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SUMMARY

In this paper we present a new approach to the parallelization of algebraic multigrid (AMG), i.e., to
the parallel coarse grid selection in AMG. Our approach does not involve any special treatment of
processor subdomain boundaries and hence avoids a number of drawbacks of other AMG parallelization
techniques. The key idea is to select an appropriate (local) coarse grid on each processor from all

admissible grids such that the composed coarse grid forms a suitable coarse grid for the whole domain,
i.e. there is no need for any boundary treatment. To this end, we first construct multiple equivalent
coarse grids on each processor subdomain. In a second step we then select exactly one grid per
processor by a graph clustering technique. The results of our numerical experiments clearly indicate
that this approach results in coarse grids of high quality which are very close to those obtained
with sequential AMG. Furthermore, the operator and grid complexities of our parallel AMG are
mostly smaller than those obtained by other parallel AMG methods, whereas the scale-up behavior
of the proposed algorithm is similar to that of other parallel AMG techniques. However a significant
improvement with respect to the speed-up performance is achieved. Copyright c© 2005 John Wiley
& Sons, Ltd.

key words: algebraic multigrid; parallel computing

ams subject classification: 65N55; 65Y05; 65F10

1. Introduction

The solution of large sparse linear systems Au = f is an essential ingredient in most scientific
computations. This solution step must involve only a similar amount of operations and
computational storage as the discretization process itself to allow for an efficient and scalable
numerical simulation. Such a sparse linear solver, which requires only O(N) operations and
memory for N degrees of freedom, is called optimal. However, there exists no general (direct)
algebraic solution technique yielding this complexity.

For linear systems arising from a finite difference or finite element discretization of an elliptic
partial differential equation (PDE) on a structured grid, geometric multigrid methods [4, 11]
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give such an optimal (iterative) solver. But for many applications it is difficult to construct
a sequence of (nested) discretizations or meshes needed for geometric multigrid. Furthermore,
geometric multigrid methods are in general not robust with respect to a deterioration or
a singular perturbation of the coefficients of the operator. In the 1980s algebraic multigrid
(AMG) methods were developed [5, 6, 7, 15] to cope with these problems by extending the
main ideas of geometric multigrid methods to a purely algebraic setting. This approach is based
only on information available from the linear system to be solved. However, this flexibility has
a price: A setup phase, in which the multigrid hierarchy, i.e., the sequence of grids, transfer
operators and coarse grid operators, is constructed, has to be carried out before the well-known
multigrid cycle (the solution phase) can be started. While the parallelization of the solution
phase is straightforward, see e.g. [16], the techniques for constructing the coarse grids in AMG
are inherently sequential which makes the parallelization of the setup phase a challenging task.

Many different approaches to the parallelization of this step have been proposed over the
years, e.g. [12, 14]. Most of them follow a data decomposition approach and need to employ
a special treatment of the processor subdomain boundaries to cope with non-matching coarse
grids. Hence, the interior of each processor subdomain is still coarsened in the classical way,
but the coarse grid structure on the subdomain boundaries does not respect the classical
coarsening principles. Since the distribution of a fine grid discretization of fixed size among
an increasing number of processors leads to smaller subdomain interiors, increasingly smaller
parts are actually coarsened by classical AMG. This leads to a significant deterioration of the
quality of the coarse grid and the speed-up of these parallel AMG strategies.

In this paper we present a method for the construction of coarse grids of high quality in
parallel without an explicit boundary treatment. However, we still use the classical coarsening
scheme [15]. We first construct multiple coarse grids on each processor domain individually.
From these coarse grids, we then choose exactly one per processor domain by graph clustering
techniques such that the composed coarse grid shows no inconsistencies near the processor
subdomain boundaries. Hence, no explicit boundary treatment is required such that we obtain
operator and grid complexities similar to those of sequential AMG. Moreover, as no additional
coarse grid points are added on or near the processor subdomain boundary, a growing number
of processors —and thus a growing number of subdomain boundary points— has only little
impact on the coarse grid. Hence, the speed-up of the proposed method is much better than
the speed-up of the algorithms employing an explicit boundary treatment and the scale-up of
our algorithm is optimal.

The remainder of this paper is organized as follows: In Section 2 we give a short review of
the (sequential) AMG algorithm and the respective heuristics, which led to its development.
Then, we present the main challenges which classical AMG can encounter in the parallel case.
We then summarize briefly, in Section 3, the previous parallel coarsening methods and their
shortcomings. In Section 4 we present our new coarse grid classification (CGC) algorithm. We
discuss the results of our numerical experiments in Section 5 where we compare the quality of
the CGC algorithm with that of the other methods. To this end we consider discretizations of
PDE’s in two and three dimensions with several millions of unknowns on a massively parallel
computer with up to 256 processors. The results of these experiments clearly show the smaller
memory and compute time requirements of our algorithm with a multigrid convergence rate
similar to that of sequential AMG. As expected, we achieve a significantly better speed-up and
an optimal scale-up for our CGC algorithm compared with other parallelization techniques.
Finally, we conclude with some remarks in Section 6.
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2. Algebraic multigrid

In this section we give a short review of the algebraic multigrid (AMG) method. We consider a
linear system Au = f , which comes from a discretization of a PDE on a grid Ω = {1, . . . , N}∗,

with A = (aij)
N

i,j=1 being a large sparse real matrix, u = (ui)
N

i=1 and f = (fi)
N

i=1 vectors
of length N . We assume that A is a symmetric, positive definite M -matrix or an essentially
positive matrix. To be able to solve this equation using the multigrid scheme (Program 1†), we

