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MULTISCALE APPROXIMATION AND REPRODUCING KERNEL HILBERT SPACE
METHODS

MICHAEL GRIEBEL⇤, CHRISTIAN RIEGER†, AND BARBARA ZWICKNAGL‡

Abstract. We consider reproducing kernels K : ⌦ ⇥ ⌦ ! R in multiscale series expansion form, i.e., kernels of the form
K (x,y) =

P
`2N �

`

P
j2I`

�
`,j

(x)�
`,j

(y) with weights �
`

and structurally simple basis functions
�
�
`,i

 
. Here, we deal with

basis functions such as polynomials or frame systems, where, for ` 2 N, the index set I
`

is finite or countable. We derive relations
between approximation properties of spaces based on basis functions {�

`,j

: 1  `  L, j 2 I
`

} and spaces spanned by translates of
the kernel span{K(x1, ·), . . . ,K(x

N

, ·)} with X
N

:= {x1, . . . ,x
N

} ⇢ ⌦ if the truncation index L is appropriately coupled to the
discrete set X

N

. An analysis of a numerically feasible approximation from trial spaces span{KL(x1, ·), . . . ,KL(x
N

, ·)} based on
finitely truncated series kernels of the form KL (x,y) :=

P
L

`=1 �`

P
j2I`

�
`,j

(x)�
`,j

(y) is provided where the truncation index L
is chosen sufficiently large depending on the point set X

N

. Furthermore, Bernstein-type inverse estimates and derivative-free sampling
inequalities for kernel based spaces are obtained from estimates for spaces based on the basis functions {�

`,j

: 1  `  L, j 2 I
`

}.

Key words. Reproducing kernel Hilbert spaces, multiscale expansion, a priori error estimates, Bernstein estimates
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1. Introduction. In many applications, one seeks to reconstruct or to approximate a function from
given (measured) strong or weak data. Kernel-based methods have proven a reliable and useful tool in a
large variety of such problems, including meshless methods for the solution of partial differential equations,
surface reconstruction and machine learning algorithms (see [4, 5, 6, 7, 24, 25, 28]).

In kernel-based meshless methods one typically considers trial spaces that are based on a finite discrete
set X

N

= {x1, . . . ,xN

} ⇢ ⌦ of data points. They are spanned by translates of a given kernel function
K : ⌦⇥ ⌦ ! R, i.e., we use

L
XN = span {K (x1, ·) , . . . ,K (x

N

, ·)} .(1.1)

The approximation properties of such spaces are well understood and various estimates for interpolation and
approximation with L

XN can be found in the literature, see [28] and the references cited therein.
Typically, one assumes a closed form representation of the kernel by a simple analytical formula. Pop-

ular examples are the Gaussian function and surface splines. However, to our opinion, the restriction to only
kernels in closed form is a severe limitation. Kernels as infinite series expansions are important as well and
indeed appear in many practical applications.

First, mathematical modeling naturally introduces a function space for which one wants to construct the
associated reproducing kernel. While for certain function spaces, including spaces which are isomorphic to
Sobolev spaces over product domains, there are closed form expressions for the kernel available (see [28]
and the references therein), this is no longer the case for more general situations involving arbitrary domains
and boundary conditions.

Second, kernels are sometimes introduced to characterize certain properties or features of the function
space under consideration. Typical examples are kernels induced by feature maps in machine learning (see
[25]) or wavelet-type function systems (see [16, 17]) often used in numerical analysis. Thus, the kernel is
a priori given as an infinite (multilevel) series expansion by means of multiscale basis functions. Then, it is
unlikely that a closed analytical formula can be found for such a series representation.
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†Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6-8, 53115 Bonn, Germany
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In this paper we thus consider kernels of the form

K (x,y) =

X
`2N

�

`

X
j2I`

�

`,j

(x)�

`,j

(y) , x,y 2 ⌦ ⇢ Rd

,(1.2)

with functions �
`,j

and weights �
`

� 0, where the I

`

denote suitable finite or countably infinite index sets
for ` 2 N. The first index ` refers to the level while the second index j labels the basis functions within a
level. Here, we assume that the weights �

`

depend only on the level ` but not on j.1 Furthermore, we assume
that

�p
�

`

�

`,j

 
forms a frame in a Hilbert space H. This covers most of the interesting standard function

spaces and includes especially Sobolev spaces of continuous functions (see [15]). Our analysis reproduces
the known results in that case.

Since the infinite series in (1.2) cannot be dealt with in a practical application, it must be truncated
somehow. Here, the choice of the truncation parameter is a crucial issue. Although there is some numerical
experience (see [8]), to the best of our knowledge, so far no theoretical justification has been provided of
how to perform the truncation properly. This issue will be the main subject of this article. Based on a careful
truncation, we will first derive direct Jackson-type approximation theorems for kernel-based interpolation
and approximation in the limit of dense data locations. Then, we will consider approximation and interpo-
lation with truncated kernels and we will balance the associated truncation error with the interpolation error
that stems from the data X

N

. To this end, for a kernel K with decomposition (1.2), we consider truncated
index sets with associated trial spaces

H
L

:=

n
f =

LX
`=1

X
j2I`

a

`,j

�

1/2
`

�

`,j

:

LX
`=1

X
j2I`

|a
`,j

|2 < 1
o
.(1.3)

The truncated trial spaces are associated to the kernel KL with truncated series expansion

K

L

(x,y) :=

LX
`=1

�

`

X
j2I`

�

`,j

(x)�

`,j

(y) ,(1.4)

which involves all basis functions of the first L levels.
We will show that for kernels of the form (1.2) there is a subtle interplay between the approximation

properties of H
L

and L
XN if the truncation index L 2 N is appropriately coupled to the set of data points

X

N

. This coupling is roughly given by (see Lemma 2.1)

1X
`=L+1

�

`

. �min (GXN ,XN )

N

,(1.5)

where �min (GXN ,XN ) denotes the smallest eigenvalue of the Gramian matrix which results from the full
kernel K of (1.2) by evaluation in the points of X

N

, i.e., (G
XN ,XN )

i,j

= K(x

n

,x

m

) for 1  n,m  N .
Note that the left-hand side of (1.5) depends only on the decay of the level-weights �

`

, whereas the right-
hand side depends only on the kernel and the point set X

N

.
To be precise, following techniques from [13] we derive the existence of interpolants based on the kernel

(1.4) for data on X

N

⇢ ⌦ if the truncation index L is chosen according to (1.5). We show furthermore that
the interpolation error is increased only by a constant factor compared to that obtained with the full series

1Note that I
`

is allowed to consist of one element only. Then, the double sum in (1.2) reduces to a single sum in `.
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kernel (1.2). Note here that the evaluation costs of the kernel KL depend on L which in turn depends on the
data points X

N

and can hence not be regarded to be constant. This dependency, however, can be properly
controlled as we will show in the following sections.2

In the important case of Sobolev spaces, we will obtain the error estimate��
f � s

L

f,XN
(f)

��
L

2(⌦)
 Ch

⌧

XN ,⌦ kfk
W

⌧
2 (⌦) ,

for the interpolation based on the truncated kernel (1.4), where h

XN ,⌦ = sup

x2⌦ min

xj2XN kx � x

j

k2
denotes the fill-distance of the discrete set X

N

in ⌦.
We furthermore give a priori error estimates for general reconstruction processes. As a result, we will

derive derivative-free sampling inequalities for H. They state that for f 2 L1 (⌦)

kfk
L1(⌦)  C

�
inf

�2HL

kf � �k
L1(⌦) + kfk

`1(XN )

�
holds if the truncation index L is properly related to X

N

. In order to also allow for unsymmetric reconstruc-
tion methods, we present Bernstein estimates for trial spaces of the form (1.1). These estimates are based on
a careful truncation result as well, and can be seen as generalization of classical sampling inequalities (cf.
[1, 2, 3, 11, 19, 29]). When applied to a residual function, such estimates open the way for a deterministic
error analysis of a large class of reconstruction problems (compare also [19]). Jackson estimates then allow
to derive error rates in terms of L which in turn depends on X

N

.
The remainder of this paper is organized as follows: In Section 2 we give basic definitions and derive

a condition on the coupling of the discrete set of points X

N

and the truncation index L. In Section 3, we
discuss interpolation with the truncated kernel KL and derive corresponding error estimates. Then, we show
derivative-free sampling inequalities for general approximations in Section 4. Section 5 addresses Bernstein
estimates for trial space of the form (1.1). We give some concluding remarks in Section 6.

