.

see Eq. (2.3) for the general definition of TB
M(x).

More generally, when the function f is just locally Lipschitz continuous, but not necessarily
differentiable at a critical point, generalized derivatives and subgradients need to be considered.
First-order optimality conditions then take the form

0 ∈ NM(x) + ∂f(x), (1.1)

where NM(x) is a certain closed convex cone of “normal directions”, and ∂f(x) is the corresponding
subdifferential containing all subgradients at x. Well-known normal cones are the Clarke normal
cone NC

M(x) and the Mordukhovich normal cone NM
M(x); see Sec. 3.

Intuitively, the necessary first-order condition (1.1) becomes stronger the narrower the consid-
ered normal cone is, and hence gives more meaning to the notion of a critical point. In general it
holds that

NB
M(x) ⊆ NM

M(x) ⊆ NC
M(x).

In this communication we show that for the set M≤k of matrices of rank at most k these three
cones are strictly included in each other at singular points where the rank is strictly less than k.
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Note that at points of rank k the set M≤k is locally a smooth manifold and all normal cones
equal to the orthogonal complement of the tangent space. This has interesting implications to
necessary conditions in matrix optimization problems with low-rank constraints, as should be
discussed at the end of this note.

2. Preliminaries

We consider the linear space RM×N of M ×N matrices. The Euclidean structure in this space
is provided by the Frobenius inner product. Given a real valued function f on RM×N , we are
interested in optimality conditions for low-rank optimization problems of the form

min f(X), X ∈M≤k, (2.1)

where

M≤k = {X ∈ RM×N : rank(X) ≤ k}
is the set of matrices of rank at most k. These sets are real algebraic varieties and closed due to
lower-semicontinuity of matrix rank. In the following we always assume

k ≤ kmax := min(M,N).

The characterization of necessary optimality conditions for (2.1) becomes nontrivial at rank-
deficient points, which are the singular points of the variety M≤k. Therefore concepts from
nonsmooth analysis have to be used.

In the following it will be frequently convenient to view matrices as elements of the tensor
product of their column and row spaces. By this we mean that a matrix X admits a decomposition

X = UΣV T s.t. range(U) ⊆ U , range(V ) ⊆ V if and only if X ∈ U ⊗ V. (2.2)

Moreover, the smallest dimension that U and V can have is the same and equals the rank of
X. In this case, the choice is unique, namely U = range(X) has to be the column space, and
V = range(XT ) the row space of X. We recall that a singular value decomposition (SVD) of a

matrix X of rank k is a decomposition of the form X =
∑k

r=1 σrurv
T
r , σ1 ≥ σ2 ≥ · · · ≥ σk > 0,

that is, X = UΣV T , where Σ is diagonal, and U = [u1, . . . , uk] and V = [v1, . . . , vk] are
orthonormal bases for the column and row spaces of X, respectively. The rank-one terms
in this decomposition are mutually orthogonal in the Frobenius inner product. A truncation∑s

r=1 σrurv
T
r of the SVD to rank s < k yields the best approximation to X in the set M≤s in

the Frobenius norm. It is unique if and only if σs > σs+1.

2.1. Tangent and normal space of a fixed rank manifold. The real algebraic varietyM≤k
stratifies into the smooth manifolds

Ms = {X ∈ RM×N : rank(X) = s}

of matrices of rank exactly s. Being a smooth manifold, everyMs is prox-regular in a neighborhood
of each of its points; see [1]. Hence all usual notions of tangent cones coincide with the tangent
space. Moreover, all notions of normal cones coincide with the normal space [3]. The tangent
spaces to Ms are well known; see, e.g., [5, Ex. 14.16] or [6, Prop. 4.1].

Theorem 2.1. Let X have rank s, column space U , and row space V. The tangent space to the
manifold Ms at X admits the orthogonal decomposition

TMs
(X) = (U ⊗ V)⊕ (U ⊗ V⊥)⊕ (U⊥ ⊗ V).

The normal space is

NMs
(X) = [TMs

(X)]⊥ = U⊥ ⊗ V⊥.
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It is interesting to note that TMs(X) contains matrices of rank at most 2s, while the maximum
rank in NMs(X) is kmax − s. Also note that X ∈ TMs(X) (which also follows from the fact that
Ms is a cone). In applications s is much smaller than kmax, and in this context it is important
that orthogonal projections on TMs

(X) and NMs
(X) can be computed using only projections on

the s-dimensional spaces U and V. Namely,

PTMs (X)(Z) = PUZ + ZPV − PUZPV ,
and

PNMs (X)(Z) = Z − PTMs (X)(Z).