Program 1 multigrid cycle (solution phase of AMG) MG(Al, f l, ul)

begin

for ν ← 1 to ν1 do ul ← Slul; od; pre-smoothing
rl ← f l − Alul; residual
f l+1 ← Rlrl; restriction

coarse grid correction
if l + 1 = L

then

ul+1 ←
`

Al+1
´−1

f l+1; apply directly
else

for µ← 1 to µ do

MG(Al+1, f l+1, ul+1)); solve recursively
od;

fi;
ul ← ul + P lul+1; update solution
for ν ← 1 to ν2 do ul ← Slul; post-smoothing
end

need to specify the sequence of coarse grid operators Al, transfer operators P l and Rl = (P l)T ,
the smoothing operators Sl and the sequence of coarse grids Ωl. In geometric multigrid, the
grids Ωl are constructed by coarsening the original grid Ω1, for example by doubling the mesh
size h → 2h in all or a subset of the spatial dimensions. The operator Al is constructed by
discretizing the considered PDE on the grid Ωl and the interpolation operator P l is defined
as the natural injection between the associated spaces V l+1 → V l defined on Ωl+1 and Ωl

respectively. With these components all fixed, the only way to improve the speed of convergence
is to change the smoothing process Sl, e.g. by using incomplete LU-factorization or alternate
line projection instead of the usually employed Gauss–Seidel or Jacobi relaxation methods.
However, in three spatial dimensions and for complex geometries these smoothers become
difficult —if not impossible or ineffective— to carry out.

Algebraic multigrid methods were first introduced by Brandt in the early 1980s [5, 6, 7].
Instead of fixing the sequence of grids and operators, a simple smoothing scheme S l is chosen
and the grids {Ωl}L

l=1, the transfer operators {P l}L−1
l=1 and the coarse grid operators {Al}L

l=1

are constructed depending on the fine grid operator A = A1 automatically.

This construction is carried out during the setup phase, as displayed in Program 2. In this
paper, we focus on the coarsening step. This step consists of splitting the grid Ωl into two

∗We denote grid points with their respective counting index in any dimension.
†In classical geometric MG, ΩL denotes the finest grid and Ω1 the coarsest grid. Here, as usual in AMG, the
levels are numbered starting with Ω1 as the finest grid.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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Program 2 AmgSetup(Ω, A, Nmin, Lmax, L, {Al}L
l=1, {P

l}L−1
l=1 {Rl}L−1

l=1 )

begin

Ω1 ← Ω;
A1 ← A;
for l← 1 to Lmax − 1 do

partition Ωl into Cl and F l; coarsening step
Ωl+1 ← Cl;
compute interpolation P l; interpolation step

Rl ←
`

P l
´T

;
Al+1 ← RlAlP l; Galerkin step
if |Ωl+1| ≤ Nmin then break; fi;

od;
L← l + 1;

end.

disjoint sets C l and F l, i.e.,

Ωl = Cl∪̇F l.

The set of coarse grid points C l is taken as the grid on the next level,

Ωl+1 := Cl,

while the remaining points j ∈ F l are denoted as fine grid points. For the sake of simplicity, we
will omit the level index l in the following. We denote by u the exact solution of the equation
Au = f and by uit the computed approximation after it steps of a relaxation method S, e.g.
Jacobi-relaxation or Gauss–Seidel-relaxation. The conditions for the coarse grid selection are
imposed by the requirement of a stable interpolation formula. Recall from multigrid theory
[11, 15] that the low-frequency error components (also called smooth error components) have
to be eliminated by the coarse grid correction step. Hence, the interpolation scheme has to
approximate the smooth error components accurately. With such an interpolation P l, we then
define the restriction Rl = (P l)T and the coarse grid operator Al+1 = RlAlP l by the Galerkin
identity. The setup phase is then restarted recursively with Al+1 as input.

For M-matrices and essentially positive matrices A = (aij)
N
i,j=1, a smooth error varies slowly

in the direction of large negative couplings [15], e.g. aij � 0. This observation leads to the
definition of the strong couplings Si for a grid point i, which are the set of grid points

Si := {j 6= i : |aij | ≥ α max
k 6=i

|aik|}, and ST
i := {j 6= i : i ∈ Sj}

with a typical value of α = 0.25. A first approach to the construction of an interpolation
formula for a point i ∈ F is given by interpolating from the coarse grid points j ∈ Si∩C which
are strongly connected to i. This so-called direct interpolation [15] is however not stable since
strong connections to other fine grid points j ∈ Si ∩ F are ignored. This can be cured by the
standard interpolation technique [15], where, for each j ∈ Si ∩ F , the strong dependency on j
is replaced by a dependency on the coarse grid points which are strongly connected to j, i.e.
all k ∈ Sj ∩ C. This extends the set of interpolatory variables Pi, i.e. the set of coarse grid
points whose values influence the value at i. However, the value at j should also be influenced
by the coarse grid points m ∈ Si ∩ C, which influence i directly, to a reasonable amount, i.e.
the inequality

∑

k∈Si∩C ajk

maxk |ajk |
> β ·

aij

maxk |aik|
, (1)

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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with β = 0.35 typically, should hold. The validity of this inequality ensures that for each fine
grid point i, a sufficient amount of its strongly coupled neighbors Si are coarse grid points
j ∈ Si ∩ C. It furthermore guarantees that every fine grid point has at least one strong
connection to a coarse grid point. Note that if a fine grid point does not have any strong
connections at all, the error at this point can be reduced efficiently by smoothing only, so that
such a point does not require interpolation.