2. Notation and auxiliary results. Throughout this paper, we denote by C generic constants that may
change from expression to expression. For x, y 2 Rd we set |x� y| := kx� yk

`2(Rd). We denote by
(H, (·, ·)H) a real separable Hilbert space of functions f : ⌦ ! R where ⌦ ⇢ Rd is an open, bounded
domain.

2.1. Hilbert spaces and frames. Denote by I ⇢ N⇥ N an index set with multilevel structure, i.e.

I =

1O
`=1

I

`

:= {(`, j) : ` 2 N, j 2 I

`

} , with m

`

:= #I

`

2 N0 [ {1} .

For (`, j) 2 I, let the �
`

be positive weights, and let �
`,j

2 H be such that the collection of functions�
�

1/2
`

�

`,j

 
(`,j)2I is a tight3 frame for H, i.e.

kfk2H =

X
(`,j)2I

�

`

��
(f,�

`,j

)H
��2 for all f 2 H.

2Note that, for analytically given kernels, often quite complicated function like e.g., Bessel functions for Sobolev splines must be
evaluated. This, however, involves a truncated series expansion within the respective numerical library which introduces an error. This
way, non–constant costs are implicitly introduced as well.

3The assumption on the frame {�1/2
`

�
`,j

} to be tight is made here only for simplicity of notation. If {�1/2
`

�
`,j

} is not tight but
satisfies Akfk2H  P

(`,j)2I �
`

���f,�
`,j

�
H
��2  Bkfk2H for all f 2 H with positive frame bounds A and B, then there is an

equivalent norm kfkH̃ :=
P

(`,j)2I �
`

���f,�
`,j

�
H
��2 on H such that {�1/2

`

�
`,j

} is tight with respect to it.
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Note that the norm in H can be written as (see [14, Lemma 2.4 and Corollary 2.5])

kfk2H := min

8<: X
(`,j)2I

|a
`,j

|2 : {a
`,j

} 2 `2, f =

X
(`,j)2I

a

`,j

�

1/2
`

�

`,j

9=; =

X
(`,j)2I

���⇣f, S�1
�

1/2
`

�

`,j

⌘
H

���2
where the so-called frame operator

S : H ! H, S(f) =
X

(`,j)2I
�

`

(f,�

`,j

)H �

`,j

is invertible due to the tightness assumption.
We further assume that the weights �

`

are positive and summable, i.e.

1X
`=0

�

`

< 1,(2.1)

and that the functions �
`,j

are level-wise uniformly square-summable, that is

sup

x2⌦
sup

`2N

mX̀
j=1

|�
`,j

(x)|2  A.(2.2)

Then in particular for some ˜

A > 0,X
(`,j)2I

�

`

|�
`,j

(x)|2  ˜

A for all x 2 ⌦.(2.3)

We point out that the latter condition (2.3) plays a crucial role in our analysis. In particular, an important
parameter will be the approximation error made when approximating the series by partial sums of the form
sup

x2⌦

P
L

`=1 �`
P

j2I`
|�

`,j

(x)|2. On the other hand, (2.1) and (2.2) provide only a normalization of �
`

and �
`,j

, which we choose in view of wavelet-type decompositions, see [14, 15]. Precisely, given a frame
system {µ1/2

 

`,j

}(`,j)2I with positive weights µ

`

such that the summability condition (2.3) holds, i.e.,
sup

x2⌦

P
(`,j)2I µ

`

| 
`,j

(x)|2  ˜

A, we may introduce the rescaled quantities

�

`,j

:=

8<: `,j

⇣
sup

x2⌦

P
m`

j=1 | `,j

(x)|2
⌘�1/2

, if  
`,j

6⌘ 0,

0, if  
`,j

⌘ 0,

and �

`

:= µ

`

sup

x2⌦

mX̀
j=1

| 
`,j

(x)|2.

Then �1/2
`

�

`,j

= µ

1/2
 

`,j

, that is, they yield the same frame system. Thus, by construction, {�
`

} and {�
`,j

}
satsify all required assumptions in particular (2.1) and (2.2), since

1X
`=0

�

`

= sup

x2⌦

X
(`,j)2I

µ

`

|�
`,j

(x)|2  ˜

A,

and

sup

x2⌦
sup

`2N

mX̀
j=1

|�
`,j

(x)|2 = sup

x2⌦

mX̀
j=1

| 
`,j

(x)|2
sup

x2⌦

P
m`

j=1 | `,j

(x)|2 = 1.

4



Next, we define

H
L

:=

n
f

L

=

LX
`=1

X
j2I`

a

`,j

�

1/2
`

�

`,j

:

X
(`,j)

|a
`,j

|2 < 1
o
.(2.4)

Furthermore, we assume that for all L 2 N the set of functions
n
�

1
2
`

�

`,j

: 1  `  L, j 2 I

`

o
is a tight

frame for (H
L

, (·, ·)H), i.e., we have for f
L

2 H
L

⇢ H

kf
L

k2H = min

n LX
`=1

X
j2I`

|a
`,j

|2 : f

L

=

LX
`=1

X
j2I`

a

`,j

�

1/2
�

`,j

o
.(2.5)

Prominent examples of decompositions of the form (1.2) arise from Mercer’s theorem, where the weights
�

`

and the functions {�
`,j

} denote the eigenvalues and eigenfunctions of the associated compact integral
operator, respectively. Also for frame systems arising from stable splittings, the assumption (2.5) is satisfied
(see [16, 17]). For orthonormal systems {�

`,j

}, the equation (2.5) directly holds.

2.2. Kernel-based trial spaces. Denote by C (⌦) the space of continuous real functions on ⌦. If there
is a continuous embedding H ⇢ C(⌦), then H is a reproducing kernel Hilbert space (RKHS), i.e. there is a
reproducing kernel K : ⌦⇥ ⌦ ! R such that

(i) K(·,x) 2 H for all x 2 ⌦, and
(ii) f(x) = (f,K(·,x))H for all f 2 H and all x 2 ⌦.

By (2.3), the kernel function

K : ⌦⇥ ⌦ ! R, K(x,y) =

X
(`,j)2I

�

`

�

`,j

(x)�

`,j

(y)(2.6)

is well defined. It is indeed the reproducing kernel in H (see [14, Lemma 2.6]). Since K is a reproducing
kernel, it is positive semi-definite (cf. [28, Theorem 10.4]), but we will restrict ourselves to positive definite
kernels K for reasons of simplicity. If the set {�

`,j

} is point-separating, then K is positive definite, see [23].
Now, let a set X

N

:= {x1, . . . ,xN

} ⇢ ⌦ of points x

n

to be given. Associated with it are two natural
density measures, namely the fill distance h

XN ,⌦ and the separation distance q

XN , given by

h

XN ,⌦ := sup

x2⌦
min

xn2XN

kx� x

n

k2 and q

XN :=

1

2

min

xn 6=xm,

xn,xm2XN

kx
n

� x

m

k2 .(2.7)

Clearly, h
XN ,⌦  q

XN for all point sets X

N

⇢ ⌦, and h

XN ,⌦ ⇠ q

XN ⇠ N

�1/d for quasi-uniformly
distributed sets. Furthermore, for X

N

⇢ ⌦, consider the associated kernel-based trial space L
XN of (1.1).

Elements of L
XN are functions of the form

P
N

n=1 ↵n

K(·,x
n

) with coefficient vectors ↵ 2 RN . We use
the notation

s

↵,XN (·) :=
NX

n=1

↵

n

K(·,x
n

) =

X
(`,j)2I

 
NX

n=1

↵

n

�

`

�

`,j

(x

n

)

!
�

`,j

(·) .

