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Abstract: We first demonstrate how to construct a transfinite interpolation on a
simplex of arbitrary dimension d. The inputs are (d + 1) functions describing the
simplicial faces of decremented dimension (d − 1). We deduce the explicit expres-
sions for tetrahedra and triangles by using the CGNS convention for the enumer-
ation of topological entities. Second, our construction is applied to hypercubes as
well. Rigorous coincidence with the usual Coons tensor product on hypercubes is
theoretically shown. We prove the exact correlation between the blending functions
using multidimensional barycentric coordinates and those using tensor product for
the case of hypercubes. We conjecture that our approach holds true for any trans-
finite interpolation where the domain of definition is a convex polytope. We do not
present any numerical results since this paper is only of theoretical nature.
Key Words: Simplex, Hypercube, Transfinite Interpolation.

1 Introduction

Transfinite interpolations on a reference domain Dref start by providing some facial
functions on the boundary facets of Dref . One seeks then a function defined in the
interior of Dref which interpolates the initial facial functions. The main objective is
to obtain simple short formulae without solving any equations. In the present paper,
we want to address the problem of transfinite interpolation from the topological
perspective. One of the most important relations in topology or solid modeling is
the Euler identity [4] which gives the interdependence between the number of nodes,
edges and higher dimensional entities in a solid. In fact, for the case of simplex and
hypercube of dimension d, the Euler identity is

(−1)d + 1 =
d−1∑

k=0

(−1)kMk (1)

where Mk denotes the number of subsimplices σki or subcubes κki which are of di-
mension k. The usual transfinite interpolation as introduced by Coons does not
contain any topological information whatsoever. In this document, we will inves-
tigate some formula resembling equation (1) which expresses a function within a
simplex or a hypercube of dimension d (see Fig. 2) by using topological entities of
lower dimensions.

Although topological structures are precious tools for theoretical analyses, they
are useful in practical applications too. Topological organizations have already
gained practical acceptance by many scientists for long time although that is often
only implicitly stated. As a standard illustration, CGNS which stands for CFD
General Notation System determines an enumeration of the topological entities
inside a given cell. By using CGNS, you have standard data structures for enlisting
the nodes, edges, faces of usual domains such as triangles, tetrahedra, pentahedra,
hexahedra, to name only a few. Nowadays, the CGNS convention is already adopted
by many practitioners treating mesh generations, CFD simulations, domain decom-
positions and solid modeling. Other important applications involve α-shapes which
have considerably attracted attentions in computer graphics over the last decade
and which are already treated in libraries like CGAL.

Related works are as follows. The author who initiated the idea of such trans-
finite interpolations was Steven Coons [3] in the mid 60’s. His idea was improved
by William Gordon by using some operator and Boolean sums [9, 10, 11]. Robin
Forrest has intensively used transfinite interpolation in order to generate curved
coordinate systems [8]. As for CAD preparation and triangular patch representa-
tions, known results are as follows. Brunnett and Randrianarivony have invested
a lot to develop a method which is appropriate for surfaces in integral equations.
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Figure 1: First simplices ∆d
ref : unit interval, unit triangle, unit tetrahedron, unit

pentachoron.

Their methods have already been successfully implemented to CAD and molecular
surfaces [17, 18]. Harbrecht and Randrianarivony [12] have used those surface CAD
models for applications in Wavelet BEM.

The present paper is structured as follows. The purpose of Section 2 is to recall
the notion of transfinite interpolation on the unit square in order to motivate the
next discussion. Additionally, we will find there a specification of the problem
formulation and introduction of important definitions. The main results of this
paper can be found in Section 3 and Section 4. In fact, Section 3 treats the case
of higher dimensional simplices. In fact, the formula for transfinite interpolation
in a tetrahedron takes already a dozen of lines. As a consequence, the author
introduces in that section a succinct and compact way of representing such formula
for multi-dimensional simplices. In section 4, we concentrate on the case of the
multidimensional hypercube. In particular, we investigate the relation between our
proposed formula and the usual transfinite interpolation which uses Boolean sums
of operators.

2 Generality and Problem Setting

2.1 Motivation from the Usual 2D Coons Map

In order to simplify the description about multidimentional transfinite interpola-
tions, we will recall the usual Coons patch [3] in this section. Let us consider four
parametric curves

α, β, γ, δ : [0, 1] −→ R
2 (2)

which are supposed to fulfil the next compatibility condition which are illustrated
in Fig. 3(a):

α(0) = δ(0) , α(1) = β(0) , γ(0) = δ(1) , γ(1) = β(1). (3)

H1

ref

H2

ref

H3

ref

H4

ref

Figure 2: First hypercubes Hd
ref : unit interval, unit square, unit cube, unit tesseract.
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Figure 3: (a)Boundary of a Coons patch, (b),(c) Examples of Coons patches

Type f0(t) f1(t)
Linear 1 − t t
Cubic B3

0(t) +B3
1(t) B3

2(t) +B3
3(t)

Trigonometric cos2(0.5πt) sin2(0.5πt)

Table 1: Blending functions.

We are interested in generating a parametric surface x(u, v) defined on the unit
square [0, 1]2 such that the boundary of the image of x coincides with the given
four curves:

x(u, 0) = α(u) x(u, 1) = γ(u) ∀u ∈ [0, 1]
x(0, v) = δ(v) x(1, v) = β(v) ∀ v ∈ [0, 1] .

(4)

Let f0 and f1 denote two arbitrary smooth functions satisfying

fi(j) = δij i, j = 0, 1 and f0(t) + f1(t) = 1 ∀ t ∈ [0, 1]. (5)

The functions f0, f1 which are better known as blending functions can be chosen in
several ways [8]. Among others, three methods are shown in Table 1 for choosing
them. A construction of a solution to (4) which was due to S. Coons can be expressed
in matrix form as:

x(u, v) =
[
f0(u) f1(u)

] [ δ(v)
β(v)

]
+
[

α(u) γ(u)
] [ f0(v)

f1(v)

]
−

[
f0(u) f1(u)

] [ α(0) γ(0)
α(1) γ(1)

] [
f0(v)
f1(v)

]
.

(6)

As an illustration in Fig. 3(b) and Fig. 3(c), we can see the image of an uniform
grid on the unit square by a Coons map x. In the remainder of this paper, we will
generate transfinite interpolations on two more general domains: the simplex ∆d

ref

and the hypercube Hd
ref . Similarly to the 2D case, we need three ingredients to

ensure the generation of transfinite interpolation in the multidimensional case:

• Functions on the facets as in (2),

• Blending functions generalizing(5),

• Compatibility conditions generalizing (3).

2.2 Nomenclature Related to ∆d
ref

and Hd
ref

We consider an Euclidean space which is suppose to be R
n accompanied with the

usual Euclidean distance. Consider a convex domain Dref in R
n. It is supposed to
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be the convex hull of the vertices Ni ∈ R
n for i ∈ J where J is some finite index

set. Barycentric coordinates will be a set of functions Λ(u) = (λi(u))i∈J such that

u =
∑

i∈J

λi(u)Ni and
∑

i∈J

λi(u) = 1 ∀u ∈ Dref , (7)

∀ (µi)i∈J with
∑

i∈J

µi(u) = 1, ∃!u ∈ Dref where λi(u) = µi ∀ i ∈ J . (8)

Because of those two properties, for any function G defined on Dref , we will write
interchangeably G(Λ) and G(u) which is in fact the composition of G and Λ. For
each p ∈ J , the barycentric coordinates which take zero value except at the p-th
entry which contains unity will be denoted by

Λpn := (λpk)k∈J where λpk = δp,k for p, k ∈ J . (9)

In the sequel, we will treat only the case where Dref is a the unit simplex ∆d
ref or

the unit hypercube Hd
ref which we want to introduce now.

