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IMPLICITIZATION OF HIGH DEGREE TENSOR

PRODUCT CAGD ENTITIES

MAHARAVO RANDRIANARIVONY

Abstract. We focus on the implicitization of parametric CAGD entities which are

supposed to be of tensor product type. The presented approach is featured by its

ability to treat polynomial or rational splines having a great number of control points.

For B-splines, we describe a method of exactly obtaining the Fourier coefficients

without using quadrature rules. As for NURBS, a preprocessing step is necessary

to convert them into an easy structure. The implicitization is obtained from the

convolutions of the parametric CAGD entities. To speed the computations, one can

use FFT based algorithms.

1. Introduction

Parametric representations [9, 12] are efficient when one wants to trace the correspond-

ing curves or surfaces. They are also very useful for generating meshes in which nodes

need to be inserted or shifted. In some other geometric tasks, working with implicit

representations [2] is better than working with the parametric ones. For instance, de-

ciding whether a point lies on one side or the other side of a surface is easier for implicit

setting. It is therefore advantageous to have both representations simultaneously. That

advantage is often observed in geometric operations such as the determination of the

curve which is the intersection of two surfaces. Such advantages might also be useful

in some numerical methods [10] where one has only a cloud of unorganized points in-

side a 3D solid. Unfortunately, most of the entities which are found in CAD standards

[19, 20, 21] are only provided in parametric setting. Hence, we are interested here in

some way to represent those parametric entities in implicit forms.

Let us first consider some related works. We do not attempt here to summarize all the

existing methods in implicitization which is a century old problem because there are

a large number of them. Both symbolic [5] and numerical methods [8] are vastly avail-

able. It depends on the subsequent applications and the type of the curves or surfaces

to choose the method which best fits. Let us only consider some works which made

us design our approach. Traditional implicitization approaches have their roots from

elimination theory. Usual implicitization methods [1, 5] based on Bézout or Sylvester

Key words and phrases. implicitization, Fourier transform, tensor product, CAGD.
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resultants are analytically elegant but they are flawed by the having to exactly compute

the determinant of a large matrix everytime one wants to evaluate the resulting im-

plicit function. That flaw does not make those methods attractive because the entries

of the matrix depend on the variables of the resulting implicit functions. Additionally,

for practical CAGD models, one usually has piecewise polynomials or piecewise ratio-

nal functions. Applying the traditional methods to each polynomial or rational piece

does not give a good implicitization of the whole curve. J. Winkler has introduced

an improvement [22] in implicitization techniques because he extended the classical

Bézout forms which require monomial bases to Bernstein bases. Thus, a prior change

of bases is not necessary. That improvement was fundamental for that Bernstein bases

are more frequent in CAGD and that their formulations are usually more stable than

the monomial ones. In [18], implicitization of polynomial and rational curves are done

using the moving curves. The work in [23] also uses implicitization method which in-

vokes matrix annihilator but it does not consider CAGD curves. In practice, its method

requires least square approximation from point samples to find the Fourier coefficients.

Additionally, it did not consider the case of surfaces. For low degree curves and sur-

faces, there are many efficient techniques which specify the implicitization exactly. In

contrast, not much is known about the treatment of the implicitization of high degree

CAGD curves and surfaces.

In this paper, we address the problem of finding the implicit form of a tensor product

geometric shape. We follow the path of J. Winkler by dealing directly with CAGD

entities which are in our case Bézier, B-splines and NURBS. The proposed method

works even for polynomial and rational splines with many control points. Since raw

data which come from CAD standard or molecular surface as in Fig.1 are not directly

in tensor product structure, our former method [16, 17] can be used as preprocessing

step before applying the method described here.

This paper is organized as follows. It starts by specifying the problem setting in Section

2. Additionally, we introduce there some notions related to tensor product splines. Since

the method of implicitization is based on Fourier analysis, we describe in Section 3.1 the

way of obtaining the Fourier coefficients of tensor product B-splines. For B-splines and

Bézier entities [15], the Fourier coefficients can be calculated analytically without using

quadrature rules. The case of NURBS [13] or similar functions are found in Section 3.2.