There is a strong connection between the reproduction property of the kernel and the underlying tight frame.
Of particular interest to us is the fact that, for functions from L

XN , the frame coefficients can be easily
5



computed,4 i.e., the frame coefficients of s
↵,XN are (see [15, Theorem 3.2])

⇣
s

↵,XN , S�1
�

1/2
`

�

`,j

⌘
H

=

NX
n=1

↵

n

�

1/2
`

�

`,j

(x

n

) for all (`, j) 2 I.(2.8)

Next, for a coefficient vector ↵ 2 RN and a truncation index L2 N we use the notation

s

L

↵,XN
(·) :=

NX
n=1

↵

n

K

L

(·,x
n

) :=

NX
n=1

↵

n

LX
`=1

�

`

X
j2I`

�

`,j

(x

n

)�

`,j

(·) .(2.9)

Finally, denote the discrete analysis operator by

S

XN : H ! `2 (XN

) , f 7! S

XN f := ((f,K (·,x1))H , . . . , (f,K (·,x
N

))H)

T(2.10)

the discrete synthesis operator by

S

?

XN
: `2 (XN

) ! H, ↵ = (↵1, . . . ,↵N

)

T 7! S

?

XN
↵ :=

NX
n=1

↵

j

K(·,x
n

),(2.11)

and the discretized version of the frame operator by

S

XNS

?

XN
: `2 (XN

) ! `2 (XN

) ,

0B@↵1
...
↵

N

1CA 7!

0B@ K(x1,x1) · · · K(x1,xN

)

...
. . .

...
K(x

N

,x1) · · · K(x

N

,x

N

)

1CA
0B@↵1

...
↵

N

1CA .(2.12)

For further details, see [22]. We will refer to this Gramian matrix as K
XN ,XN := S

XNS

?

XN
2 RN⇥N .

2.3. Auxiliary truncation estimate. For a given point set X
N

⇢ ⌦, we will now derive a sufficient
condition on the number of levels of the kernel KL such that for all functions s

↵,XN 2 span{K(x

j

, ·) :

x

j

2 X

N

} the Hilbert space norm of s
↵,XN is uniformly bounded from above by the Hilbert space norm of

s

L

↵,XN
. Roughly speaking, the more dense X

N

becomes in ⌦, the more levels L are needed. The essential
parameter entering the coupling condition between X

N

and L turns out to be the smallest eigenvalue of the
Gramian matrix K

XN ,XN in (2.12). Since K is assumed to be positive definite, this eigenvalue is positive.
We recall that for many popular kernels, the latter can be estimated in terms of the separation distance of X

N

in ⌦, see [28], the references therein, and also definition (2.7) in Section 5. We have the following lemma.
LEMMA 2.1. Let � > 1, and let {�1/2

`

�

`,j

, ` 2 N and j 2 I

`

} be a tight frame in H such that (2.1),
(2.2), and (2.5) are satisfied. For X

N

⇢ ⌦ denote by �min

�
S

XNS

?

XN

�
the smallest eigenvalue of the Gram

matrix K

XN ,XN = S

XNS

?

XN
in (2.12). If L is large enough such that with A from (2.2) it holds

⇤

L

:=

1X
`=L+1

�

`

 1

�

2

�min

�
S

XNS

?

XN

�
N A

,(2.13)

then for all s
↵,XN 2 L

XN

(2.14) ks
↵,XN kH  �

� � 1

��
s

L

↵,XN

��
H .

4Recall that, for general functions from a Hilbert space H, the computation of the frame coefficients is usually a difficult task.
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Proof. We follow the lines of [13]. First let us show��
s

↵,XN � s

L

↵,XN

��
H  1

�

ks
↵,XN kH .

A lower bound for ks
↵,XN kH is universal in all reproducing kernel Hilbert spaces, i.e., we have

ks
↵,XN k2H =

 
NX

n=1

↵

n

K(·,x
n

),

NX
m=1

↵

m

K(·,x
m

)

!
H

(2.15)

=

�
S

?

XN
(↵) , S

?

XN
(↵)

�
H � �min

�
S

XNS

?

XN

� k↵k2
`2
.

Using the level-wise summability assumption (2.2), we further estimate��
s

↵,XN � s

L

↵,XN

��2
H = min

n
kgk2

`2
: s

↵,XN � s

L

↵,XN
=

X
g

`,j

�

1/2
`

�

`,j

o


1X
`=L+1

X
j2I`

 
NX

n=1

↵

n

�

1
2
`

�

`,j

(x

n

)

!2


1X

`=L+1

�

`

k↵k2
`2

X
j2I`

NX
n=1

|�
`,j

(x

n

)|2

 NA k↵k2
`2

1X
`=L+1

�

`

= NA k↵k2
`2
⇤

L

,(2.16)

where ⇤

L

is given in (2.13). Thus by (2.15) and (2.16) we obtain��
s

↵,XN � s

L

↵,XN

��
H  1

�

ks
↵,XN kH.

With the identity s

↵,XN = s

↵,XN � s

L

↵,XN
+ s

L

↵,XN
and the triangle inequality

ks
↵,XN kH  ��s

↵,XN � s

L

↵,XN

��
H +

��
s

L

↵,XN

��
H

we have ks
↵,XN kH  1

�

ks
↵,XN kH +

��
s

L

↵,XN

��
H. Since � > 1, this is equivalent to

� � 1

�

ks
↵,XN kH  ��sL

↵,XN

��
H

which concludes the proof.
Lemma 2.1 requires only weak assumptions on the frame. Moreover, the condition (2.13) on the trun-

cation index L is quite general. It can be further relaxed if the frame system has additional decay properties,
such as an off-diagonal decay.

3. Interpolation with truncated kernels. We now consider the reconstruction problem to find an
approximation to an unknown function f 2 H that interpolates the values of f at some scattered loca-
tions X

N

= {x1, . . . ,xN

} ⇢ ⌦. Since the kernel K is positive definite, there exist unique coefficients
(↵1 (f) , . . . ,↵N

(f))

T such that s
f,XN |

XN = f |
XN , where

s

f,XN (·) =
NX

n=1

↵

n

(f)K(·,x
n

) =

X
`2N

�

`

X
j2I`

 
NX

n=1

↵

n

(f)�

`,j

(x

n

)

!
�

`,j

(·).

7



The coefficients (↵1, . . . ,↵N

) = (↵1(f), . . . ,↵N

(f)) are determined by the linear system0BBB@
P̀
2N
�

`

P
j2I`

�

`,j

(x1)�`,j(x1) . . .

P̀
2N
�

`

P
j2I`

�

`,j

(x1)�`,j(xN

)

...
...

...P̀
2N
�

`

P
j2I`

�

`,j

(x

N

)�

`,j

(x1) . . .

P̀
2N
�

`

P
j2I`

�

`,j

(x

N

)�

`,j

(x

N

)

1CCCA
0B@↵1

...
↵

N

1CA =

0B@ f1
...
f

N

1CA(3.1)

with right-hand side (f1, . . . , fN )

T

= (f(x1), . . . , f(xN

))

T . This yields the interpolant with mini-
mal Hilbert space norm (see [28]). The linear system to determine the coefficients can however be ill-
conditioned. Furthermore, if there is no closed form expression available for the kernel then it is in general
impossible to evaluate the infinite sums and to build the matrix in (3.1) in the first place. Thus, instead of K
one is led to consider the truncated kernel KL introduced in (2.9), i.e.,

K

L

: ⌦⇥ ⌦ ! R, K

L

(x,y) =

LX
`=1

�

`

X
j2I`

�

`,j

(x)�

`,j

(y).(3.2)

The kernel K

L is positive semi-definite for every L 2 N, see [14, 18]. Indeed, if N 2 N, X

N

=

{x1, . . . ,xN

} ⇢ ⌦, and ↵ 2 RN , then

NX
n,m=1

↵

n

↵

m

K

L

(x

n

,x

m

) =

LX
`=1

�

`

X
j2I`

 
NX

n=1

↵

n

�

`,j

(x

n

)

!2

� 0.