In order to introduce the multidimensional simplex ∆d
ref , let us useN0 := (0, 0, ..., 0) ∈

R
d, N1 := (1, 0, ..., 0) ∈ R

d, N2 := (0, 1, ..., 0) ∈ R
d,· · · , Nd := (0, 0, ..., 1) ∈ R

d. The
set of vertices is then

A := {Ni ∈ R
d, i = 0, ..., d}. (10)

The multidimensional simplex ∆d
ref is the hull of them which is

∆d
ref := {u = (u1, ..., ud) ∈ R

d : ui ≥ 0, u1 + · · · + ud ≤ 1}. (11)

A subsimplex σ of ∆d
ref is the convex hull of points which belong to a subset of A.

The dimension of the subsimplex σ is the decremented number of vertices Ni ∈ A
which are in σ. The simplices of dimension k of ∆d

ref will be denoted by σki in which

i = 1, 2, ..., ηk where ηk :=
(
d+1
k

)
is the number of k-simplices. The subsimplices of

dimension d− 1 which are σd−1
i are the facets of ∆d

ref and those of dimension zero
are the initial vertices σ0

i = Ni. Simplices of dimension one are called edges.
Let us consider now the case of hypercubes. To facilitate the presentation, we will
use the following set of integers

Ja, bK := {z ∈ Z : a ≤ z ≤ b}. (12)

We introduce the set of vertices to be

C :=
{
u = (u1, ..., ud) ∈ R

d where ui ∈ {0, 1} for i = 1, ..., d
}
. (13)

The multidimensional hypercube Hd
ref is the convex hull of C which is

Hd
ref := [0, 1]d. (14)

For any subset ξ ⊂ {1, ..., d} and a binary function φ : ξ → {0, 1}, we define

R(ξ, φ) := {(u1, ..., ud) ∈ R
d where uj = φ(j) for j ∈ ξ}. (15)

A subcube κ is any intersection of Hd
ref with some R(ξ, φ). The dimension of κ is the

number of non-fixed variables in R(ξ, φ): that is dim(κ) := d− Card(ξ). Consider
the following set

J k := {α = (ξ, φ) : ξ ⊂ J1, dK, Card(ξ) = d− k, φ : ξ → {0, 1}} (16)

which is a finite set where the number of elements is Card(J k) =
(
d

d−k

)
2d−k. The

k-dimensional subcubes of Href will be enlisted as (κkα)α∈J k . The subcubes of
dimension d− 1 which are κd−1

α are the facets of Hd
ref .
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(a) (b)

Figure 4: (a)Tetrahedralization of the reference tetrahedron ∆3
ref (b)Image by a

tetrahedral transfinite interpolation of the left-hand mesh.

In the sequel, we denote the convex hull of a set S of points Xi ∈ R
n where

i = 0, ...,M by

Conv(S) = Conv[X0, ..., XM ] (17)

:=

{
M∑

i=0

µiXi :

M∑

i=0

µi = 1, µi ∈ [0, 1]

}
. (18)

The purpose of this document is to search for a transfinite interpolation. That is,
if we are given some functions on the facets of ∆d

ref or Hd
ref , then we search for

a function defined on the reference elements which interpolates those initial facial
functions.
To generalize the case of 2D Coons map, let us introduce the notion of barycentric
blending functions bi, i ∈ J defined for all Λ = (λi)i∈J in the reference domain. In
fact, we define them to be a set of functions verifying the following three properties:





(P1) : If λp = 0 in Λ = (λi)i∈J then bp(Λ) = 0,
(P2) : bp(Λ

p
n) = 1, for all p ∈ J ,

(P3) :
∑

i∈J bi(Λ) = 1.
(19)

As in the case of 2D transfinite interpolation, the simplest way of choosing the
blending functions (see Table 1) is to use the linear ones which are in our case:

bi(Λ) := λi, ∀ i ∈ J . (20)

3 Interpolation for multidimensional simplices

In this section, we concentrate on transfinite interpolation within a multidimensional
simplex ∆d

ref . First, we will introduce the induced mapping χ̃kj defined on each

subsimplex σkj . Second, we will use a certain type of projection with which help the
transfinite interpolation is expressed. After proving the interpolation of boundary
faces, we show eventually two particular cases: the triangular and the tetrahedral
transfinite interpolations.
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Figure 5: (a)Tetrahedral transfinite interpolation (b)A simplex Bézier and its con-
trol net embedded in R

3

3.1 Relations between the subsimplices

The following exact expression of barycentric coordinates in simplex will not be
used explicitly but we introduce them anyway for sake of completeness. We recall
the barycentric coordinates with respect to W = (w0, · · · ,wd) where wi ∈ R

d by
using

D(W ) := det

[
1 1 ... 1

w0 w1 ... wd

]
. (21)

Additionally, we define for any u ∈ R
d

Di(W |u) := det

[
1 ... 1 1 1 ... 1

w0 ... wi−1 u wi+1 ... wd

]
. (22)

The barycentric coordinates of u with respect to W are defined by

λi(u) := Di(W |u)/D(W ). (23)

As first step, we assign an enumeration to the vertices of each k-simplex σki of ∆d
ref .

Suppose that the nodes of σki are Np where p ∈ Ak
i a subset of cardinality k + 1 of

A from relation (10). The enumeration is arbitrary but fixed meaning that we fix
a bijection

ψki : J0, kK −→ Ak
i (24)

which is always possible because Ak
i is a discrete set of cardinality k+ 1. Thus, the

vertices of σki are
Nψk

i
(0), Nψk

i
(1), · · · , Nψk

i
(k). (25)

By using that, we can deduce a function χkj defined for all Λ = (λ0, ..., λk) ∈ ∆k
ref

such that χkj (∆
k
ref) = σkj as follows.

χkj (Λ
q) = χkj (0, ..., 0, 1, 0, ..., 0) := Nψk

j
(q), (26)

χkj (Λ) = χkj (λ0, ..., λk) :=

k∑

q=0

λqNψk
j
(q). (27)

The general transfinite interpolation problem consists in giving (d + 1) functions
defined on ∆d−1

ref :

χ̃d−1
i : ∆d−1

ref → R
d where σ̃

d−1
i := χ̃d−1

i (∆d−1
ref ). (28)
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Figure 6: Only subsimplices σki of dimension k ≤ 1 are labelled

From this we can induces some mappings χ̃k−1
i : ∆d−1

ref → σ̃
k−1
i for all subsimplices of

lower dimension as follows. Suppose σk−1
i is a subsimplex of σkj . Hence, there is only

one node of σkj = Conv[Nψk
j (0), ..., Nψk

j (k)] which is not in σk−1
i = Conv[N

ψ
k−1
i

(0), ...,

N
ψk−1

i
(k−1)]. Let Nψk

j (q) be such a node. Thus, one can define a mapping Mk
i,j :

J1, pK \ {q} → J1, k − 1K such that

ψkj (p) = ψk−1
i [Mk

i,j(p)] for each p = 0, ..., k such that p 6= q. (29)

The induced function for σk−1
i is defined as

χ̃k−1
i (µ0, ..., µk−1) := χ̃kj (λ0, ..., λk), (30)

where λ(s) := µMk
i,j

(s) if s 6= q and λ(q) = 0. Throughout this paper, we use tilde for

expressions relative to the image entities such as the ones in Fig. 6. As we have done
in relation (3) for the 2D case, we need some compatibility conditions about the
given functions χ̃d−1

i . Here, that means that if σk−1
i is a subsimplex of two different

simplices σkj1 and σkj2 , then both induced functions coincide. For instance, in the
case of tetrahedra, the curved edge at the interface between two curved triangles
should have the same parametrization from both sides (see Fig. 4(a)).