We now formulate the resulting three conditions on the coarse grid.

C1 Let i ∈ F . Then each j ∈ Si is either in C or relation (1) holds.
C2 If i ∈ C and j ∈ Si ∪ ST

i , then j 6∈ C. (C ⊂ Ω is an independent or stable set.)
C3 C is a maximal set with these properties.

Generally, it is not possible to satisfy all these conditions simultaneously. For the stability of
interpolation, condition C1 is most important and will be enforced strictly, while the second
condition is intended to limit the size of the grid and thus to reduce the memory and compute
time requirements. On the other hand, a large amount of coarse grid variables around a fine
grid point yields a high quality of smooth error interpolation, which motivates C3.

Program 3 AmgPhaseI(Ω, S, ST , C, F )

begin
U ← Ω;
C ← ∅;
F ← ∅;
for i ∈ Ω do λi ← |S

T
i |; od;

while maxi∈U λi 6= 0 do
i← arg maxj∈U λj ;
C ← C ∪ {i};
for j ∈ ST

i ∩ U do

F ← F ∪ {j};
for k ∈ Sj ∩ U do

λk ← λk + 1;
od;

od;
for j ∈ Si ∩ U do

λj ← λj − 1;
od;

od;
F ← F ∪ U ;

end

Program 3 shows the first phase of the classical Ruge–Stüben coarsening algorithm [15]. This
procedure determines an independent set of C-variables among the grid Ω and assures that
each F -variable has at least one strong connection to a C-variable. Note that there is some
freedom in choosing the first point of the coarse grid, a fact we will utilize in the development
of our parallel coarsening algorithm.

After applying this algorithm, the inequality (1) may not be fulfilled for all pairs of strongly
connected fine grid points i, j ∈ F (the so-called F −F -couplings). This is fixed by the “second
pass”, which checks all such pairs and inserts i or j into the coarse grid if necessary.

Note that each point i chosen for the coarse grid C results in a change of the weights λj

of all points j within two layers around the grid point i. This states the sequential character
of the coarsening algorithm, as the weight updates propagate throughout the whole domain
during the iteration.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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Figure 1. Disjoint partitioning of a discretized domain.

3. Parallel coarsening

In this section we shortly review some previously developed approaches to the construction of
coarse grids in parallel. Most of them are based on the coarsening scheme presented in Section
2 and employ a special boundary treatment. Note that all discussed parallel AMG schemes
are based on an initially given static partitioning of the data onto the processors. Such a
partitioning is usually obtained from geometric information during the discretization process.

We denote by Ωp the part of Ω that is being handled by processor p ∈ {1, . . . , P}. The
boundary ∂Ωp is defined as the points i ∈ Ωp which are coupled to points j 6∈ Ωp on other
processors, i.e.

∂Ωp := {i ∈ Ωp : aij 6= 0 for some j 6∈ Ωp},

see Figure 1.

Note that if we simply apply the sequential algorithm given in Program 3 to each processor
domain separately (i.e. without regarding points on neighboring domains), inconsistencies
along the processor boundaries can occur as shown in Figure 2(a) (we refer to this scheme in
the following as NONE). We see that F -variables are coupled strongly across the subdomain
boundaries, furthermore both involved F -points are not strongly coupled to a common C-point
which is a massive violation of condition (1). In the following, we describe which techniques
were proposed to overcome this problem.

Minimum Subdomain Blocking. A first approach to parallel AMG was given by Krechel
and Stüben in [14]. This so-called minimum subdomain blocking (MSB) decouples the
coarsening on the individual processor domains by first coarsening the processor boundaries
∂Ωp by means of the classical coarsening scheme considering only couplings inside of ∂Ωp.
This ensures that each fine grid point i ∈ ∂Ωp has a strong connection to a coarse grid point
j ∈ ∂Ωp. After the boundaries are coarsened, the interior of each subdomain is coarsened
using the classical Ruge–Stüben algorithm. However, strong couplings across the processor
boundaries are ignored in this approach (compare Figure 2(b)), i.e. neither relation (1) nor
condition C2 is checked, and the grid layout inside the boundary may not respect anisotropies
of the underlying operator.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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(a) classical RS (b) MSB (c) RS3

(d) CLJP (e) Falgout (f) CGC

Figure 2. Application of the various parallelization techniques to the 5-point discretization of the
Laplace operator, distributed among 4 processors. Depicted are the C/F-splittings on the finest level,
where the small squares indicate the fine grid points i ∈ F and the large squares the coarse grid points

j ∈ C.

Third pass (RS3) coarsening. Another method for processor boundary treatment is the
third pass coarsening method [12]. This method fixes strong F−F -connections across processor
boundaries by applying the second pass of the classical Ruge–Stüben algorithm to all pairs
(i, j), with i ∈ ∂Ωp ∩ F , j ∈ (Si ∩ F ) \ Ωp, of strongly coupled fine grid points on different
processors in an additional third pass, after the first and second pass of the classical coarsening
algorithm have been carried out on each processor subdomain individually. This third pass
requires the matrix row Aj belonging to point j to be transferred from processor q 6= p to
processor p, and vice versa if also i ∈ Sj . Note that a processor p can select additional coarse
grid points not only for its own domain Ωp, but also for adjacent domains Ωq . Hence a special
strategy has to be applied to determine which of the involved processors enforces the final
C/F -splitting. A practical approach is that every processor p keeps all the coarse grid points
inside its domain it has selected and also inserts all coarse grid points that are suggested by

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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processors with lower rank q < p . This, however, can lead to a slight load imbalance. Figure
2(c) shows the coarse grids obtained by the RS3 algorithm for a discretization of the Laplacian
with the 5-point stencil. In this case, every boundary point i ∈ ∂Ωp needed to be added to the
coarse grid for a stable interpolation.