Unfortunately, as opposed to B-splines, we are not able to exactly obtain the Fourier

coefficients of NURBS because of its rationality. We will present a method to efficiently

overcome that difficulty. The implicitization method using available Fourier coefficients

is described in Section 4. Toward the end of this document, we present some practical

results.
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(a) (b)

Figure 1. (a)Unsegmented CAD model (b)Unsegmented molecular sur-

face in Connolly form.

2. Problem setting and preliminaries

Suppose that we have M parametric functions Xi which map t = (t1, ..., tN) ∈ D ⊂ Rn

to

(2.1) X(t1, ..., tN) =





X1(t1, ..., tN)

X2(t1, ..., tN)

· · ·

XM(t1, ..., tN)




∈ R

M .

In the case of planar curves, the number of parameters ti is N = 1 and number of

image components is M = 2. As for surfaces embedded in the 3D space, we have two

parametric variables and three image components i.e. N = 2 and M = 3.

The purpose of this document is to search for an implicit representation F (X1, ..., XM)

for the above parametric setting. That is, for all t ∈ D, the function F verifies

(2.2) F
(
X1(t), X2(t), · · · , XM(t)

)
= 0.

In this document, we deal with parametric functions Xi that are usually utilized in

CAGD. Consider a sequence of non-uniform knot values (τi) ⊂ R which are not neces-

sarily pairwise distinct. We recall [7] the divided difference to be [τi]f := f(τi) and

(2.3) [τi, τi+1, ..., τp]f :=

{ (
[τi+1, ..., τp]f − [τi, ..., τp−1]f

)
/(τp − τi) if τi 6= τp,

f (p−i)(τi)/(p− i)! if τi = τp.
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Figure 2. B-spline bases functions on uniform knots: (a)Piecewise lin-

ear N1
i (b)Piecewise quadratic N2

i .

The divided difference is related to the higher derivatives by

(2.4) [τi, ..., τi+ℓ]f =
f (ℓ)(σ)

ℓ!
for some σ ∈ [τi, τi+ℓ].

In order to introduce the B-spline basis, let us consider any constant integer k ≥ 2

which specifies the smoothness of the spline and a knot sequence τ0, ..., τn+k such that

τi+k 6= τi. The usual definition of B-spline basis functions [12, 15] with respect to the

knot sequence (τi)i is

N1
i (t) :=

{
1 if t ∈ [τi, τi+1),

0 otherwise,
(2.5)

Nk
i (t) :=

(
t− ti

ti+k−1 − ti

)
Nk−1

i (t) +

(
ti+k − t

ti+k − ti+1

)
Nk−1

i+1 (t).(2.6)

One can immediately observe that Supp(Nk
i ) = [τi, τi+k]. By induction, one can prove

that the above definition is equivalent to the divided difference using the truncated

power functions (· − t)k
+ given by

(2.7) (x− t)k
+ :=

{
(x− t)k if x ≥ t,

0 if x < t,

which are illustrated in Fig. 3. More precisely, we have the identity

(2.8) Nk
i (t) = (τi+k − τi)[τi, ..., τi+k](· − t)k

+.

This last relation which is used as definitions in old literature is in fact more appropriate

for Fourier analysis than the recurrence relation in (2.6). For the special case of cardinal

splines where the knots are uniformly spaced which are supposed to be τi = i ∈ Z, we
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have the property

(2.9) Nk
i+1(t) = Nk

i (t− 1), hence the designation Nm := Nm
0 .

Additionally, we have the convolution property

(2.10) Nm = Nm−1 ∗N1.

To ensure that the B-spline functions are closed, we assume that the knot sequence

τ0, ..., τn+k is periodically provided as follows:

τn+1 = τn + (τ1 − τ0),(2.11)

τn+2 = τn+1 + (τ2 − τ1),(2.12)

... ... ... ...(2.13)

τn+k = τn+k−1 + (τk − τk−1).(2.14)

For open B-splines, we suppose there is some practical method of making them closed.

A B-spline curve with respect to the above bases is

(2.15) f(t) =
n∑

i=0

diN
k
i (t) where di ∈ R

M .

The above bases can be extended to tensor product cases. That is, for i = (i1, ..., iN)

and k = (k1, ..., kN), we denote Nk

i
:= Nk1

i1
⊗ · · · ⊗NkN

iN
where

(2.16) (Nk1

i1
⊗ · · · ⊗NkN

iN
)(t1, · · · , tN) = Nk1

i1
(t1) · · ·N

kN

iN
(tN ).