3.2 Projections on subsimplices

Consider now an arbitrary subsimplex σ := σkj which contains the node Ni and let

us use the mapping χ̃kj : ∆k
ref → σ̃

k
j . Thus, there is an index p such that ψkj (p) = Ni.

For any Λ = (λ0, ..., λd) ∈ ∆d
ref , we introduce

Fσ,Ni
(Λ) := χ̃kj (λψk

j
(0), ..., λψk

j
(p−1), 1 −

k∑

s=0
s6=p

λψk
j
(s), λψk

j
(p+1), ..., λψk

j
(k)). (31)

Lemma 3.1 For every d ∈ N, we have the identity

d−1∑

k=0

(−1)k
(
d

k

)
= (−1)d+1. (32)
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PROOF.

This is proved by induction with respect to d. For d = 1, the sum is 1 = (−1)1+1.
Suppose that it is the case for d. For d+ 1 we have:

d∑

k=0

(−1)k
(
d+ 1

k

)
=

d∑

k=0

(−1)k
[(
d

k

)
+

(
d

k − 1

)]

= (−1)d +

d−1∑

k=0

(−1)k
(
d

k

)
+

d∑

k=1

(−1)k
(

d

k − 1

)
= (−1)d+2.

Q.E.D.

Lemma 3.2 Let Nq be a fixed node of the d-dimensional simplex ∆d
ref and consider

the (d−1)-simplex σopp ⊂ ∆d
ref which does not contain Nq. For any Λ = (λ0, ..., λd)

where λq = 0, the following relation holds independently of i ∈ J0, dK where i 6= q:

Fσopp,Ni
(Λ) = χ̃d−1

e (λ
ψ

d−1
e (0), ..., λψd−1

e (d−1)) (33)

for some e = 0, ..., d.
Additionally, for any subsimplex σkj containing both Nq and Ni, there is a subsim-

plex σk−1
p ⊂ σkj such that

(−1)k−1Fσk−1
p ,Ni

(Λ) + (−1)kFσk
j
,Ni

(Λ) = 0. (34)

PROOF.

Since σopp is of dimension d − 1, there exist some e such that σopp = σd−1
e . We

want to show that Fσopp,Ni
is independent of Ni. Because of partition of unity and

λq = 0, we have for the p in (31):

1 −
∑

s∈J0,p−1K
s6=p

λ
ψ

d−1
e (s) = λ

ψ
d−1
e (p) + λq = λ

ψ
d−1
e (p). (35)

As a consequence, we obtain for σopp:

Fσopp,Ni
(Λ) = χ̃d−1

e (λ
ψ

d−1
e (0), ..., λψd−1

e (p−1), λψd−1
e (p), λψd−1

e (p+1), ..., λψd−1
e (d−1))

= χ̃d−1
e (λ

ψ
d−1
e (0), ..., λψd−1

e (d−1))

which proves (33).
Consider the subsimplex σk−1

p of dimension k−1 which is obtained by excluding Nq
from σkj . Since Nq and Ni belong to σkj , there are some w, p such that Nq = ψkj (w)

and Ni = ψkj (p).

Fk
σj ,Ni

(Λ) = χ̃kj (λψk
j
(0), ..., λψk

j
(w−1), λq, λψk

j
(w+1), ..., λψk

j
(r−1), T, λψk

j
(r+1), ..., λψk

j
(k))

= χ̃kj (λψk
j
(0), ..., λψk

j
(w−1), 0, λψk

j
(w+1), ..., λψk

j
(p−1), T, λψk

j
(p+1), ..., λψk

j
(k)),

in which T := 1 −
∑
s6=p λψk

j
(s) = 1 −

∑
s6=p,w λψk

j
(s). Let us denote by M := Mk

p,j

the mapping that we met in (29). Hence,

Fk
σj ,Ni

(Λ) = χ̃kj (λψk−1
p [M(0)], ..., 0, ..., λψk−1

p [M(r−1)], T, λψk−1
p [M(r+1)], ..., λψk−1

p [M(k)])

= χ̃k−1
p (λ

ψ
k−1
p (0), ..., λψk−1

p (r−1), T, λψk−1
p (r+1), ..., λψk−1

p (k−1)).

That is, we have Fk−1
σp,Ni

(Λ) = Fk
σj ,Ni

(Λ) which implies (34).
Q.E.D.

Now, we are ready to state the main result of this section.
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Theorem 3.3 Consider some barycentric blending functions bi(Λ) as in (19). For
the d-dimensional simplex ∆d

ref , the function

T (Λ) := (−1)d+1
d∑

i=0

bi(Λ)
∑

σ∈Si

(−1)dim(σ)Fσ,Ni
(Λ) (36)

where Si is the set of all subsimplices σkj containing the node Ni is a transfinite
interpolation. That is, T (Λ) verifies for each q = 0, ..., d:

{
T (Λqd) = Nq,
T (λ0, ..., λq−1, 0, λq+1, ..., λd) = χ̃d−1

e (λ
ψ

d−1
e (0), ..., λψd−1

e (d−1))
(37)

for some e = 0, ..., d where σd−1
e is the (d− 1)-subsimplex not containing Nq.

PROOF.

Let us prove the first equality of (37) by considering a node Nq for a fixed q = 0, ..., d.
Due to property (P2) of the barycentric blending function in (19), the term bi(Λ

q
d)

vanishes for i 6= q and relation (36) becomes

T (Λqd) = (−1)d+1
∑

σ∈Sq

(−1)dim(σ)Fσ,Nq
(Λqd). (38)

First, we will show that in the case Λ = Λq, the expression Fσ,Nj
(Λq) is a constant

K = Ñq independent of such σ. Then, we will apply Lemma 3.1 to obtain the
first relation of (37). Consider any σ = σkj which is incident upon Nq. Since the
elements of Λq are zero except at the q-th entry, relation (31) yields

Fσ,Nq
= χ̃kj (0, ..., 0, 1, 0, ..., 0) = Ñq =: K. (39)

Denote by Skq the set of k-subsimplices σkj containing the node Nq so that the set of

all subsimplices incident upon Np can be organized as Sq =
⋃d−1
k=0 S

k
q . Since every

element σkj of Skq contains Nq, it must be of the form

σki = Conv
[
Nψk

i
(1), ..., Nψk

i
(s−1), Np, Nψk

i
(s+1), ..., Nψk

i
(k+1)

]
(40)

where Np = Nψk
j
(s) for some s = 1, ..., k + 1. Since the set {Nψk

i
(1), ..., Nψk

i
(s−1),

Nψk
i
(s+1), ..., Nψk

i
(k+1)} is any k-subset of A from relation (10), there are

(
card(A)

k

)
=(

d+1
k

)
ways of choosing it. Thus, we have

Card(Sq) =

d−1∑

k=0

Card(Skq ) =

d−1∑

k=0

(
d+ 1

k

)
. (41)