CLJP coarsening. A completely different way of coarsening is given by the CLJP algorithm
[8, 12]. It is based on parallel graph coloring methods developed by Luby, Jones and Plassman.
The coarsening is done iteratively, where each iteration involves a communication phase. In
each step, an independent set is chosen from the vertices of the directed graph defined by the
strong couplings. The points inside this set are added to the set of coarse grid points C and all
incident edges are removed from the graph. A point is inserted into F if all its incident edges
have been removed and it is not already member of C. The iteration stops, if all edges of the
graph have been removed. As strongly coupled neighbors j ∈ Si of coarse grid points i are
not immediately determined to be fine grid points, this algorithm constructs a coarse grid of
significantly larger magnitude than the classical coarsening scheme, compare Figure 2(d). This
in turn increases the memory requirements as well as the number of floating-point operations
during the solution phase. Note that the construction of the interpolation and coarse grid
operators is still done in the classical way.

Falgout coarsening. The so-called Falgout coarsening [12] is a combination of the classical
Ruge–Stüben coarsening and the CLJP coarsening. First, each processor domain is being
coarsened using the classical algorithm. Then, the coarse grid points in the interior of each
processor domain, i ∈ C ∩ (Ωp \ ∂Ωp), are taken as the first independent set for the CLJP
algorithm which proceeds until all points have been assigned. This way, the interior of a domain
is coarsened as in the classical method, while the boundaries are coarsened “CLJP-like”, see
Figure 2(e). This also means that many coarse grid points are chosen near (and not only on)
the subdomain boundary, which in turn increases the operator and grid complexity.

Table I. Advantages (+) and drawbacks (–) of the coarsening algorithms.
MSB RS3 CLJP Falgout

+
No communication
during coarsening.

Enforces inequality
(1) exactly.

Parallel coarsening in-
dependent of domain
decomposition.

Acceleration of the
CLJP method.

–
No treatment of
strong F − F -
couplings.

Requires communica-
tion of matrix parts.
Can add many addi-
tional points.

Too many coarse grid
points chosen. Mul-
tiple communication
steps.

Inserts many coarse
grid points along the
boundaries. Requires
multiple communica-
tion steps.

In Table I we summarize advantages and disadvantages of these parallelization techniques.
These properties can also be observed from a comparison of the constructed coarse grids
depicted in Figure 2. Our goal is to construct a coarsening algorithm that avoids these
disadvantages yet can also provide some of the advantages.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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Figure 3. Resulting coarse grids for a 9-point discretization of the Laplace operator constructed by
five different initial choices. The gray points indicate the respective coarse grid points, the black point

indicates the first coarse grid point chosen.

4. Coarse Grid Classification

In the previous section we discussed several methods for generating coarse grids in parallel.
Most of these algorithms include some kind of boundary treatment and thus construct a
different coarse grid structure for the interior and the boundary of a processor subdomain.
However, such a special boundary treatment can lead to a large number of additional coarse
grid points near the boundary (or even throughout the whole domain when using the CLJP
method). Thus, the overall solver requires a larger amount of memory and compute time.

In our approach, we will not change the classical point selection scheme but keep the original
Ruge–Stüben scheme on each processor, which has been shown to produce good results in the
sequential case. At first sight this might seem contradictionally to the demands for a true
parallel algorithm since the MSB, RS3 and Falgout algorithms all employ a special boundary
treatment. But in fact another property of the classical Ruge–Stüben scheme will allow us to
avoid an explicit boundary treatment despite its sequential nature.

Since the points are chosen sequentially, it is clear that by changing the initial choice for
the first coarse grid points the Ruge–Stüben algorithm gives a different coarse grid, see Figure
3. Note that the quality of the resulting coarse grids with respect to multigrid convergence
and memory requirements is very similar. Hence, there is no special advantage of using either
one of these coarse grids in a sequential computation. In parallel computations, however, this
gives us a degree of freedom to consistently match the coarse grids obtained on each processor
individually by the Ruge–Stüben scheme at processor subdomain boundaries. This observation
is the starting point for our coarse grid construction algorithm.

More precisely our approach is as follows. First, we construct multiple coarse grids on
each processor domain independently by running the classical algorithm multiple times with
different initial coarse grid points. Note that this procedure is computationally efficient, since
the classical Ruge–Stüben algorithm requires only a very small amount of computational
time compared with the construction of the transfer and coarse grid operators while a well-
constructed grid can save a large amount of time during the operator construction and in the
multigrid cycle.

After the construction of these coarse grids on all processors, we need to select exactly one
grid for each processor domain such that the union of these coarse grids forms a suitable
coarse grid for the whole domain. We achieve this by defining a weighted graph whose
vertices represent the grids constructed by the multiple coarsening runs. Edges are defined
between vertices which represent grids on neighboring processor domains. Each edge weight
measures the quality of the boundary constellation if these two grids are chosen to be part

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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of the composed grid. Finally, we use this graph to choose one coarse grid for each processor
subdomain which automatically matches with most of its neighbors.