Fortunately, the Hilbert space theory is well-established also for positive semi-definite kernels, see [28]. The
associated reproducing kernel Hilbert space of KL is

H
L

:=

8<:
LX

`=1

X
j2I`

a

`,j

�

1/2
`

�

`,j

(·) : a
`,j

2 R and
LX

`=1

X
j2I`

|a
`,j

|2 < 1
9=;(3.3)

with norm

kfk2HL
:= min

8<:
LX

`=1

X
j2I`

|a
`,j

|2 : f =

LX
`=1

�

`

X
j2I`

a

`,j

�

`,j

9=; .

Note that by assumption (2.5) we have k·kHL
= k·kH on H

L

.
Now we consider the problem to interpolate a function f 2 H by translates of the truncated kernel KL.

Assume for the moment that such an interpolant exists. We denote it by

s

L

f,XN
=

NX
n=1

↵

(L)
n

(f)K

L

(·,x
n

),(3.4)

where the coefficients
�
↵

(L)
1 , . . . ,↵

(L)
N

�
=

�
↵

(L)
1 (f), . . . ,↵

(L)
N

(f)

�
are determined by the linear system0BBBBBB@

LP̀
=1
�

`

P
j2I`

�

`,j

(x1)�`,j(x1) . . .

LP̀
=1
�

`

P
j2I`

�

`,j

(x1)�`,j(xN

)

...
...

...
LP̀
=1
�

`

P
j2I`

�

`,j

(x

N

)�

`,j

(x1) . . .

LP̀
=1
�

`

P
j2I`

�

`,j

(x

N

)�

`,j

(x

N

)

1CCCCCCA
0BB@
↵

(L)
1
...

↵

(L)
N

1CCA =

0B@ f1
...
f

N

1CA .(3.5)
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Note here that the cost for the evaluation of a properly truncated kernel which is needed to evaluate an entry
of the truncated Gramian in (3.5) is no longer a constant independent of the degrees of freedom N . The cost
of evaluating K

L

(x,y) from (3.2) will be at least linear in L, hence, we have to determine the dependence
of L on N . To this end, we proceed in two steps: We first show that there exists a function from H

L

that
interpolates the given data, and we subsequently show that the system (3.5) possesses a solution with the
associated interpolant being a quasi-optimal approximant. We use the following general result proven in
[13, Proposition 3.1].

PROPOSITION 3.1. Let Y be a Banach space, V ⇢ Y a subspace, and Z 0 a finite-dimensional subspace
of the dual space Y 0. If for every z

0 2 Z 0 and some �̂ > 1 independent of z0

(3.6) kz0kY0  �̂ kz0|VkV0 ,

then, for any y 2 Y there exists v = v(y) 2 V such that v(y) interpolates y on Z 0, that is, z0 (y) = z

0
(v(y))

for all z0 2 Z 0. In addition v(y) approximates y in the sense that

kv(y)� ykY  (1 + 2�̂) distY (y,V) ,
where distY (y,V) := inf

v2V ky � vkY .
Now, we apply Proposition 3.1 for a discrete set X

N

⇢ ⌦ with

Y = H, V = H
L

and Z 0
:=

�
�

xj : x

j

2 X

N

 
(3.7)

and obtain the following result.
THEOREM 3.2. Let X

N

= {x1, . . . ,xN

} ⇢ ⌦ be a discrete set of points. Suppose that {�1/2
`

�

`,j

: ` 2
N and j 2 I

`

} satisfies (2.1), (2.2) and (2.5) and that the truncation index L 2 N is large enough such that
(2.13) holds. Then, for every f 2 H, there is an f

L

2 H
L

such that

f |
XN = f

L

|
XN and kf � f

L

kH  (1 + 2�̂) distH(f,H
L

),

where �̂ := � (� � 1)

�1 with � as in Lemma 2.1.
Proof. We follow [13, Lemma 3.3 and Theorem 3.4]. By Lemma 2.1 it suffices to show that (2.14) im-

plies (3.6) with �̂ := � (� � 1)

�1 for the spaces specified in (3.7). The claim then follows from Proposition
3.1. To this end, let z0 =

P
N

n=1 ↵n

�

xn be an arbitrary element of Z 0
= span {�

xn : x

n

2 X

N

}. Then, by
Riesz’ representation and the reproducing property, we have

kz0kH0 =

��� NX
n=1

↵

n

K (·,x
n

)

���
H

= ks
↵,XN kH ,

where k·kH0 denotes the norm dual to k·kH. It remains to show that

kz0|HLkH0 =
��
s

L

↵,XN

��
H ,

since (3.6) then follows from Lemma 2.1 via

kz0kH0
= ks

↵,XN kH  �

� � 1

ksL
↵,XN

kH =

�

� � 1

kz0|HLkH0
L
.

Consider an arbitrary element g
L

2 H
L

, i.e., g
L

=

P
L

`=1 �
1/2
`

P
j2I`

�

`,j

�

`,j

, set I
L

:= ⌦L

`=1I` and

s

L

:= {s
`,j

}(`,j)2IL
=

(
NX

n=1

↵

n

�

1/2
`

�

`,j

(x

n

)

)
(`,j)2IL

2 `2 (IL) .(3.8)
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Then

|z0 (g
L

)| =
������

LX
`=1

X
j2I`

�

`,j

NX
n=1

↵

n

�

1/2
`

�

`,j

(x

n

)

������ =
������

LX
`=1

X
j2I`

�

`,j

s

`,j

������ = ��(sL,�)`2 �� .
Recall that the {s

`,j

} of (3.8) are the frame coefficients of sL
↵,XN

2 H
L

with respect to the truncated frame.
Now, consider the operator T : `2(IL) ! H

L

, ⌘ 7!P
L

`=1

P
j2I`

⌘

`,j

�

1/2
`

�

`,j

and denote its null space by
N . Then s

L

2 N? since for every ⌘ 2 N

(s

L

,⌘)

`2 =

LX
`=1

X
j2I`

⇣ NX
n=1

↵

n

�

1/2
`

�

`,j

(x

n

)

⌘
⌘

`,j

=

NX
n=1

↵

n

LX
`=1

X
j2I`

⌘

`,j

�

1/2
`

�

`,j

(x

n

) = 0.

In particular, s
L

= PN?(s
L

), where PN? : `2(IL) ! `2(IL) denotes the orthogonal projection onto N?.
Since projections are self-adjoint, we have

|z0(g
L

)| = ��(s
L

,�)

`2(IL)

��
=

��
(PN? (s

L

) ,�)

`2(IL)

��
=

��
(PN? (�) , s

L

)

`2(IL)

��
 kPN? (�) k

`2(IL)ksLk`2(IL).

Furthermore, by assumption (2.5), it holds kg
L

kH = kPN? (�)k
`2

which implies

kz0|HLkH0  ks
L

k
`2(IL) =

��
s

L

↵,XN
(·)��H .

Finally, the equality kz0|HLkH0 =
��
s

L

↵,XN

��
H follows by choosing g

L

= s

L

↵,XN
.

Theorem 3.2 shows the existence of an interpolant from H
L

which is even quasi-optimal. This is a strong
statement: Typically in approximation theory, the interpolation error is worse than the best approximation
error by a factor referred to as the Lebesgue constant. In Theorem 3.2 the Lebesgue constant is bounded by
the constant (1 + 2�̂). Recall that the parameter �̂ =

�

��1 is linked to the truncation parameter L via the
parameter � from Lemma 2.1. Roughly speaking, if � is chosen close to 1, then the truncation index may be
chosen rather small and, consequently, the Lebesgue constant is large, while if � is chosen large, then also
the truncation index L is large and the Lebesgue constant is close to 1 + 2 · 1 = 3. The proof of Theorem
3.2 is not constructive but it lays the foundation to show the existence of a quasi-optimal interpolant based
on the truncated kernel which can be computed by (3.5).