2.2. Bouligand tangent and normal cone to M≤k. The general definition of the Bouligand
tangent cone to a closed set M⊆ RN is as follows:

TB
M(x) = {ξ ∈ RN : ∃(xn) ⊆M, (an) ⊆ R+ s.t. xn → x, an(xn − x)→ ξ}. (2.3)

In the context of low-rank optimization, the Bouligand tangent cone to M≤k has been derived
from this definition in [9]. In [2], an essentially equivalent definition based on derivatives of
analytic curves has been used. The result is also well known in algebraic geometry [5, Ex. 20.5].

Theorem 2.2. Let X ∈M≤k have rank s ≤ k. The Bouligand tangent cone to the closed variety
M≤k at X is

TB
M≤k

(X) = TMs
(X)⊕ {Y ∈ NMs

(X) : rank(Y ) ≤ k − s}.

As noted in [9], an element in the polar cone of TB
M≤k

(X) needs to be orthogonal to TMs(X)

and to every rank k − s matrix in NMs(X). When s < k, only the zero matrix fulfills this.

Corollary 2.3. Let X have rank s < k. The Bouligand normal cone (defined as the polar of the
Bouligand tangent cone) to M≤k at X is

NB
M≤k

(X) = {0}.

3. Clarke and Mordukhovich normal cones

Let PM denote the (set-valued) metric projection (in the Euclidean norm ‖ · ‖) onto a closed
subset M⊆ Rn. Following [8, Theorem 1.6], the Mordukhovich normal cone NM

M(x) to M at x
can be defined as follows:

NM
M(x) = {η ∈ Rn : there exist (xi) ⊂ Rn and (ηi) ⊂ Rn such that

xi → x, ηi → η, and ηi ∈ cone(xi − PM(xi)) for all i ∈ N}. (3.1)

The elements of NM
M(x) are called basic normal, limiting normal or simply normal vectors.

It is proved in [8, Theorem 3.57] that the Clarke normal cone can be obtained from the
Mordukhovich normal cone as its closed convex hull

NC
M(x) = cl convNM

M(x). (3.2)

We now consider the Mordukhovich normal cones to M≤k. The following result is essentially
due to Luke [7].1

Theorem 3.1. Let X ∈ M≤k have rank s ≤ k. The Mordukhovich normal cone to the closed
variety M≤k at X is

NM
M≤k

(X) = {Y ∈ NMs
(X) : rank(Y ) ≤ kmax − k}. (3.3)

1Some inaccuracies in the statement of Theorem 3.1 in [7] are corrected here. Also, the “⊆” part is proven by
a more direct argument compared to [7].
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Proof. The result is clear if k = kmax, since in this case M≤kmax = RM×N . Hence we consider
k < kmax. As before, let U and V denote the column and row space of X, respectively. Recall
that NMs

(X) = U⊥ ⊗ V⊥.
Denoting the set on the right side of (3.3) by W , we first show NM

M≤k
(X) ⊇W . Let Y ∈W ,

then by (2.2) there exist subspaces U1 ⊆ U⊥ and V1 ⊆ V⊥, both of dimension kmax− k, such that
Y ∈ U1 ⊗ V1. Also there exist subspaces U0 ⊆ U⊥ ∩ U⊥1 and V0 ⊆ V⊥ ∩ V⊥1 of dimension k − s
both. Pick Z ∈ U0 ⊗ V0 with rank(Z) = k − s, and consider the sequence

Xi := X + i−1/2Z + i−1Y → X (i→∞).

Using SVD and rank(Z) = k − s, the mutual orthogonality of the column resp. row spaces of X,
Z, and Y implies that for large enough i ∈ N the best approximation of rank at most k is

PM≤k
(Xi) = X + i−1/2Z.

Hence Y ∈ cone(Xi − PM≤k
(Xi)) for all i, which by (3.1) proves Y ∈ NM

M≤k
(X).