As a consequence to Lemma 3.1, we obtain

T (Λq) = (−1)d+1K

d−1∑

k=0

(−1)k
(
d+ 1

k

)
= K = Ñp (42)

which proves the first equality in relation (37).
Let us now prove the second relation of (37) by fixing any Λ = (λ1, ..., λq−1, 0,
λq+1, ..., λn). Thus, we obtain from relation (33) of Lemma 3.2 and relation (36)
that

T (Λ) = (−1)d+1
∑

i6=q

bi(Λ)(−1)d+1χ̃ke(λψd−1
e (0), ..., λψd−1

e (d−1))

= (−1)d+1(−1)d+1




∑

i6=q

bi(Λ)



 χ̃ke(λψd−1
e (0), ..., λψd−1

e (d−1))

= χ̃ke(λψd−1
e (0), ..., λψd−1

e (d−1)) Q.E.D.
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3.3 Particular cases using CGNS enumeration

In this section, we consider the practical use of the previous formula. Although
this section seems to be direct application of the above theory, it is recommended
that readers consider it because it gives an explanation of the abstractions and help
understanding our method more deeply. As an illustration of formula (36), let us
consider the case of triangles and tetrahedra. It is possible to enumerate topological
entities arbitrarily but let us adopt the CGNS ordering [2] which is used by many
practitioners except that we shift the numbers so that we start from 0 (instead of
1). We will consider only linear blending functions where bi(Λ) = λi. As in the
previous theory, all the 0-simplices are σ0

i = Ni.

3.3.1 Tetrahedral transfinite interpolation

In the case of tetrahedra, the CGNS enumeration of the topological entities which
are illustrated in Fig. 7(b) is as follows. The four triangular faces have the nodes

σ2
0 −→ [N0, N2, N1], σ2

1 −→ [N0, N1, N3],
σ2

2 −→ [N1, N2, N3], σ2
3 −→ [N2, N0, N3].

(43)

Additionally, the six edges are enumerated as follows

σ1
0 −→ [N0, N1], σ1

1 −→ [N1, N2],
σ1

2 −→ [N2, N0], σ1
3 −→ [N0, N3],

σ1
4 −→ [N1, N3], σ1

5 −→ [N2, N3].
(44)

We are initially given four surfaces Si for i = 0, 1, 2, 3 which are defined on the unit
triangle ∆2

ref . They are supposed to fulfil the next six compatibility conditions. For
all (µ0, µ1) such that µ0 + µ1 = 1, we have:

S0(µ0, 0, µ1) = S1(µ0, µ1, 0), S1(µ0, 0, µ1) = S3(0, µ0, µ1),
S0(0, µ1, µ0) = S2(µ0, µ1, 0), S1(0, µ0, µ1) = S2(µ0, 0, µ1),
S0(µ1, µ0, 0) = S3(µ0, µ1, 0), S2(0, µ0, µ1) = S3(µ0, 0, µ1).

(45)

As a consequence to the enumeration in (43), we obtain

ψ2
0(0) = 0 ψ2

0(1) = 2 ψ2
0(2) = 1

ψ2
1(0) = 0 ψ2

1(1) = 1 ψ2
1(2) = 3

ψ2
2(0) = 1 ψ2

2(1) = 2 ψ2
2(2) = 3

ψ2
3(0) = 2 ψ2

3(1) = 0 ψ2
3(2) = 3.

(46)

Similarly, from (3.3.1) we obtain

ψ1
0(0) = 0 ψ1

0(1) = 1, ψ1
1(0) = 1 ψ1

1(1) = 2,
ψ1

2(0) = 2 ψ1
2(1) = 0, ψ1

3(0) = 0 ψ1
3(1) = 3,

ψ1
4(0) = 1 ψ1

4(1) = 3, ψ1
5(0) = 2 ψ1

5(1) = 3.
(47)

As a consequence, we have the following induced mappings

χ̃1
0(µ0, µ1) := χ̃2

0(µ0, 0, µ1) = χ̃2
1(µ0, µ1, 0), (48)

χ̃1
1(µ0, µ1) := χ̃2

0(0, µ1, µ0) = χ̃2
2(µ0, µ1, 0), (49)

χ̃1
2(µ0, µ1) := χ̃2

0(µ1, µ0, 0) = χ̃2
3(µ0, µ1, 0), (50)

χ̃1
3(µ0, µ1) := χ̃2

1(µ0, 0, µ1) = χ̃2
3(0, µ0, µ1), (51)

χ̃1
4(µ0, µ1) := χ̃2

1(0, µ0, µ1) = χ̃2
2(µ0, 0, µ1), (52)

χ̃1
1(µ0, µ1) := χ̃2

2(0, µ0, µ1) = χ̃2
3(µ0, 0, µ1). (53)
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Figure 7: Indexing the entities in the unit triangle and tetrahedron.

Consider a point Λ = (λ1, λ2, λ3, λ4) inside the unit tetrahedron ∆3
ref . The entities

which are incident upon N0 are σ2
0, σ2

1, σ2
3, σ1

0, σ1
3, σ1

2 and σ0
0. Hence, we obtain

Fσ2
0,N0

(Λ) = χ̃2
0(1 − λ2 − λ1, λ2, λ1) = S0(1 − λ2 − λ1, λ2, λ1) (54)

Fσ2
1,N0

(Λ) = χ̃2
1(1 − λ3 − λ1, λ1, λ3) = S1(1 − λ3 − λ1, λ1, λ3) (55)

Fσ2
3,N0

(Λ) = χ̃2
3(λ2, 1 − λ2 − λ3, λ3) = S3(λ2, 1 − λ2 − λ3, λ3) (56)

Fσ1
0,N0

(Λ) = χ̃1
0(1 − λ1, λ1) = χ̃2

0(1 − λ1, 0, λ1) = S0(1 − λ1, 0, λ1) (57)

Fσ1
3,N0

(Λ) = χ̃1
3(1 − λ3, λ3) = χ̃2

1(1 − λ3, 0, λ3) = S1(1 − λ3, 0, λ3) (58)

Fσ1
2,N0

(Λ) = χ̃1
2(λ2, 1 − λ2) = χ̃2

0(1 − λ2, λ2, 0) = S0(1 − λ2, λ2, 0) (59)

Fσ0
0,N0

(Λ) = χ̃2
0(1, 0, 0) (60)

By doing the same computation with the entities incident upon N1, N2 , N3, we
obtain eventually from (36) the following expression where we take d = 3

T (Λ) := λ0 {S0(1 − λ2 − λ1, λ2, λ1) + S1(1 − λ3 − λ1, λ1, λ3)+ (61)

S3(λ2, 1 − λ2 − λ3, λ3) − S0(1 − λ1, 0, λ1) − S2(1 − λ3, 0, λ3) (62)

−S0(1 − λ2, λ2, 0) + S0(1, 0, 0)} (63)

+ λ1 {S0(λ0, λ2, 1 − λ0 − λ2) + S1(λ0, 1 − λ0 − λ3, λ3)+ (64)

S2(1 − λ2 − λ3, λ2, λ3) − S1(λ0, 1 − λ0, 0) − S2(1 − λ2, λ2, 0) (65)

−S1(0, 1 − λ3, λ3) + S1(0, 1, 0)} (66)

+ λ2 {S0(λ0, 1 − λ0 − λ1, λ1) + S2(λ1, 1 − λ1 − λ3, λ3)+ (67)