To facilitate the presentation, we suppose that the numbers of control points with

respect to all N variables are the same (n+ 1):

(2.17) f(t1, ..., tN) =
n∑

i1=0

· · ·
n∑

iN=0

diN
k

i
(t1, ..., tN ).

That simplification assumption holds for the knot sequences too. In fact, more general

cases can be treated similarly but the notations would become very complicated. The

way of realizing the implicitization invokes some notion from complex Fourier analysis.

Therefore, we will reserve the letter j for the complex number j2 = −1 ∈ C throughout

this paper.

3. Fourier series of CAGD entities

3.1. Fourier coefficients of B-splines and Bézier. In this section, we will compute

the Fourier coefficients of B-spline functions having nonuniform knots. It is possible to

compute them without using quadrature rules even for the multidimensional case. To

that end, we will first treat the case of 1D function. Then, we will deduce the tensor

product setting. Suppose that the domain of definition given by the knot sequence
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Figure 3. Truncated power functions (· − t)n
+.

(τi) is [−π,+π]. Consider now a function f as given in (2.15). Below, we are going to

compute the following Fourier coefficients:

(3.18) f̂(ζ) :=
1

2π

∫ π

−π

f(t) exp(−jζt)dt.

Because of continuity argument and local support of Nk
i , one has the membership of

f in L2 which ensures that it can be reproduced from the inverse relation using the

Fourier series:

(3.19)

ζ=+∞∑

ζ=−∞

f̂(ζ)ejζx.

An expression with which we deal in section 4 is the following truncated Fourier series

(3.20)
∑

|ζ|≤n

f̂(ζ)ejζx.

For the case of the cardinal splines from (2.10), the computation of the Fourier co-

efficients can be directly deduced from their property. In fact, from the convolution

property, we deduce

(3.21) N̂m(ζ) =
(
N̂1(ζ)

)m
=

1

(2πjζ)m

(
1 − e−iζ

)m
.

Let us now consider B-splines with nonuniform knots. For any fixed ζ , consider the

function ϕζ(t) := exp(−jζt)/(−jζ)k. Its Taylor expansion with integral remainder

yields

ϕζ(x) =

k∑

i=0

ϕ(i)(−π)

i!
(x+ π)i +

1

k!

∫ x

−π

(x− t)k−1ϕ
(k)
ζ (t)dt(3.22)

=

k∑

i=0

ϕ(i)(−π)

i!
(x+ π)i +

1

k!

∫ π

−π

(x− t)k−1
+ ϕ

(k)
ζ (t)dt.(3.23)



IMPLICIT TENSOR PRODUCT SPLINES 9

By taking the divided difference on both sides and by considering (2.4), we obtain

(3.24) [τi, ..., τi+k]ϕζ(x) =
k∑

i=0

ϕ(i)(−π)

i!
[τi, ..., τi+k](x+ π)i +

1

k!

∫ π

−π

Nk
i (t)ϕ

(k)
ζ (t)dt.

In the above equation, in order to see that the order of the integral sign and the divided

difference can be swapped, one uses a simple induction with the definition in (2.3). As

a result, we obtain

(3.25) [τi, ..., τi+k]ϕζ(x) =
1

k!

∫ π

−π

Nk
i (t) exp(−jζt)dt.

Or equivalently,

(3.26) N̂k
i (ζ) =

k!

2π(−jζ)k
[τi, ..., τi+k] exp(−jζt).

As a consequence, the Fourier coefficients of a spline as given in (2.15) are

(3.27) f̂(ζ) =
k!

2π(−jζ)k

n∑

i=0

di[τi, ..., τi+k] exp(−jζt).

For the multi-dimensional tensor product case as in relation (2.17), any ζ = (ζ1, ..., ζN)

corresponds to the Fourier coefficient

(3.28) f̂(ζ) =
1

(2π)N

∫

[−π,π]N
f(t1, .., tN)e−j〈ζ,t〉dt1...dtN ,

in which t = (t1, ..., tN). Thus, by applying a similar argument as above, we obtain the

Fourier coefficients for a tensor product B-spline as

(3.29) f̂(ζ) =
(k!)N

(2π)N
∏N

p=1(−jζp)
k

∑

i=(i1,...,iN)

di

N∏

p=0

[τip , ..., τip+k] exp(−jζpt).