4. Error estimates for approximation with truncated kernels. In this section we want to give an a
priori error analysis for stable reconstruction processes using the truncated kernel. Precisely, for a discrete
set Y

M

:= {y1, . . . , yM} ⇢ ⌦, we denote by R
YM : S

YM (H) ! H a reconstruction operator which uses
standard information obtained by the analysis operator S

YM to produce an approximation to the function
f 2 H. Naturally such a reconstruction operator should satisfy a consistency and a stability estimate in
order to provide a convergent reconstruction scheme. The consistency property states that, for a second set
X

N

, there is a number " = "(M,N) > 0 with lim

N,M!1 "(M,N) = 0 and

kS
XN (R

YM (S

YM (f)))� S

XN (f)k
`1(XN )  "(M,N).(4.1)

For classical interpolation processes, we assume X

N

= Y

M

and we have "(N,N) ⌘ 0 for all N . The
stability property takes the form

kR
YM (S

YM (f))kH  C kfkH .(4.2)
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Both conditions are satisfied for symmetric kernel-based interpolation problems, i.e., for X
N

= Y

M

, but
also for a larger variety of machine learning algorithms with, in general, X

N

6= Y

M

, see [9, 10, 28, 29, 20].
For kernel-based interpolation, we can express the reconstruction operator in terms of the discrete analysis
operator (2.10) and its adjoint (2.11). We have for X

N

= Y

M

and f 2 H

RInterpolation
XN

S

XN f (x) = S

?

XN

�
S

XNS

?

XN

��1
S

XN f (x) .

From this equation we also see that the case X

N

6= Y

M

needs additional arguments since the associated
Gramian is a rectangular matrix and hence not invertible.

The error analysis for the case of symmetric interpolation follows by standard Jackson-type estimates.
Here, in general, one considers a normed linear space (Y, k · kY) and a nested sequence of subspaces ; ⇢
V1 ⇢ . . .V

j

⇢ . . . of Y endowed with a weaker norm k · kV . We say that the sequence of subspaces
(V

j

)

j

satisfies a Jackson-type estimate if there is a strictly decreasing function h : R+ ! R+ such that
lim

j!1 h(j) = 0 and

inf

v

(j)2Vj

���v � v

(j)
���
V
 h (j) kvkY(4.3)

holds for all v 2 Y .
For the special case of kernel based interpolation, we employ a Jackson-type estimate which is related

to the space L
XN as defined in (1.1). We assume V

j

= L
XNj

⇢ Y = H with X

Nj getting dense in ⌦, which
necessarily implies N

j

! 1 for j ! 1 and L
XNj

! L. Moreover, we set k·kL = k·kV , i.e., the weak
norm on L

XNj
is denoted by k · kL. We assume that for interpolation with the reproducing kernel K there

is a Jackson-type estimate of the form

kf � s

f,XN kL  ⇢(N)kfkH = ⇢(N,L,H)kfkH(4.4)

for all f 2 H. We use the notation ⇢(N,L,H) to stress the dependence on the weak norm. The following
theorem shows that we obtain, up to a constant, the same rates ⇢(N,L,H) if we employ a properly truncated
kernel KL instead of K.

THEOREM 4.1. Suppose that {�1/2
`

�

`,j

: ` 2 N, j 2 I

`

} satisfies (2.1), (2.2) and that assumption
(2.5) holds. Then there is C > 0 such that for all X

N

= {x1, . . . ,xN

}, for all L 2 N large enough such
that (2.13) holds, and for every f 2 H, there exists an interpolant sL

f,XN
as in (3.4) based on the truncated

kernel KL such that (4.4) implies

kf � s

L

f,XN
kL  C⇢(X

N

,L,H)kfkH,

where ⇢(X
N

,L,H) is the same as in (4.4).
Proof. By Theorem 3.2 there is a f

L 2 H
L

such that f |
XN = f

L|
XN for every f 2 H which implies

s

L

f,XN
= s

L

f

L
,XN

. In particular, we can view that data generated by f 2 H as data generated by f

L 2 H
L

.
Hence, since f

L lies in the reproducing kernel Hilbert space of KL the system (3.5) is solvable, i.e. sL
f,XN

exists for all f 2 H, and s

f,XN is also an interpolant to s

L

f,XN
. Thus, we may view s

L

f,XN
as a function in

H generating the data. By (4.4) we obtain��
f � s

L

f,XN

��
L  kf � s

f,XN kL +

��
s

f,XN � s

L

f,XN

��
L  2⇢(X

N

,L,H)

⇣
kfkH +

��
s

L

f,XN

��
H

⌘
.
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It remains to bound ksL
f,XN

kH from above. Since s

L

f,XN
is the best approximation to f

L 2 H
L

from
span{KL

(x

j

, ·) : x

j

2 X

N

} we obtain by Theorem 3.2 the estimate��
s

L

f,XN

��
H  ��sL

f,XN
� f

L

��
H + kfL � fkH + kfkH

 ��sL
f,XN

� f

L

��
H + (2 + 2�̂) kfkH

 ��fL

��
H + (2 + 2�̂) kfkH

 kf
L

� fkH + kfkH + (1 + 2�̂) kfkH
 2(2 + 2�̂) kfkH ,

which concludes the proof with C := 2(1 + 2(2 + �̂)).
In order to analyze general reconstruction processes, we need more flexible error estimates. Such esti-

mates will have the form of a classical sampling inequality [19]. To this end, we first outline how Jackson-
type estimates for sections of the frame imply Jackson estimates for kernel-based trial spaces. These results
again introduce a certain coupling of the truncation index L and the discrete set of centers X

N

. In order
to derive the coupling of the truncation index L and the discrete set of centers X

N

we proceed as fol-
lows. Slightly abusing the notation from (2.10), we consider discrete analysis operators for discrete sets
X

N

= {x1, . . . ,xN

} ⇢ ⌦ restricted to subspaces H
L

⇢ H, i.e.,

S

1
XN

: (H
L

, k · k
L1) ! �

RN

, k · k
`1(XN )

�
, f 7! (f(x1), . . . , f(xN

))

T

.(4.5)

If S
XN is injective, we denote its left-inverse by

�
S

1
XN

��1
: S

1
XN

(H
L

) ! H
L

. The associated operator
norms are given respectively as

kS1
XN

k := sup

f2HL
kfkL1=1

��
S

1
XN

(f)

��
`1(RN )

, and
����S1

XN

��1
��� := sup

�2S1
XN

(HL)

k�k
`1(RN )

=1

����S1
XN

��1
(�)

���
L1(RN )

.

Note here that we now employ the k·k
L1 -norm instead of the k·kH-norm as in (2.10). Next, we fix 0 <

c < 1, and let the truncation index L and the set X
N

⇢ ⌦ be such that

!(h

XN ,⌦, f
L

)

L1(⌦)  (1� c)

��
f

L

��
L1(⌦)

for all fL 2 H
L

(4.6)

where the modulus of continuity is defined as

!(h

XN ,⌦, f)
L1(⌦) := sup

|t|hXN,⌦

x,x+t2⌦

|f(x)� f(x+ t)| .(4.7)

The condition (4.6) couples the truncation index L and the point set X
N

via the fill distance h
XN ,⌦. Roughly

speaking, the larger L, that is, the larger H
L

, the smaller the fill distance of X
N

has to be. Thus the coupling
condition (4.6) can be interpreted as a Bernstein-type inequality.5 Note that if ⌦ is compact, then, by Arzela-
Ascoli’s theorem, (4.6) implies that H

L

is finite dimensional since its unit ball with respect to k · k
L1 is

5In the univariate setting one formally has

!(h
XN ,⌦, f

L)
L1(⌦)  sup

|t|hXN,⌦

����
Z

x

x+t

d

dt
fL(t)dt

����  h
XN ,⌦

����
d

dt
fL(t)

����
L1(⌦)

.

12



compact. However, we will show an even stronger bound on the norm of the inverse of S1
XN

in the following
Proposition 4.2.