S3(1 − λ0 − λ3, λ0, λ3) − S2(λ1, 1 − λ1, 0) − S3(1 − λ0, λ0, 0) (68)

−S2(0, 1 − λ3, λ3) + S2(0, 1, 0)} (69)

+ λ3 {S1(λ0, λ1, 1 − λ0 − λ1) + S2(λ1, λ2, 1 − λ1 − λ2)+ (70)

S3(λ2, λ0, 1 − λ2 − λ0) − S1(λ0, 0, 1 − λ0) − S1(0, λ1, 1 − λ1) (71)

−S2(0, λ2, 1 − λ2) + S3(0, 0, 1)} . (72)

Up to some reordering of the indexation, this very lengthy formula for tetrahedra
coincides [15] with that of A. Perronnet in 1998 who did not treat the multidimen-
sional case and who did not present any compact way to formalize his expressions.
For the sake of verification, by using the compatibility condition (45), we deduce
for Λ = (0, λ1, λ2, λ3) that

T (Λ) = (λ1 + λ2 + λ3)S2(1 − λ2 − λ3, λ2, λ3) = S2(λ1, λ2, λ3). (73)

T (1, 0, 0, 0) = S1(1, 0, 0) + S3(0, 1, 0)− S0(1, 0, 0) = S1(1, 0, 0) = N0. (74)
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Similar results can be verified for the other three cases about λ1, λ2, and λ3.

3.3.2 Triangular transfinite interpolation

Consider a triangle having nodes [N0, N1, N2]. The enumeration of the nodes for
the edges by using CGNS enumeration as illustrated in Fig. 7(a) is

σ1
0 −→ [N0, N1] σ1

1 −→ [N0, N3] σ1
2 −→ [N1, N2]. (75)

We are given three functions C0, C1, C2 defined on the unit interval [0, 1] which
fulfil the compatibility conditions

C0(0) = C2(1) = N0, C0(1) = C1(0) = N1, C1(1) = C2(0) = N2. (76)

We can repeat the above computation but we state only the final result below. For
a point Λ = (λ0, λ1, λ2) inside the unit triangle ∆2

ref , relation (36) where d = 2
becomes

T (Λ) := λ0 {C0(λ1) + C2(1 − λ2) − C2(1)}

+ λ1 {C1(λ2) + C0(1 − λ0) − C0(1)}

+ λ2 {C2(λ0) + C1(1 − λ1) − C1(1)} .

We can check that T (1, 0, 0) = C0(0) = N0, T (0, 1, 0) = C1(0) = N1, and T (0, 0, 1) =
C1(1) = N2. On the other hand, for λ1 + λ2 = 1, we have T (0, λ1, λ2) = C1(λ2).
Similarly, T (λ0, 0, λ2) = C2(λ0) and T (λ0, λ1, 0) = C0(λ1).

4 Interpolation for multidimensional hypercube

Now that we have insight about multidimensional simplices, we want to turn our
attention to the case of hypercubes. Thus, we will introduce first our topological
formula by means of appropriately chosen blending functions. Then, we will prove
coincidence of that formula to the usual tensor product one.

4.1 Revisiting the 2D Coons patches

Before treating the multidimensional case, let us observe the following relation be-
tween the usual 2D Coons patch and a summation relative to the subcubes as
illustrated in Fig. 8. By defining

b1(u, v) := f0(u)f0(v), b2(u, v) := f1(u)f0(v),
b3(u, v) := f1(u)f1(v), b4(u, v) := f0(u)f1(v),

(77)

we can show (see next Lemma) that they form a set of barycentric blending functions
as specified in (P1) (P2) and (P3) of relation (19).
We want to investigate the relation between our construction and the usual trans-
finite interpolation in Coons form. Let us define

X(u, v) := b1(u, v)[(−1)2α(u) + (−1)2δ(v) + (−1)1Ã]

+ b2(u, v)[(−1)2α(u) + (−1)2β(v) + (−1)1B̃]

+ b3(u, v)[(−1)2β(v) + (−1)2γ(u) + (−1)1C̃]

+ b4(u, v)[(−1)2γ(u) + (−1)2δ(v) + (−1)1D̃].

(78)

After developing this formula by using (77), we obtain

X(u, v) = α(u)f0(v) + δ(u)f0(u) + β(v)f1(u) + γ(u)f1(v) −

f0(u)f0(v)Ã− f1(u)f0(v)B̃ − f1(u)f0(v)B̃ − f1(u)f1(v)C̃.
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Figure 8: Transfinite interpolation on the 2D hypercube H2
ref .

(a) (b)

Figure 9: (a)Hexahedralization of the unit cube, (b)Image of the left hexahedral-
ization by a transfinite interpolation.

which coincides with the Coons map in relation (6). The first term in relation (78)
corresponds to the node A which is contained by the 1-subcubes κ1

1 = a, κ1
4 = d

and the 0-subcube κ0
1.

4.2 Barycentric Coordinates in Hypercubes

As opposed to the 2D-case, there are many nodes in the multidimensional case.
We need an appropriate way of enumerating those nodes. As a consequence, we
consider the finite sets

Ik :=
{
α = (α1, ..., αk) ∈ N

k : αi ∈ {0, 1}
}
, (79)

Ijk := {α ∈ Ik : αj = 0} for j ∈ J1, kK. (80)

The nodes of the hypercube Hk
ref will be denoted by Akα which have coordinates

Akα = (α1, ..., αk) ∈ R
k to facilitate the presentation of the analysis using tensor

product. Define s0(t) := 1 − t and s1(t) := t. The following lemma determines
the barycentric coordinates of a point u inside the unit hypercube Hk

ref . For the
2D case, the Lemma is illustrated by Fig. 10 where the barycentric coordinates are
identified by the areas of the four shaded regions.
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Lemma 4.1 The quantities Λ(u) = (λα(u))α∈Ik
where

λα(u) :=

k∏

p=1

sαp
(up) (81)

form a set of barycentric coordinates relative to Ik for u = (u1, ..., uk) ∈ Hk
ref .

Additionally, the following functions generate a set of barycentric blending functions
with respect to Λ = (λα)α∈Ik

:

bα(Λ) :=

k∏

i=1

fαi
(ui). (82)

PROOF.

The unit sum
∑

α∈Ik
λα(u) = 1 is directly shown by induction in which we use

∑

α∈Ik

λα(u) =
∑

α∈Ik

k∏

p=1

sαp
(up) =

1∑

αk=0

sαk
(uk)

∑

α∈Ik−1

k−1∏

p=1

sαp
(up) = 1. (83)

We need now to show that
∑

α∈Ik
λα(u)Akα = u. Thus, by induction with respect

to k, we will show the following identity

W :=
∑

α∈Ik

k∏

p=1

sαp
(up)(α1, ..., αk) = (u1, ..., uk). (84)

It is true for k = 1 because
∑1
α1=0 sα1(u1)α1 = s1(u1) = u1. As hypothesis of

induction, we suppose that (84) is correct for k − 1 and let us show it for k.

W =

1∑

αk=0

sαk
(uk)

∑

(α1,...,αk−1)∈Ik

(

k−1∏

p=1

sαp
(up))(α1, ..., αk)

=

1∑

αk=0

sαk
(uk)



u1, ..., uk−1, αn
∑

(α1,...,αk−1)∈Ik−1

k−1∏

p=1

sαp
(up)





=

1∑

αk=0

sαk
(uk)



u1, ..., uk−1, αn
∑

(α1,...,αk−1)∈Ik−1

λ(α1,...,αk−1)





=

1∑

αk=0

sαk
(uk)(u1, ..., uk−1, αk)

=

(
u1

1∑

αk=0

sαk
(uk), ..., uk−1

1∑

αk=0

sαk
(uk),

1∑

αk=0

sαk
(uk)αk

)
.