Program 4 CGC algorithm CGC(S, ST , ng, {Ci}
ng
i=1, {Fi}

ng
i=1)

for j ← 1 to |Ω| do λj ← |S
T
j |; od;

C0 ← ∅; λmax ← arg maxk∈Ω λk ;
do

U ← Ω \
S

i≤it Ci;
if maxk∈U λk < λmax then break; fi;
it← it + 1; Fit ← ∅; Cit ← ∅;
do

j ← arg maxk∈U λk ;
if λj = 0 then break; fi;
Cit ← Cit ∪ {j}; λj ← 0;
for k ∈ ST

j ∩ U do

Fit ← Fit ∪ {k}; λk ← 0;
for l ∈ Sk ∩ U do λl ← λl + 1; od;

od;
for k ∈ Sj ∩ U do λk ← λk − 1; od;

od;
od
ng← it;

In our implementation, see Program 4, each processor p first determines the maximal weight
λmax of all points i ∈ Ωp. Every point with this weight can be chosen as an initial point for
the classical coarsening algorithm. We choose one particular point and construct a coarse grid
C(p),1. Now we select another point with weight λmax which is not already a member of C(p),1

and construct a second coarse grid C(p),2 starting with this point. Note that we construct
disjoint coarse grids C(p),1 ∩C(p),2 only. We repeat these steps as long as there is a point with
weight λmax that is not already a member of a coarse grid C(p),it. Note that the number of
iterations is bounded by the maximal number of strong couplings |Si| over all points i ∈ Ωp,
which in turn is bounded by the maximal stencil width. Hence, the number of constructed
grids ngp per processor p is independent of the number of unknowns N and the number of
processors P .

We now have obtained ngp valid coarse grids {C(p),i}
ngp

i=1 on each processor p. To determine
which grid to choose on each processor, we construct a directed, weighted graph G = (V, E)
whose vertices represent the created coarse grids,

Vp := {C(p),i}i=1,...,ngp
, V := ∪P

p=1Vp.

The set of edges E consists of all pairs (v, u), v ∈ Vp, u ∈ Vq such that q ∈ Sp is a neighboring
processor of p,

Ep := {∪q∈Sp
∪v∈Vp, u∈Vq

(v, u)}, E := ∪P
p=1Ep,

where Sp is defined as the set of processors q with points j which strongly influence points i
on processor p, i.e.

Sp := {q 6= p : ∃i ∈ Ωp, j ∈ Ωq : j ∈ Si}.

To determine the weight γ(e) of the edge e = (v, u), we consider the nodes v ∈ Vp, u ∈ Vq .
Each of these particular nodes represents a local C/F -splitting (Cp, Fp) for Ωp and (Cq , Fq) for
Ωq , respectively. Together they form a C/F -splitting for the domain Ωp ∪Ωq . At the processor

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:0–0
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C C C F FF

Figure 4. Three possible C/F -constellations at a processor’s domain boundary.
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Figure 5. Application of the CGC algorithm to a 5-point stencil, distributed among 4 processors. The
figure on the left shows the assignment of the points to the coarse grids, the figure on the right shows

the weighted graph.

subdomain boundary, three grid configurations can occur, see Figure 4. We denote by cC,C

the number of strong C − C-couplings (left), by cC,F the number of strong C − F -couplings
(center) and by cF,F the number of strong F − F -couplings (right). Based on these classes of
couplings we define the edge weight

γ(e) := cC,CγC,C + (cC,F + cF,C)γC,F + cF,F γF,F

with γC,C , γC,F , γF,F ∈ R defined as follows. The most important case is the F −F -coupling
case. Here, two fine grid points i ∈ Fp and j ∈ Fq are strongly coupled, which can lead to
two problems: These two points may not have a common C-point to interpolate from, which
violates relation (1). On the other hand, even if (1) is satisfied, we have to transfer the matrix
rows Ai and Aj to construct a stable interpolation operator. Therefore, this situation must be
avoided, which motivates us to penalize strong F − F -couplings with a large negative weight
γF,F := −8.

The strong C − C-couplings should also be avoided because they can increase the operator
and the grid complexity. We therefore set γC,C := −1. In the remaining case, which can be
considered as the (optimal) sequential coarsening scenario, we do not add an additional weight,
i.e. γC,F := 0.

Figure 5 shows the graph G = (V, E) obtained by our CGC algorithm for a 5-point
discretization of the Laplacian. We can observe that constellations with C − C–couplings
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and F − F–couplings are heavily penalized, while constellations with C − F–couplings are
weighted by zero only.

Now that we have constructed the graph G of admissible local grids, we can use it to
choose a particular coarse grid for each processor such that the union of these local grids
automatically matches at subdomain boundaries. Observe that the number of vertices is related
to the number of processors P only; i.e., it is much smaller than the number of unknowns N .
Furthermore, the cardinality of E is small compared to N since edges are only constructed
between neighboring processors. Thus, we can transfer the whole graph onto a single processor
without large communication costs.

On this processor, we choose exactly one node vp from each subset Vp ⊂ V with the following
scheme. We denote by C the set of the selected local coarse grids.

1. First, we define heavy edges or couplings Hv between the nodes v of the graph, where p
denotes the processor v belongs to (i.e. v ∈ Vp),

Hv := ∪q∈Sp
{w |γ(v, w) = max

u∈Vq

γ(v, u)}, and HT
v := {w | v ∈ Hw}.