PROPOSITION 4.2. For all L 2 N and all X
N

= {x1, . . . ,xN

} ⇢ ⌦ such that (4.6) holds, the
associated discrete analysis operator (4.5) satisfies

��
S

1
XN

��  1 and
����S1

XN

��1
���  1

c

.(4.8)

Proof. The bound on
��
S

1
XN

�� follows directly from the definition of the operator norm since

��
S

1
XN

��
= sup

f

L2HL\{0}

��
S

1
XN

�
f

L

���
`1(XN )

kfLk
L1(⌦)

= sup

f

L2HL\{0}

max

xn2XN

��
f

L

(x

n

)

��
kfLk

L1(⌦)

 1.

To show the second assertion we follow [28, Theorem 3.8]. For fL 2 H
L

there is a point x 2 ⌦ with��
f

L

(x)

��
= kfLk

L1(

⌦
)

since ⌦ is compact. By definition of the fill-distance there is x
n

2 X

N

such that
|x� x

n

|  h

XN ,⌦. Hence by (4.6) and (4.7)��
f

L

(x)� f

L

(x

n

)

��  sup

|t|hXN,⌦

��
f

L

(x)� f

L

(x+ t)

��
= !(h

XN ,⌦, f
L

)

L1(⌦)  (1� c)

��
f

L

��
L1(⌦)

,

and thus, using the triangle inequality, we have��
f

L

��
L1(⌦)

=

��
f

L

(x)

��  ��fL

(x)� f

L

(x

n

)

��
+

��
f

L

(x

n

)

��  (1� c)

��
f

L

(x)

��
+

��
f

L

(x

n

)

��
which directly yields

��
f

L

(x

n

)

�� � c

��
f

L

��
L1(⌦)

. Therefore

�� �
S

1
XN

��1 ��
= sup

↵2SXN
(HL)\{0}

�� �
S

1
XN

��1
↵

��
L1(⌦)

k↵k
`1(RN )

= sup

f

L2HL\{0}

kfLk
L1(⌦)��

S

1
XN

f

L

��
`1(RN )

 1

c

.

This concludes the proof.
If the inverses of the discrete analysis operators are bounded then a generalized reproduction formula

follows. To this end, there is the following general result, see [28, Theorem 3.4].
PROPOSITION 4.3. Suppose that V is a finite dimensional normed linear space and that Z 0 is a set of

functionals, i.e., Z 0
= {z1, . . . , zN} ⇢ V 0 is such that the discrete analysis operator SZ0

: V ! SZ0
(V) ⇢

RN defined by SZ0
(v) := (z1(v), . . . , zN (v))

T is injective. Then for every  2 V 0, there exists a vector
u 2 RN depending only on  such that for every w 2 V it holds

 (f) =

NX
n=1

u

j

z

j

(f) and kuk(RN )0  k kV0kS�1
Z0 k.

Note here that Proposition 4.3 can be seen as dual to Proposition 3.1 in the following sense: The condition
(3.6) in Proposition 3.1 can always be satisfied by increasing the dimension of V with respect to the set Z 0

while in Proposition 4.3 it is just the other way around, i.e., it is possible to make the operator SZ0 injective
by oversampling which means to enlarge the set Z 0 properly.
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In particular, we now set V = H
L

,  = �

x

and Z 0
= {�

x1 , . . . , �xN } and SZ0
= S

XN . Recall here that
H

L

is embedded into C(⌦), and thus the point evaluation functional �
x

for x 2 ⌦ is uniformly bounded by
a constant C > 0 since for all L 2 N and all x 2 ⌦

k�
x

k2H0
L
=

��
K

L

(x, ·)��2HL
= K

L

(x,x) =

LX
`=1

X
j2I`

�

2
`,j

(x)  sup

y2⌦

1X
`=1

X
j2I`

�

2
`,j

(y) =: C.

Then, we obtain from Propositions 4.2 and 4.3 the following result:
LEMMA 4.4. Let L 2 N. There are functions u

k

: ⌦ ! R, k = 1, . . . , N , such that for all fL 2 H
L

,
all X

N

⇢ ⌦ with (4.6) and all x 2 ⌦

f

L

(x) =

NX
n=1

u

n

(x)f

L

(x

n

), and
NX

n=1

|u
n

(x)|  1

c

k�
x

|HLkH0
L
 C

c

.(4.9)

Lemma 4.4 can be seen as a generalized reproduction formula with uniformly bounded Lebesgue con-
stant sup

x2⌦

P
N

n=1 |un

(x)|. This reproduction formula is the main step to prove generalized (derivative-
free) sampling inequalities in the following.

THEOREM 4.5. Let L 2 N. Then for all f 2 L1(⌦) and all sets X
N

= {x1, . . . ,xN

} such that (4.6)
holds, we have

kfk
L1(⌦) 

✓
1 +

C

c

◆
inf

g

L2HL

��
f � g

L

��
L1(⌦)

+

C

c

kS
XN (f)k

`1(XN ) .(4.10)

Proof. Let f 2 L1 (⌦). We proceed similarly as for classical sampling inequalities [12, 29, 21]. For
arbitrary g

L 2 H
L

with the functions {u
n

}N
n=1 from Lemma 4.4, we have

kfk
L1(⌦)  kf � g

Lk
L1(⌦) + kgLk

L1(⌦) = kf � g

Lk
L1(⌦) +

�����
NX

n=1

g

L

(x

n

)u

n

�����
L1(⌦)

 kf � g

Lk
L1(⌦) +

�����
NX

n=1

�
g

L

(x

n

)� f (x

n

)

�
u

n

�����
L1(⌦)

+

�����
NX

n=1

f (x

n

)u

n

�����
L1(⌦)


0@
1 +

�����
NX

n=1

|u
n

|
�����
L1(⌦)

1A��
f � g

L

��
L1(⌦)

+

�����
NX

n=1

|u
n

|
�����
L1(⌦)

kS
XN (f)k

`1(XN )


✓
1 +

C

c

◆��
f � g

L

��
L1(⌦)

+

C

c

kS
XN (f)k

`1(XN ) .

Since this estimate holds for an arbitrary g

L 2 H
L

, the result follows.
The estimate (4.10) contains a best approximation error which can be further quantified by means of

level-wise Jackson inequalities, see [16, Example 7] and also compare (4.3) where we set V
j

= H
L

, k ·kV =

k · k
L1(⌦) and Y = H. This results directly in the following lemma.
LEMMA 4.6. Suppose that the pair (H, L1 (⌦)) satisfies a Jackson inequality with respect to the family

{H
L

}, i.e. there are numbers h (H
L

) such that for all f 2 H and all L 2 N

inf

g

L2HL

��
f � g

L

��
L1(⌦)

 h (H
L

) kfkH .
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If a discrete set X
N

⇢ ⌦ and a truncation index L 2 N satisfy (4.6), then for all f 2 L1 (⌦),

kfk
L1(⌦) 

✓
1 +

C

c

◆
h(H

L

)kfkH +

C

c

kS
XN (f)k

`1(XN ) .(4.11)

Theorem 4.5 and Lemma 4.6 might be seen as a derivative-free generalization of the sampling inequal-
ities [19]. Roughly speaking classical sampling inequalities correspond to the choice H = W

⌧

2 (⌦) for
⌧ > d/2, and H

L

:= ⇡

L

(⌦) where ⇡
L

denotes the space of d-variate polynomials of degree at most L.
We now apply (4.11) to the residuum R

N,M

(f) := f �R
YM (S

XN (f)). Let L be such that (4.6) holds.
Then there are constants such that for all f 2 H

kR
N,M

(f)k
L1(⌦) 

✓
1 +

C

c

◆
h(H

L

) kR
N,M

(f)kH +

C

c

kS
XN (R

N,M

(f))k
`1(XN )


✓
1 +

C

c

◆
h(H

L

) kR
N,M

(f)kH +

C

c

"(M,N)


✓
1 +

C

c

◆
h(H

L

) kfkH +

C

c

"(M,N),

where we used (4.1) in the last step. In particular, if "(M,N)  h(H
L

) kfkH then the error of the recon-
struction process is of the same order as that of the best approximation from H

L

.
We now consider the practically most relevant example of Sobolev spaces in more detail. It is well-

known that

K(x,y) :=

1X
`=0

2

`(d�2⌧)

0@X
k2Zd

�(2

`

x� k)�(2

`

y � k)

1A(4.12)

reproduces in a space which is norm equivalent to the Sobolev space W

⌧

2 if � 2 W

⌧

2 (R) is r-regular with
r > ⌧ >

d

2 , for details see [14]. We then have the following approximation result, see [28, Cor. 11.33] and
[14].