Since
∑1
αk=0 sαk

(uk) = uk+(1−uk) = 1, it disappears in the first k−1 coordinates of

W above. For the last coordinate, we use the relation
∑1

αk=0 sαk
(uk)αk = s1(uk) =

uk which gives the identity in (84).
As for the existence and uniqueness from (8), we obtain

s0(u1)
∑

(α2,...,αd)∈Id−1

d∏

p=2

sαp
(up) =

∑

α∈I1
d

d∏

p=1

sαp
(up) =

∑

α∈I1
d

λα(u) (85)
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Since
∑

(α2,...,αd)∈Id−1

∏d

p=2 sαp
(up) = 1, we obtain

s0(u1) =
∑

α∈I1
d

λα(u). (86)

By doing the same thing for uk we have s0(uk) :=
∑

α∈Ik
d
λα and the value of uk

is obtained by

uk = 1 − s0(uk) = 1 −
∑

α∈Ik
d

λα. (87)

To prove (82), we need to verify the properties (P1), (P2), (P3) of relation (19). In
fact, (P1) and (P2) can be easily obtained by using the definition of si. Property
(P3) can be proved by induction where we use

∑

α∈Ik

bα(Λ(u1, ..., uk)) = (f0(uk) + f1(uk))
∑

α∈Ik−1

bα(Λ(u1, ..., ud−1)), (88)

and the fact that f0 and f1 sum to unity.
Q.E.D.

4.3 Topological interpolation for Hd
ref

In this section, we will refer to a point u ∈ Hd
ref by using only its barycentric

coordinates. We will propose a transfinite interpolation formula on Hd
ref which

makes use exclusively of the barycentric coordinates Λ. As a counterpart of χki , ψ
k
i

and ψ̃ki for the case of simplices from formulae (26), (25) and (28), we would like
to introduce now the functions ψkα, χkα and ψ̃kα for the case of hypercube. Consider
a subcube κkα of Hd

ref where α ∈ J k, denote by ξkα and φkα the quantities that we
introduced in (15) so that

κkα = R(ξkα, φ
k
α) ∩Hd

ref . (89)

Since each element u ∈ κkα is in Hk
ref , we can express it as u =

∑
δ∈Id

λδA
d
δ. We

want to determine the set Pkα of indices δ such that λδ = 0 for all u ∈ κkα. Define

Pkα := {δ = (δ1, ..., δd) ∈ Id : ∃ i ∈ ξkα with δi 6= φkα(i)}. (90)

To show that λδ = 0 for all δ ∈ Pkα, you note only that sδi
(ui) is equal either to

s0(1) or s1(0) which are in both cases zero. Because λδ is the product of all sδj
(uj)

as specified in (81), we have λδ = 0 for δ ∈ Pkα. Thus, only the nodes Adγ is relevant

for γ 6∈ Pkα. Now, we generate an enumerating function ψkα : Ik → Id \ Pkα as
follows. Consider an arbitrary but fixed bijection

skα : J1, dK \ ξkα → J1, kK (91)

which is always possible because we have two finite sets having the same cardinality
as specified in (16). For δ = (δ1, ..., δk) ∈ Ik, define γ = ψkα(δ) ∈ Id \ Pkα to be
γ = (γ1, ..., γd) such that

γi := φkα(i) for i ∈ ξkα (92)

γi := δsk
α(i) for i ∈ J1, dK \ ξkα. (93)

Thus, we obtain κkα = Conv[Ad
ψk

α(δ) : δ ∈ Ik]. For every k, we have

Hk
ref = Conv{Akα : α ∈ Ik}. (94)
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Figure 10: (a)The four shaded areas determine the barycentric coordinates λi,j =
si(u1)sj(u2) of u = (u1, u2) with respect to [A,B,C,D], (b)The point ω̄ is the
projection of w on the subcube κkα. The new barycentric coordinates are µ0 :=
λ1,1 + λ0,1 and µ1 := λ1,0 + λ0,0.

We can then introduce the function χkα : Hk
ref → κkα transforming u =

∑
δ∈Ik

λδA
k
δ ∈

Hk
ref into

χkα(u) =
∑

δ∈Ik

λδA
d
ψk

α(δ) ∈ κkα ⊂ Hd
ref . (95)

That means, χkα transforms the vertex Akδ of Hk
ref into Ad

ψk
α(δ) ∈ κkα ⊂ Hd

ref . It is

easy to see that χkα is invertible and (χkα)−1 transforms Ad
ψk

α(δ) to Akδ.

As we did for the simplex case, we are given functions defined on Hd−1
ref of number

2d:
Wd−1

α : Hd−1
ref → R

d where κ̃
d−1
α := Wd−1

α (Hd−1
ref ). (96)

Let us denote by B the union of the images κ̃
d−1
α and our objective is to find a

function on Hd
ref such that it transforms ∂Hd

ref into B. From the input functions
Wd−1

α , let us now construct a function Z which is defined on the boundary ∂Hd
ref .

First, note that the boundary is the union of the cubical faces:

∂Hd
ref =

⋃

α∈J d−1

κd−1
α . (97)

Consider a w ∈ ∂Hd
ref and let us introduce its image Z(w) as follows. Due to

relation (97), there exists α ∈ J d−1 such that w ∈ κd−1
α . As a consequence, we

have the representation w =
∑

δ∈Id−1 λδAψd−1
α (δ) as specified in (95). From that,

we can introduce u ∈ Hd−1
ref as u :=

∑
δ∈Id−1 λδA

d−1
δ and we define

Z(w) := Wd−1
α (u). (98)

By using the function Z, we want to deduce some mapping χ̃hβ for all subcubes of

lower dimension. For that, we need the canonical injection N such that ∀u ∈ κhβ
we have N (u) := u ∈ ∂Hd

ref . The induced function is defined as

χ̃hβ := Z ◦ N ◦ χhβ (99)

which is illustrated in Fig. 11.
As we have done in (31), for κ := κkα which contains the node Adβ we use the

mapping χ̃kα : Hk
ref → κ̃

k
α. We want to introduce now the function πkα which

transforms a point w ∈ Hd
ref with barycentric coordinates Λ = (λδ)δ∈Id

to a point
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Figure 11: Inducing the mapping χ̃hβ from χ̃kα

u ∈ Hk
ref with barycentric coordinates µ = (µγ)γ∈Ik

as illustrated in Fig. 10(b).
For a point w ∈ Hd

ref where we have w =
∑

δ∈Id
λδA

d
δ, we want now to define a

projection w̄ ∈ κkα. In order to obtain w̄ =
∑

δ∈Id
λ̄δA

d
δ, we define its barycentric

coordinates λ̄δ as follows. For δ ∈ Id, we define

Yδ = Yδ,k,α := {γ = (γ1, ..., γd) ∈ Id : γj = δj for each j 6∈ ξkα} (100)

the index of non-fixed component in κkα and

λ̄δ := Kδ

∑

γ∈Yδ

λγ where Kδ :=
∏

p∈ξk
α

sδp
(φkα(p)). (101)

Note that Kδ ∈ {0, 1} where it is zero if δ ∈ Pkα. That means

w̄ =
∑

δ∈Id\Pk
α

λ̄δA
d
δ. (102)

From this, we obtain a point u ∈ Hk
ref as illustrated in Fig. 10(b). We have

u = πkα(w) :=
∑

γ∈Ik

µγA
k
γ . (103)

where µγ := λ̄(ψk
α)−1(γ). We define therefore

Fκ,Aβ
(Λ) := χ̃kα ◦ πkα(Λ) = χ̃kα(µ) where µ = (µγ)γ∈Ik

. (104)

The topological expression of transfinite interpolation with respect to Hd
ref is defined

as
T (Λ) := (−1)d+1

∑

α∈Id

bα(Λ)
∑

κ∈Sα

(−1)dim(κ)Fκ,Aα
(Λ) (105)

where Sα is the set of all subcubes κ containing the corner Aα.