The heavy edges indicate which coarse grid on processor q can be fitted best to the coarse
grid represented by v ∈ Vp. We assign a weight λv to each node v, where λv = |Hv |+|HT

v |.
This weight indicates how many coarse grids on other processors can be fitted to the
coarse grid represented by v.

2. For some processors p, all nodes v ∈ Vp might have weight λv = 0. As this means there
are no strong couplings across the subdomain boundary, any grid constructed on this
processor can be chosen. Here, we arbitrarily choose one arbitrary v ∈ Vp and remove Vp

from the graph.
3. We choose the node v ∈ Vp with maximal weight, put it into C and remove the subset

Vp from the graph, as a coarse grid for domain Ωp is now determined. We then increase
the weight of each node w ∈ Hv ∪ HT

v to the maximal weight of all remaining nodes in
the graph plus one (so that one of these will be chosen in the next step), and repeat this
step as long as the graph is not empty.

This procedure takes up to P steps, one for each processor domain, see program 5 for details.
After running the algorithm, we transfer the choice vp ∈ C ∩Vp back to processor p. The union
of all elements in C now defines the global consistent grid for the complete domain, see Figure
2(f).

Recall that after applying the first phase of the Ruge–Stüben coarsening, there may exist a
few fine grid points with strong connections to other fine grid points only. However, these strong
couplings are very rare. In the sequential phase, this is corrected by the second pass of the
classical coarsening scheme. To correct these very few couplings across processor boundaries,
we employ a more straightforward method: We check whether a fine grid point is strongly
coupled to other fine grid points only and insert this point into the coarse grid if that is the
case.

5. Numerical Results

We now compare the coarsening algorithms experimentally. We implemented all coarsening
techniques discussed in this paper using the library PETSc [1, 2, 3].
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12 M. GRIEBEL, B. METSCH, D. OELTZ AND M. A. SCHWEITZER

Program 5 AmgCGCChoose(V, H, C)

begin

C ← ∅;
U ← V ;
for v ∈ U do λv ← |Hv|+ |HT

v |; od;
for p← {1, . . . , P} do

if λv = 0 for all v ∈ Vp

then
C ← {v}; arbitrary v ∈ Vp

U ← U \ Vp;
fi;

od;
while U 6= ∅

do

v ← arg maxw∈U λw ;
C ← C ∪ {v};
U ← U \ Vp such that v ∈ Vp;
λmax ← maxw∈U λw ;
for w ∈

`

Hv ∪HT
v

´

∩ U do λw ← λmax + 1; od;
od;

end

Two important measures for the quality of the hierarchy built during the setup phase are
the operator complexity cA and the grid complexity cG,

cA :=

∑Lmax

l=1 nonzeros(Al)

nonzeros(A1)
, cG :=

∑Lmax

l=1 |Ωl|

|Ω1|
. (2)

These values give an indication of the increase in required memory during the coarsening
algorithm compared to the size of the original linear system.

In our experiments, we set α = 0.25 for the first phase and β = 0.35 for the second phase of
the algorithm, see Section 2. We use the truncated standard interpolation [15] scheme with a
truncation parameter εtr = 0.2. The setup phase is stopped if no strong couplings are present.

As an initial guess for the solution phase we use a random-valued vector u0 with ‖u0‖l2 = 1.
We use a (subdomain) block-Jacobi smoother with one inner Gauss–Seidel relaxation step on
all levels and employ a V (1, 1)-cycle, i.e. one pre- and one post-smoothing step per level. The
iteration is stopped if the l2-norm of the residual rit = f − Auit drops below 10−10. The
convergence factor is determined as

ρ =

(

‖rit‖l2

‖r1‖l2

)
1

it−1

. (3)

The examples were run on a cluster consisting of 41 IBM p690 with 32 CPUs and 128GB
memory each which are connected through an HPS network.

Example 5.1 (Uniform grids). In our first experiment we consider the Poisson problem,

−∆u = 0 in Ω = (0, 1)2, (4)

with vanishing Dirichlet boundary conditions on the unit square, discretized with a 5-point
finite difference stencil on 511 × 511 points per processor. Table II shows the setup times for
this problem, obtained with up to 256 CPUs of the IBM cluster. We see that the CGC method
requires the same amount of time as the sequential algorithm (NONE), since no expensive
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Table II. Setup time in seconds for Example 5.1.

P NONE MSB RS3 CLJP Falgout CGC
1 20.8 20.8 20.8 25.1 20.8 20.8
4 24.8 25.3 24.9 30.4 27.7 24.8

16 25.4 26.7 25.9 34.1 30.6 26.5
64 29.7 31.6 31.9 39.2 35.2 29.6

256 41.1 44.3 48.8 55.7 49.5 42.6

boundary treatment is involved and the additional coarsening runs require essentially no time
compared to the construction of the coarse grid operator. The most expensive algorithm is,
as expected, the CLJP algorithm which does not allow for a fast coarsening. Regarding the

Table III. Operator complexity (2) for Example 5.1.