THEOREM 4.7. Suppose that ⌦ ⇢ Rd is bounded with a Lipschitz boundary and satisfies an interior
cone condition. Let K be the reproducing kernel for the Sobolev space W

⌧

2 (⌦) with ⌧ > d/2. Then there
exist constants C > 0 and h0 > 0 such that for all sets X

N

⇢ ⌦ with h

XN ,⌦  h0 and all f 2 W

⌧

2 (⌦),

kf � s

f,XN k
L

2(⌦)  Ch

⌧

XN ,⌦kfkW ⌧
2 (⌦) and kf � s

f,XN k
L

1(⌦)  Ch

⌧� d
2

XN ,⌦kfkW ⌧
2 (⌦),

where h

XN denotes the fill-distance (cf. (2.7)) of the point set X
N

in ⌦.
This can be seen as a Jackson-type estimate (4.3) with V

j

= L
XNj

as defined in (1.1) with weak norm
k · kV = k · k

L

2(⌦) or k · kV = k · k
L

1(⌦), respectively, and Y = H = W

⌧

2 (⌦) with norm k · kH. As a
consequence, we finally obtain the following corollary of Theorem 4.1.

LEMMA 4.8. Let L satisfy the coupling condition (2.13), and denote by s

L

XN
the interpolation with the

truncated kernel KL from (3.2) with the specific kernel K from (4.12). Then, we have��
f � s

L

XN
(f)

��
L

2(⌦)
 Ch

⌧

XN ,⌦ kfk
W

⌧
2 (⌦) and

��
f � s

L

XN
(f)

��
L

1(⌦)
 Ch

⌧� d
2

XN ,⌦ kfk
W

⌧
2 (⌦)

for all f 2 W

⌧

2 (⌦).
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Note that, for (2.13), we expect in this case �min

�
S

XNS

?

XN

� ⇠ q

⌧� d
2

XN
, see [28], with the separation

distance of the point set X
N

. Altogether, we obtain the same convergence rates ⌧ if we employ the truncated
kernel KL instead of K.

At this point, let us state that evaluation of the truncated kernel KL involves certain costs. They are at
least linear in L and hence depend on the coupling condition (2.13). In order to give a quantitative estimate
of these costs, we need to take the dependence of ⇤

L

on L into account. To this end, we consider two special
cases for the decaying weights �

`

of the kernel expansion (2.6). The first example assumes polynomially
decaying weights, i.e., �

`

⇠ `

�s for some s > 1. In this case, we obtain

⇤

L

=

1X
`=L+1

�

`

⇠
1X

`=L+1

`

�s 
Z 1

L

x

�s

dx . L

1�s

,

and thus the coupling condition

L &
 
�min

�
S

XNS

?

XN

�
N

! 1
1�s

.

The second example addresses geometrically decaying weights, i.e., �
`

⇠ ⌘

` for some ⌘ < 1. In this case,
we obtain

⇤

L

=

1X
`=L+1

�

`

⇠
1X

`=L+1

⌘

`

=

1X
`=0

⌘

` �
LX

`=0

⌘

`

=

1

1� ⌘

� 1� ⌘

L+1

1� ⌘

=

⌘

1� ⌘

⌘

L ⇠ �

L

.

For the Sobolev kernel (4.12), we have ⌘ =

1
22⌧�d , i.e., �

`

=

�
1

22⌧�d

�
`. In this case, we expect for the

smallest eigenvalue of the Gramian an estimate of the form �min ⇠ q

2⌧�d

XN
with the separation distance q

XN

as defined in (2.7). For quasi-uniform points we have q

XN ⇠ N

� 1
d , which yields

�min(SXN
S

?
XN

)

N

⇠ q

2⌧
XN

.
Hence, we obtain as final condition for the Sobolev kernel (4.12),

L & 2⌧

ln (2

2⌧�d

)

ln

�
q

�1
XN

� ⇠ 2⌧

d ln (2

2⌧�d

)

ln (N) ,

and the costs for evaluating one entry of KL thus depend only logarithmically on the number of degrees of
freedom N .

5. Bernstein inequalities. As already mentioned, Bernstein estimates are crucial for unsymmetric re-
construction processes. We recall the consistency condition (4.1)

kS
XN (R

YM (S

YM (f)))� S

XN (f)k
`1(XN )  "(M,N).

If Y

M

6= X

N

, we cannot invoke classical interpolation techniques to ensure the existence of a feasible
solution with "(M,N) = 0, since the Gramian K

N,M

is unsymmetric and hence not invertible. The best
we can expect is a full rank of the Gramian. This means that if a function s

M

from set L
YM vanishes on

X

N

it vanishes everywhere, i.e., it is the trivial zero function. Such a result can be shown by a coupling
of sampling inequalities and Bernstein estimates, for further details see [19]. To outline the idea, denote by
k·kL the weak norm and by k·kH the strong norm and assume the following two inequalities:

kfkL  h(N) kfkH +B kS
XN (f)k

`

1(XN ) for all f 2 H(5.1)

ks
M

kH  D (M) ks
M

kL for all s
M

2 L
YM ,(5.2)
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with some constant B > 0. They key ingredient of our analysis relies on the fact that the first inequality
only depends on X

N

while the second depends only on Y

M

. Applying (5.1) to f = s

M

in the first step and
using (5.2) in the second step yields

ks
M

kL  h(N) ks
M

kH +B kS
XN s

M

k
`

1(XN )  h(N)D (M) ks
M

kL +B kS
XN s

M

k
`

1(XN ) .

Hence, if h(N)D (M) < 1 holds, we have

ks
M

kL  B (1� h(N)D (M))

�1 kS
XN s

M

k
`

1(XN )

and the continuous norm k·kL is bounded by the discrete data on X

N

. Altogether, for the numerical analysis
of unsymmetric reconstruction processes, Bernstein estimates like (5.2) are urgently needed.

Thus, we finally also derive Bernstein inequalities for our setting using the truncated kernels KL. In the
following, we assume that Bernstein-type inequalities hold for sections of the frame. To this end, suppose
that H is compactly embedded in the space L such that

kvkH  E(L) kvkL for all v 2 H
L

and all L 2 N.

By the inclusion H
L

⇢ H
L+1, the term E(L) is expected to grow with L. Motivated by dyadic wavelets

and, more generally, by frames arising from stable subspace splittings (see [16, 17]), we suppose that E(L)

depends on L via the weights �
`

. Note that if the weights �
`

decrease geometrically then �
L+1 ⇠ �

L

⇠ ⇤

L

with constants independent of L, where ⇤

L

is defined in (2.13). Hence, there is a function  : [0,1) !
[0,1) such that

kvkH   (⇤

L�1) kvkL for all v 2 H
L

and all L 2 N.(5.3)

Since ⇤
L

is monotonically decreasing as a function of L, the function  is supposed to be also monotonically
decreasing. Assume further that with the notation from (2.9)��

s

L

↵,XN

��
L  ks

↵,XN kL for all L 2 N, all X
N

= {x1, . . . ,xN

} , and all ↵ 2 RN

.(5.4)

Indeed, if the frame and its finite sections are also frames with respect to the L-norm with frame constants
independent of the level then (5.4) is satisfied. This is for example the case for frames that lead to reproducing
kernels in Sobolev spaces W k

2 (⌦) on domains ⌦ such that the sections are also frames for L := L2 (⌦) (see
[17]). We than have the following lemma.