4.4 Developing Tensor Product Interpolation

Let us recall the usual notion of multidimensional tensor product transfinite inter-
polation. Consider two functions f0, f1 : [0, 1] → R such that f0(t) + f1(t) = 1 and
fi(j) = δi,j . Let C([0, 1]d,Rd) be the space of continuous functions from [0, 1]d to
R
d. An operator Pq is defined from C([0, 1]d,Rd) to itself as follows:

Pq(x)(u1, ..., ud) := f1(up)x(u1, ..., up−1, 1, up+1, ..., ud) +

f0(up)x(u1, ..., up−1, 0, up+1, ..., ud).
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For two such operators Pp and Pq, introduce the Boolean sum

(Pp ⊕ Pq)(x) := Pp(x) + Pq(x) − Pp(Pq(x)). (106)

The transfinite interpolation of hypercube is

n⊕

i=1

Pi(x). (107)

The Boolean sum character of a Coons patch has been discovered by W. Gordon.
In fact, we can prove the following theorem similarly as we did for Theorem 3.3.
But here we would like to use an alternative way because we want to display that
our formula coincides with the usual tensor product case.
Denote by Dn the set of nonempty subsets of {1, ..., n}. For any ξ ∈ Dn and α ∈ In,
we define

Q(ξ,α)(x)(u1, ..., ud) := x(v1, ..., vd), (108)

here vi := αi=constant if i ∈ ξ and vi := ui otherwise.

Lemma 4.2 Consider the d-dimensional hypercube Hd
ref and a function x ∈ C(Hd

ref ,R
m).

Then, for any n ≤ d, we have the following equality:

[
n⊕

i=1

Pi(x)

]
(u) =

∑

α∈In



(

n∏

i=1

fαi
(ui))

∑

ξ∈Dn

(−1)card(ξ)Q(ξ,α)(x)(u)



 , (109)

where u = (u1, ..., ud).

PROOF.

Denote by An(x) :=
⊕n

i=1 Pi(x). Thus, we will show by induction on n that

An(x) =
∑

α∈In



(

n∏

i=1

fαi
(ui))

∑

ξ∈Dn

(−1)card(ξ)Q(ξ,α)(x)(u)



 . (110)

For the case n = 1, we deduce from definition that

A1(x)(u) = P1(x)(u) = f1(u1)x(1, u2, ..., ud) + f0(u1)x(0, u2, ..., ud)

=
∑1

α1=0 fα1(u1)x(α1, u2, ..., ud)

=
∑1

α1=0 fα1(u1)Q(ξ:={1},α:={α1})x(u1, u2, ..., ud).

(111)

As hypothesis of induction, we suppose (110) for n − 1. Denote by Dk
n the set of

elements ξ of Dn such that card(ξ) = k. We can decompose Dk
n into three partitions:

Dk
n = Dk

n−1 ∪ {n} ∪Mk
n (112)

where Mk
n := {ξ̄ := ξ ∪ {n} with ξ ∈ Dk−1

n−1} for k = 2, ..., n and M1
n := ∅. By

the Boolean sum property (106), we have

An(x) = An−1(x) + Pn(x) −An−1(P(x)). (113)

Since f1(ud) + f0(ud) = 1, we have An−1(x) = f1(ud)An−1 + f0(ud)An−1 =
∑1

αd=0

fαd
An−1. Hence, for the first term of (113), we have

An−1 =

1∑

αd=0

fαd

∑

(α1,...,αd−1)∈In−1

(

n−1∏

i=1

fαi
(ui))

n−1∑

k=1

∑

ξ∈Dk
n−1

(−1)kQ(ξ,(α1,...,αd−1))(x)(u)

=
∑

α:=(α1,...,αd)∈In

(
n∏

i=1

fαi
(ui))

n−1∑

k=1

∑

ξ∈Dk
n−1

(−1)kQ(ξ,α)(x)(u)
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On the other hand, for the second term of (113) , as we have done in relation (111),
we obtain

Pd(x) = f1(ud)x(u1, ..., ud−1, 1) + f0(ud)x(u1, ..., ud−1, 0) (114)

=
∑

α∈Id

d∏

i=1

fαi
(ui)Q(ξ:={d},α)(x)(u1, ..., ud−1, ud) (115)

Finally, by using (114), we obtain for any α ∈ Id−1 that (α does not contain d):

Qξ,α(Pd(x)) = f1(ud)Q(ξ,α)(Pd(x))(u1, ..., ud−1, 1) + f0(ud)Q(ξ,α)(Pd(x))(u1, ..., ud−1, 0)

= f1(ud)Q(ξ,α)(x)(u1, ..., ud−1, 1) + f0(ud)Q(ξ,α)(x)(u1, ..., ud−1, 0)

=

1∑

αd=0

fαd
(ud)Q(ξ,α)(x)(u1, ..., ud−1, αd)

=

1∑

αd=0

fαd
(ud)Q(ξ̄:=ξ∪{d},α)(x)(u1, ..., ud−1, ud)

As a consequence,

Ad−1(Pd(x)) =
∑

(α1,...,αd−1)∈Id−1

(
d−1∏

i=1

fαi
(ui))

d−1∑

k=1

∑

ξ∈Dk
d−1

(−1)kQ(ξ,(α1,...,αd−1))(P (x))(u)

=
∑

(α1,...,αd)∈Id

(

d∏

i=1

fαi
(ui))

d−1∑

k=1

∑

ξ∈Dk
d−1

(−1)kQ(ξ̄,(α1,...,αd−1))(x)(u)

=
∑

(α1,...,αd)∈Id

(

d∏

i=1

fαi
(ui))

d∑

k=2

∑

ξ∈Dk
d−1

(−1)k+1Q(ξ̄,(α1,...,αd−1))(x)(u)

= −
∑

(α1,...,αd)∈Id

(
d∏

i=1

fαi
(ui))

d∑

k=2

∑

ξ̄∈Mk
d

(−1)kQ(ξ̄,(α1,...,αd−1))
(x)(u)

Q.E.D.

4.5 Coincidence of the two representations

In this section, we would like to express the relation of the formula in (105) and the
tensor product formula

⊕n

i=1 Pi(x) in the multidimensional case. Before displaying
the results, let us consider the following property of the previously induced function
χ̃hβ.

Proposition 4.3 For i 6∈ ξkα we have

Iid =
⋃

δ∈Ii
d
\Pk

α

Yδ (116)

so that for Λ = (λδ)δ∈Id
defining a point w = (w1, ..., wd) ∈ Hd

ref , the barycentric
coordinates Λ̄ = (λ̄δ)δ∈Id

given by (101) specifies a point w̄ = (w1, ..., wd) such that

w̄i = wi for i 6∈ ξkα. (117)
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PROOF.