P NONE MSB RS3 CLJP Falgout CGC
1 2.59 2.59 2.59 3.84 2.59 2.59
4 2.60 2.67 2.62 3.90 2.65 2.60

16 2.64 2.78 2.67 3.94 2.69 2.61
64 2.64 2.83 2.72 3.95 2.70 2.61

256 2.66 2.87 2.77 3.57 2.71 2.61
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Figure 6. Setup time in seconds (left) and operator complexity (2) (right) for Example 5.1.

operator complexities, see Table III, we observe that the CLJP algorithm leads to large cA

values due to the amply selection of coarse grid points. The CGC algorithm achieves even
slightly better values than the sequential algorithm (NONE), as the grids are matched and
C − C couplings across the boundaries are avoided. The same holds for the grid complexity
cG, which equals 1.97 for the CLJP algorithm, while the other methods give values up to
1.69 only. From the measured solution times given in Table IV we see a large increase of
computational work especially for the NONE, MSB and RS3 algorithms. These methods do
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14 M. GRIEBEL, B. METSCH, D. OELTZ AND M. A. SCHWEITZER

Table IV. Solution time in seconds for Example 5.1.
P NONE MSB RS3 CLJP Falgout CGC
1 6.49 6.49 6.49 6.86 6.49 6.49
4 17.3 16.6 16.1 11.9 7.71 8.18

16 72.3 57.0 53.1 27.1 17.6 19.6
64 207 178 205 136 98.5 59.3

256 743 1071 797 754 360 370

Table V. Convergence factors for Example 5.1.
P NONE MSB RS3 CLJP Falgout CGC
1 0.13 0.13 0.13 0.16 0.13 0.12
4 0.44 0.48 0.39 0.25 0.19 0.26

16 0.81 0.72 0.72 0.56 0.39 0.41
64 0.91 0.89 0.91 0.82 0.82 0.71

256 0.97 0.96 0.96 0.96 0.94 0.94

Table VI. Overall time in seconds for Example 5.1.
P NONE MSB RS3 CLJP Falgout CGC
1 27.3 27.3 27.3 31.4 27.3 27.3
4 42.1 41.9 41.0 42.4 35.5 33.0

16 97.7 83.7 79.0 61.3 48.2 46.1
64 237 209 237 175 134 88.9

256 785 1116 847 810 410 413
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Figure 7. Solution time (left) and overall time (right) in seconds for Example 5.1.

not allow coarsening up to a single point which in turn increases the number of V -cycles.
The CLJP algorithm produces a smaller number of unknowns on the coarsest level, but the
coarsening process is less efficient than that of the Ruge–Stüben method and more operations
are performed during each V -cycle. This drawback is cured by the Falgout method, which
allows both for an efficient coarsening as well as few points on the coarsest level. The CGC
algorithm, on the other hand, allows for a smaller number of points on the coarsest level
than the NONE, MSB and RS3 algorithms due to the well-matched grids and the absence of
additional inserted coarse grid points near the boundary. However, the coarsest CGC grid is
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Figure 8. Solution of two-phase flow problem at several time steps.

slightly larger than that obtained with the Falgout scheme.

In summary, this experiment shows that the proposed CGC scheme gives a parallel AMG
with similar scale-up behavior as the Falgout scheme. Yet, the CGC scheme leads to operator
and grid hierarchies with better complexities. To fully assess the potential of the CGC method,
however, we must be concerned also with its speed-up properties which we consider in the
following.

Example 5.2 (Navier–Stokes Equations). Here, we use our parallel AMG to solve the
Pressure-Poisson equation in a two-phase flow simulation based on a Chorin projection method.
Our finite difference CFD solver [9] determines the pressure pn+1 of the time step n + 1 by
solving the equation

∇ ·

(

1

ρ(φn+1)
∇pn+1

)

= ∇ ·
~u∗

δt
, (5)

where ~u∗ is the current velocity field, δt the time step, φn+1 a (time-depending) level set
function which describes the location of the free surface and ρ denotes the density, which can
be expressed depending on the level-set function. Near the surface, a large jump of the density
can occur (in our case, a factor of ≈ 773). This leads to very large condition numbers for the
resulting linear system.
In our simulation, we consider a box of size 2 × 2 × 1 cm. Inside this box, a drop of water

is falling into a water basin, see Figure 9. We first present the sequence of grids produced
by the various parallelization techniques using a grid of 64 × 64 × 64 points (for reasons of
visualization only) partitioned onto four processors. Here, we visualize the results obtained for
the initial time step only, however, similar results are obtained for all time steps, see Figure 8.

From the plots depicted in Figures 10 and 11 we see that the coarse grid points are clustered
near the phase boundaries for all parallel coarsening techniques, as it is expected for an AMG
method. However, we can observe some unphysical clustering of coarse grid nodes due to
the parallel data decomposition. The RS3 algorithm inserts a band of additional coarse grid
points near the processor subdomain boundary, the Falgout algorithm even adds coarse grid
points away from the boundaries due to the employed CLJP algorithm for the boundary
treatment. The grids produced by the CGC algorithm, however, resemble those produced in
the sequential case very well. In contrast to all other methods, we find no artifacts due to the
domain decomposition in the grids constructed by our CGC method. Hence, we expect that
the CGC method is least affected by a worsening surface to volume ratio and has superior
speed-up properties over the other parallelization techniques.
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16 M. GRIEBEL, B. METSCH, D. OELTZ AND M. A. SCHWEITZER

(a) Simulation setup (b) x− y slice (c) x− z slice

Figure 9. Free surfaces of the water drop and basin. Depicted is the constellation leading to the coarse
grids in Figure 10 and 11

.

Figure 10. Results of various coarsening schemes. Depicted are the grid points of the x − y slice at
z = 31hz where hz is the mesh width in z-direction. The black points belong to the fine grid Ω1

only, the gray points also belong to grid Ω2 and the white points belong to grid Ω3. From left to
right: sequential coarsening (one processor), RS3 algorithm, Falgout algorithm, CGC algorithm (on 4

processors each).