LEMMA 5.1. Let {�1/2
`

�

`,j

: ` 2 N and j 2 I

`

} be a tight frame in H satisfying (5.3), (5.4) and (2.2),
and choose the minimal L > 1 such that (2.13) holds. Then, for all s

↵,XN 2 L
XN , we have

ks
↵,XN kH  �

� � 1



 
�min

�
S

XNS

⇤
XN

�
NA�

2

!
ks

↵,XN kL .

Proof. By Lemma 2.1, (5.3) and (5.4), we obtain

ks
↵,XN kH  �

� � 1

��
s

L

↵,XN

��
H  � (⇤

L�1)
��
s

L

↵,XN

��
L  � (⇤

L�1) ks↵,XN kL ,

for all s
↵,XN 2 L

XN . Furthermore, we have ⇤

L�1 >

�min(SXN
S

⇤
XN

)

NA�

2 by minimality of L. Thus since  is
monotonically decreasing, we get

 (⇤

L�1)  

 
�min

�
S

XNS

⇤
XN

�
NA�

2

!
,
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which concludes the proof.
In order to apply Lemma 5.1 one has to estimate �min

�
S

XNS

?

XN

�
from below. We now give an estimate

in terms of the weights of the frame which is a straight-forward generalization of [18, Lemma 5.23]. The
proof can be found in the Appendix.

LEMMA 5.2. Suppose that there is a > 1 and C1, C2 > 0 such that for all ` 2 N and all j 2 I

`

C1a
�`  diam supp�

`,j

 C2a
�`

.(5.5)

Suppose further that there is a uniform level-wise lower bound

inf

`2N

X
j2I`

�

`,j

(x)

2 � �0 > 0 for all x 2 ⌦.(5.6)

Then, for all X
N

⇢ ⌦, it holds that

�min

�
S

XNS

?

XN

� � �0�M with M > ln

a

✓
C2

q

XN

◆
,

where �
M

denotes the weight of the kernel expansion (1.2).
The assumptions of Lemma 5.2 are natural for many typical examples such as dyadic wavelets where

the assumption (5.5) holds with a = 2. Note furthermore that (5.6) is satisfied for instance for partition of
unity functions occuring in modern discretizations schemes for partial differential equations, see [26, 27] for
an overview. We only need the following two ingredients:

(i) There is �0 with the property: For all ` 2 N and all j 2 I

`

the number of functions �
`,k

, k 2 I

`

, such
that the supports of �

`,k

and �
`,j

have an intersection of positive measure is bounded by �0, i.e.

sup

`2N
sup

j2I`

(# {k : |supp (�
`,j

) \ supp (�

`,k

)| > 0})  �0.

(ii) For all ` 2 N, the functions {�
`,j

: j 2 I

`

} are non-negative and build a partition of unity, i.e.X
j2I`

�

`,j

(x) = 1 for all x 2 ⌦.

Indeed if (i) and (ii) are satisfied then for all ` 2 N

1 
X
j2I`

|�
`,j

(x)| =
X
j2I`

supp�`,j\{x} 6=;

|�
`,j

(x)|  �

1
2
0

0@X
j2I`

|�
`,j

(x)|2
1A 1

2

.

As an example, let us finally consider the case of the Sobolev space W

⌧

2 again with its reproducing kernel
(4.12). There is a constant F > 0 such that for all ` 2 N for all v

`

2 H
`

(see [17])

kv
`

k
W

⌧
2
 F2

`⌧ kv
`

k
L

2 .

By Lemma 5.2 we have with M ⇠ log2 (1/qXN ) that �min & �

M

⇠ q

⌧� 1
2 . Following Lemma 2.1 we

choose L 2 N such that ⇤
L

⇠ �

L

⇠ �min
N

& q

⌧+ 1
2 . Hence we obtain that (see Lemma 5.1) there is a

constant G > 0 such that

ks
↵,XN k

W

⌧
2
 Gq

1+2⌧
1�2⌧ ks

↵,XN k
L

2 .(5.7)
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for all s
↵,XN 2 L

XN .
Note that the condition in Lemma 5.1 on a minimal L > 1 such that ⇤

L

satisfies (2.13) is not very
restrictive. Otherwise the Gramian matrix from (2.12) would have a lowest eigenvalue independent of X

N

which is known to be true only for very coarse point sets. This makes it applicable to a variety of examples.
The price for this generality is that, in some cases, the norm equivalence constants are not optimal with
respect to the point set X

N

. Moreover, the the rate q

1+2⌧
1�2⌧ of the inverse estimate (5.7) is inferior to the rate

q

�⌧ expected for Sobolev spaces (see [28, Chap. 12]). However, such better estimates have, to the best of
our knowledge, not yet been shown for kernels from (4.12). We would obtain the better order in q

XN if we
could choose ⇤

L

⇠ �min which is possible under certain further assumptions on the frame system, as will
be shown elsewhere.

6. Concluding remarks. In conclusion, we showed that there is a theoretical justification for using
kernel which are given as a infinite series expansion of the form (1.2). The fundamental step was to derive
an explicit coupling of the discrete point set to the decay of the summation weights in (1.2). We furthermore
proved that we do not loose accuracy (up to constants) if we employ a properly truncated kernel instead of
the infinite expansion (1.2). Moreover, we showed that the finite dimensional spaces spanned by the first
terms of the expansion provide good approximation spaces. This observation was formalized by deriving a
sampling inequality based on these finite dimensional spaces. Our estimates can be employed in the error
analysis of many regularized reconstruction algorithms. Since our sampling inequality is based on the kernel
expansion only, our results can be applied where classical function spaces are not available, as it is often the
case in machine learning applications.

Appendix. In this appendix we now give for reasons of completeness the proof of Lemma 5.2. It is a
straight-forward generalization of [18, Lemma 5.23].

Proof. The Gramian matrix based on X

N

= {x1, . . . ,xN

} can be decomposed into

X
`2N

�

`

0@X
j2I`

�

`,j

(x

n

)�

`,j

(x

m

)

1A
n,m

=:

X
`2N

�

`

A

`

(X

N

).

For fixed ` � 0 we denote by �min (A`

(X

N

)) the smallest eigenvalue of the matrix A

`

(X

N

). Note that the
matrices A

`

(X

N

) are positive semi-definite since

A

`

(X

N

) :=

X
j2I`

(�

`,j

(X

N

)⌦ �

`,j

(X

N

)) :=

X
j2I`

0B@�

`,j

(x1)

...
�

`,j

(x

N

)

1CA (�

`,j

(x1) , . . . ,�`,j (xN

))

is a sum of rank-one matrices with non-negative spectrum. Hence, for all M 2 N and all ↵ 2 RN , we obtain�
↵, S

XNS

?

XN
↵

�
`2(XN )

=

X
`2N

�

`

(↵,A

`

(X

N

)↵)

`2(XN ) � �

M

(↵,A

M

(X

N

)↵)

`2(XN )

� �

M

�min (AM

(X

N

)) k↵k2
`2(XN ).

This implies in particular

�min

�
S

XNS

?

XN

� � �

M

�min (AM

(X

N

)) for all M 2 N.(6.1)
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Thus, we have to find a lower bound on �min (AM

(X

N

)) for a fixed M 2 N. To this end, we choose M

large enough such that for all j 2 I

M

q

XN > C2a
�M � diam supp�

M,j

or equivalently M > ln

a

✓
C2

q

XN

◆
.

Then, by (5.6), we obtainX
j2I`

�

`,j

(x

n

)�

`,j

(x

m

) =

X
j2I`

�

2
`,j

(x

n

) � �0 for all ` � M,

that is, the matrix A

`

(X

N

) is diagonal and the entries on the diagonal are bounded below by �0 > 0. Hence,
�min (AM

(X

N

)) � �0, and, by (6.1), we finally get

�min

�
S

XNS

?

XN

� � �

M

�0.

This yields the desired lower bound.
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