Consider a γ ∈ Yδ for some δ ∈ Iid \ P
k
α. That is, γj = δj for each j 6∈ ξkα. Since

i 6∈ ξkα, we have γi = δi = 0. That means, γ ∈ Iid. That implies ∪δ∈Ii
d
\Pk

α
Yδ ⊂ Iid.

On the other hand, consider γ ∈ Iid = (Iid \P
k
α)∪Pkα). In the case that γ ∈ Iid \P

k
α,

we simply define δ := γ and obtain that γ ∈ Yδ. In the latter case where γ ∈ Pkα,
we define δ ∈ Iid such that

δj := γj for j 6∈ ξkα

δj := φkα(j) for j ∈ ξkα

By construction, δ 6∈ Pkα so that δ ∈ Iid \ P
k
α implying γ ∈ Yδ . In both cases, we

obtain Iid ⊂ ∪δ∈Ii
d
\Pk

α
Yδ. The union (116) follows from the above two inclusions.

In order to show (117), we use (87) and we note that λ̄δ = 0 for δ ∈ Pkα, so that we
obtain

w̄i = 1 −
∑

δ∈Ii
d

λ̄δ = 1 −
∑

δ∈Ii
d

δ 6∈Pk
α

λ̄δ = 1 −
∑

δ∈Ii
d

δ 6∈Pk
α

∑

γ∈Yδ

λγ (118)

By using (116), we deduce w̄i = wi for i 6∈ ξkα.
Q.E.D.

Proposition 4.4 Consider any κdβ which is any subcube of Hk
ref . There exists a

certain subset ξ ⊂ J1, dK with Card(ξ) = d− h such that for u = (u1, ..., uh) ∈ Hh
ref ,

its image by χ̃hβ is Z(w̄) for some w̄ = (w̄1, ..., w̄d) ∈ Hd
ref where

{
w̄i ∈ {0, 1} for i ∈ ξ,
w̄i ∈ {u1, ..., uh} for i ∈ J1, dK \ ξ.

(119)

PROOF.

As seen in (81), any u ∈ Hh
ref can be expressed in terms of Ahδ as u =

∑
δ∈Ih

λ̄δA
h
δ .

As a consequence, from the definition of χhβ in (95), we obtain

w̄ := χhβ(u) =
∑

δ∈Ih

λ̄δA
d
ψh

β
(δ) ∈ κhβ ⊂ Hd

ref (120)

which is unchanged by the canonical injection such as w̄ = N (w̄). Define now the
barycentric coordinates (µγ)γ∈Id as follows:

{
µγ := λ̄(ψh

β
)−1(γ) if γ ∈ Id \ P

h
β,

µγ := 0 if γ ∈ Phβ .
(121)

As a consequence, by the invertibility of ψhβ : Ih → Id \ Phβ , we obtain

w̄ =
∑

δ∈Ih

λ̄δA
d
ψh

β
(δ) =

∑

γ∈Id\Ph
β

λ̄(ψh
β
)−1(γ)A

d
γ =

∑

γ∈Id

µγA
d
γ . (122)

The fact that w̄ belongs to κhβ implies that for each i ∈ ξhβ we have w̄i = φhβ(i) ∈
{0, 1} as stated in (90). That proves the first relation in (121). Consider now an
index i ∈ J1, dK \ ξhβ. As proved in (87), we have

w̄i = 1 −
∑

γ∈Ii
d

µγ . (123)
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Due to the property of s := shβ in (91), we have δ ∈ I
s(i)
h if γ = ψhβ(δ) belongs to

Iid. As a result, we obtain

w̄i = 1 −
∑

δ∈I
s(i)
h

µψh
β
(δ) = 1 −

∑

δ∈I
s(i)
h

λ̄δ = us(i) ∀ i ∈ J1, dK \ ξhδ (124)

which demonstrates the second relation of (121). The set to be sought is therefore
ξ := ξhβ which has cardinality d− h as specified in (16).

Q.E.D.

Theorem 4.5 By using the barycentric coordinates in (81) and the barycentric
blending functions in (82) for the d-dimensional hypercube Hd

ref , the function

T (Λ) := (−1)d+1
∑

α∈Id

bα(Λ)
∑

κ∈Sα

(−1)dim(κ)Fκ,Aα
(Λ) (125)

is a transfinite interpolation. That is, T (Λ) verifies for each q = 0, ..., d:

T (Λα) = Aα (126)

T (λ0, ..., λq−1, 0, λq+1, ..., λd) = χd−1
q (λ

ψ
d−1
q (1), ..., λψd−1

q (d)). (127)

PROOF.

To prove this theorem, we need to show the equality of T (Λ) and the tensor product
relation (109). Consider any ξ ∈ Dd and δ ∈ Id and we let k := d−Card(ξ). Define
a function φ : ξ → {0, 1} by φ(i) = δi. Thus, as shown in (16), we can consider the
subcube κ of Hd

ref with respect to α := (ξ, φ). That is,

ξkα = ξ and φkα = φ. (128)

As a consequence, κ is a subcube of dimension k. Since dim(κ) = d − card(ξ),
we have (−1)card(ξ) = (−1)d(−1)dim(κ). Thus, there is a correspondence between
(ξ, δ) ∈ Dd×Id and a subcube κ of dimension k. Since k = dim(κ) = d−Card(ξ),
we have

(−1)Card(ξ) = (−1)d(−1)dim(κ). (129)

By combining Proposition 4.3 and Proposition 4.4, we have that for any w ∈ Hd
ref

having barycentric coordinates Λ, the point u = Πk
α(w) defined in (103) maps by

χkα to w̄ such that wi = w̄i for i 6∈ ξkα. Additionally, we have

x(w̄1, ..., w̄d) = Q(ξk
α,δ)x(w1, ..., wd). (130)

Since χ̃kα is the composition of χkα and Z, we have

Fκ,Aβ
(Λ) = Q(ξk

α,δ)x(w1, ..., wd) (131)

From Lemma 4.2, we obtain

[Ad(x)](u) =
∑

δ∈Id



(

d∏

i=1

fδi
(ui))

∑

ξ∈Dd

(−1)card(ξ)Q(ξ,δ)(x)(u)



 , (132)

By using bδ(Λ) =
∏d

i=1 fδi
(ui), relation (128) and (129), we obtain

[Ad(x)](u) = (−1)d
∑

δ∈Id

bδ(Λ)
∑

κ∈Sδ

(−1)dim(κ)Fκ,Aβ
(Λ) (133)

from which we deduce (125).
Q.E.D.
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5 Discussion

In the opinion of the author, the method here can be applied to any polytope of
arbitrary dimension as long as it is convex. In that case, the barycentric coordinates
can be introduced with respect to the corners of the polytope and one can introduce
also blending functions. For the case of pentahedron, a formula of Perronnet [15]
confirms that conjecture. Since treating that is beyond the scope of this paper, we
will consider that problem in a future discussion.
We believe that the previous theory can be very helpful for the progress of geometric
method for the preparation of data which are needed for multiscale approaches.
Methods based upon refineable structures [13] are usually very efficient in practice
[12] because they give rise to subdivision algorithms which can be used for the
construction of multiscale bases [5]. Such a multilevel setting produces in general
good accuracy with low computational cost [5]. The rate between cost and accuracy
has been demonstrated to be optimal [5] as specified by N -term approximation.
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