Figure 11. Results of various coarsening schemes. Depicted are the grid points of the x − z slice at
y = 31hy where hy is the mesh width in y-direction. The black points belong to the fine grid Ω1

only, the gray points also belong to grid Ω2 and the white points belong to grid Ω3. From left to
right: sequential coarsening (one processor), RS3 algorithm, Falgout algorithm, CGC algorithm (on 4

processors each).

To compare the speed-up properties of the various coarsening schemes we consider a problem
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Table VII. Setup time (left) in seconds and operator complexity (2) (right) for Example 5.2.
P NONE RS3 Falgout CGC
1 473 473 473 473
2 280 280 280 280
4 143 151 160 142
8 68.7 80.2 77.8 74.6

16 50.0 56.4 52.5 42.5
32 32.9 36.1 33.6 24.4
64 22.2 22.3 28.7 13.0

128 20.1 15.7 19.3 8.47
256 14.5 10.5 13.1 5.51

P NONE RS3 Falgout CGC
1 3.89 3.89 3.89 3.89
2 4.98 4.54 6.43 4.09
4 6.10 5.14 6.99 4.19
8 5.73 5.26 7.77 3.80

16 6.14 5.50 8.37 4.01
32 5.91 5.57 8.77 4.21
64 5.90 5.66 9.33 4.53

128 5.86 5.90 9.79 4.60
256 6.26 6.48 10.5 5.07
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Figure 12. Setup time (left) and operator complexity (2) (right) for Example 5.2.

of size 128 × 128 × 128. For this problem we employed a subdomain agglomeration scheme.‡

For large processor numbers, the CGC algorithm only needs about half the setup time (Table
VII) than the other methods. The well-fitted grids produced by the CGC algorithm allow
the computation of the coarse grid operator to be carried out in half the time the classical
coarsening (NONE) needs, a feature that compensates the time needed for the additional
coarsening iterations easily. The well-matched grids also yield a low operator complexity
(Figure VII). The same holds for the grid complexity, which only increases from 1.67 to 1.74
as the number of processors increases from 8 to 256, while the Falgout algorithm produces a
grid hierarchy of complexity 1.97 using 256 processors. We summarize the total compute time
in Figure 13. Here, we used a block-Jacobi smoother with inner Gauss–Seidel relaxation on all
levels, i.e. no direct coarse solver. The convergence factors for this problem all stay below 0.1
independent of the number of processors and the employed parallelization technique. Hence,
the setup phase is the most expensive part of the AMG code and this phase also dominates
the overall costs. From the graphs depicted in Figure 13 we can clearly observe that the CGC

‡If more than 70% of the points are boundary points, e.g. i ∈ ∂Ωp for some p, two neighboring subdomains are
merged.
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Table VIII. Overall time in seconds (left) and parallel efficiency (right) for example 5.2.
P NONE RS3 Falgout CGC
1 553 553 553 553
2 322 324 363 328
4 168 172 184 164
8 85.1 93.4 95.4 86.2

16 63.7 66.0 62.5 47.4
32 41.9 41.8 43.0 27.7
64 28.5 26.3 36.2 15.1

128 25.8 18.5 23.3 9.97
256 19.5 12.7 15.3 6.75

P NONE RS3 Falgout CGC
1 1 1 1 1
2 0.86 0.86 0.77 0.85
4 0.82 0.80 0.75 0.84
8 0.81 0.74 0.73 0.80

16 0.54 0.52 0.55 0.73
32 0.41 0.41 0.40 0.62
64 0.30 0.33 0.24 0.57

128 0.17 0.23 0.19 0.43
256 0.11 0.17 0.14 0.32
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Figure 13. Overall time in seconds (left) and parallel efficiency (right) for Example 5.2.

algorithm achieves a parallel efficiency over 50% up to 64 processors (i.e. 32 × 32 × 32 points
per processor), while the efficiency of all other methods drops below this level for more than
16 processors already. Hence, the CGC method allows us to utilize a larger part of a parallel
computer with acceptable parallel efficiency than the other parallel AMG techniques. Note
that the speed-up properties of a linear solver are especially important for time-dependent
problems like the considered flow problem. Since the spatial resolution is coupled to the time
discretization, engineers are very interested in solving a problem of given size faster simply by
increasing the number of CPUs.

6. Concluding remarks

In this paper we presented a new approach to the construction of coarse grids for parallel
AMG solvers. As the classical Ruge–Stüben coarsening scheme [14] performs excellently in the
sequential case, our aim was to keep this scheme in the parallel case without coarsening the
processor subdomain boundaries by another method. To this end, we construct multiple coarse
grids by the classical coarsening scheme. Then, we define a weighted graph which describes
the relationship between the constructed coarse grids and choose one coarse grid per processor
using graph clustering techniques. This allows us to match the coarse grids at the processor
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boundaries automatically such that a further boundary treatment is not required.
The results of our numerical experiments showed that the proposed CGC coarsening

algorithm leads to coarse grids which stay very close to those obtained by sequential AMG,
i.e. CGC-AMG shows virtually no artifacts due to parallelization. Furthermore, the proposed
method leads to a faster setup phase while maintaining the convergence behavior of sequential
AMG. Finally, we have compared the RS3 method, the Falgout method and the CGC method
for solving the Pressure-Poisson equation arising in the discretization of a two-phase flow
simulation. In this case, the CGC method allowed a considerably faster setup phase, led to
lower memory requirements compared to the other approaches and showed a much better
parallel efficiency than the other parallel AMG techniques.
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