To prove NM
M≤k

(X) ⊆W , consider sequences Xi → X and Yi → Y satisfying Yi = αi(Xi−Zi)

with Zi ∈ PM≤k
(Xi). Note that Zi → X, since ‖Zi −X‖ ≤ ‖Zi −Xi‖+ ‖Xi −X‖ ≤ 2‖X −Xi‖

(the second inequality follows from X ∈M≤k). We have to show Y ∈W . If Y = 0, this is clear.
If Y 6= 0, it must hold Yi 6= 0 and hence rank(Xi) > k for large enough i. As Zi is a truncated
SVD of Xi, we obtain

rank(Yi) = rank(Xi − Zi) = rank(Xi)− rank(Zi) = rank(Xi)− k ≤ kmax − k

for i large enough. From the lower semicontinuity of the rank function it now follows that
rank(Y ) ≤ kmax − k. Another consequence of the fact that Zi is a truncated SVD of Xi is
that ZiY

T
i = 0 and ZT

i Yi = 0. In the limit we get XY T and XTY = 0, which is equivalent to
Y ∈ U⊥ ⊗ V⊥. In summary, we have shown Y ∈W . �

As a corollary, we obtain the Clarke normal cone via (3.2).

Corollary 3.2. Let X ∈M≤k have rank s ≤ k. The Clarke normal cone to the closed variety
M≤k at X is

NC
M≤k

(X) = NMs
(X).

Further, we observe that the Mordukhovich normal cone provides the “missing” part in the
Bouligand tangent cone to fill up the whole space.

Corollary 3.3. Let X have rank s ≤ k. Every matrix Z ∈ RM×N admits an orthogonal
decomposition

Z = Z1 + Z2, Z1 ∈ TB
M≤k

(X), Z2 ∈ NM
M≤k

(X). (3.4)

Proof. By Theorem 2.1, the normal space NMs(X) contains matrices of rank at most kmax − s.
Using SVD, every such matrix can be orthogonally decomposed into a matrix of rank kmax − k
and another one of rank k − s. �

In this sense, the Mordukhovich normal cone can be seen as an appropriate “nonlinear
orthogonal complement” to the Bouligand tangent cone. However, one should be aware that
NC
M≤k

(X) is only complimentary to TB
M≤k

(X) if rank(X) = k. Otherwise, their intersection

contains all matrices in NMs
(X) of rank at most min(kmax − k, k − s). Further, the orthogonal

decomposition (3.4) is then not unique.
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4. Implications to necessary optimality conditions

The different necessary optimality conditions arising from different choices of normal cones
are best illustrated for the case that the function f in (2.1) is continuously differentiable in a
neighborhood of M≤k. Further, we consider matrices X ∈ M≤k with rank(X) = s < k, since
otherwise all normal cones are the same and equal to NMk

(X).
By Corollary 3.2, X will be a Clarke critical point on M≤k, if

−∇f(X) ∈ NMs(X).

Hence this condition does not provide more information than stating that X is in particular a
critical point on the smooth stratum Ms. In this sense, the Clarke normal cone is “blind” to the
fact that optimization is performed on M≤k and that potentially a higher rank could be used.
For example, if we imagine an optimization algorithm on M≤k that is initialized with an optimal
point X ∈Ms, it will terminate immediately without further improvement, if the Clarke normal
cone would be used for checking optimality. Therefore, the Clarke normal cone is not the most
suitable for optimization on the variety M≤k.

At the opposite extreme, a rank deficient point X ∈ Ms, s < k, will be a critical for (2.1)
in the Bouligand sense only if ∇f(X) = 0. The optimality condition is thus the same as in the
unconstrained case. Hence, if there do not exist points X ∈ M≤k with ∇f(X) = 0, then the
problem (2.1) does not admit critical points that do not exploit the full possible rank k. In other
words, even if f(X) is minimal onMs, it is always possible to decrease the value of f onM≤k in
a neighborhood of X by increasing the rank. Indeed, the Euclidean projection of −∇f(X) onto
the Bouligand tangent cone TB

M≤k(X) provides a descent direction; cf. the discussion in [9].

Among the considered normal cones, the Mordukhovich normal cone is not convex. Its role is
intermediate and best described by Corollary 3.3. On the one hand, the necessary condition

−∇f(X) ∈ NM
M≤k

(X) ⊂ NC
M≤k

(X)

implies −∇f(X) ∈ NMs(X), that is, X is critical on the smooth stratumMs. On the other hand,
if −∇f(X) is in NMs(X), but not in NC

M≤k
(X) (then s < k), but an orthogonal decomposition

−∇f(X) = Z1 + Z2, Z1 ∈ TB
M≤k

(X), Z2 ∈ NM
M≤k

(X)

with Z1 6= 0 is possible, that is, −∇f(X) still contains a tangential component with respect to
the variety M≤k.
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