Remark 1. The above argument can of course be applied to a Bézier curve

(3.30)

n∑

i=0

biB
n
i (t)

which is a particular case of B-splines. But independently of that, by using arguments

related to hypergeometric functions, it was [4] proved by Chui et al. that the Fourier

coefficients of a Bézier curve are

(3.31) exp(−2πjζ)

n∑

k=0

(−1)k n!

(n− k)!

1

(2πjζ)k+1
(∇kbn − ∆kb0)

where ∇bi := bi − bi−1 and ∆bi := bi+1 − bi and ∇k := ∇k−1∇, ∆k := ∆k−1∆.
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3.2. NURBS and similar parametric functions. In this section, we consider func-

tions such as NURBS. It is very difficult to exactly compute the Fourier coefficients of

such functions because they are highly non-linear and rational:

(3.32) f(t1, ..., tN) =

∑n
i1=0 · · ·

∑n
iN=0 ωidiN

k

i
(t1, ..., tN )

∑n
i1=0 · · ·

∑n
iN=0 ωiNk

i
(t1, ..., tN)

.

In order to circumvent that difficulty, we propose below an approach of treating them ef-

ficiently. The following method is well adapted to NURBS and functions whose higher

derivatives can be exactly calculated without any recourse to numerical approxima-

tions. Suppose we have such a function f and µ uniform samples (ai)
µ−1
i=0 . In addition,

we have the function values and the higher derivative values corresponding to the

samples:

(3.33) v
(0)
i := f(ai), v

(1)
i := f ′(ai), v

(2)
i := f (2)(ai), · · · , v

(m)
i := f (m)(ai).

We want to determine an interpolant H(f) ∈ Cm such that

(3.34) H(f)(ℓ)(ai) = f (ℓ)(ai) ∀ ℓ = 0, 1, ..., m

and the Fourier coefficients of H(f) are exactly computable. Before describing the

determination of H(f), let us first see the approximation order. Let the stepsize be

h := maxi |ai − ai+1|. Due to the Taylor expansion, we have for any x ∈ [ai, ai+1]

f(x) =
m∑

k=0

(x− ai)
k

k!
f (k)(ai) + O(hm)(3.35)

=
m∑

k=0

(x− ai)
k

k!
H(f)(k)(ai) + O(hm) = H(f)(x) + O(hm),(3.36)

so that we obtain in the maximum norm the following approximation error:

(3.37) ‖f −H(f)‖∞ = O(hm).

Due to the uniformity of the samples, we suppose in the sequel that there is some

t0 ∈ [0, 1) such that ai = t0 + i. Now, we choose any t1, ..., tm such that t0 ≤ t1 ≤ · · · ≤

tm < 1 and we define for p = 0, ..., m

(3.38) Gp(x, z) =

∞∑

ℓ=−∞

Np+1(ℓ+ x)zℓ ∀ z ∈ C

where the cardinal spline Np+1 from (2.10) is used. Although that involves an infinite

sum, only a few terms are relevant because of finite support of Np. Consider now the
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column vector

(3.39) g(x, u) :=





g0(x, u)

g1(x, u)

· · ·

gm(x, u)




where gp(x, u) := Gp(x, e

−ju).

For each q = 0, ..., m, we have

gq(t0 + i, 2πp/µ) =

∞∑

ℓ=−∞

N q+1(ℓ+ t0 + i)(e−2πpj/µ)ℓ

=
∞∑

ℓ=−∞

N q+1(ℓ+ t0)(e
−2πpj/µ)ℓ−i = ω−pigq(t0, 2πpj/µ),

where ω = e−2πj/µ. As a consequence, we obtain

(3.40) g(t0 + i, 2πp/µ) = ω−pi g(t0, 2πp/µ).

Introduce the following matrices where q = 1, ..., m− 1

Bq(u) :=
(
[t0]g(·, u), ..., [t0, ..., tq−1]g(·, u), [t0, ..., tq+1]g(·, u), ..., [t0, ..., tm]g(·, u)

)
,

B0(u) :=
(
[t0, t1]g(·, u), ..., [t0, ..., tm]g(·, u)

)
,

Bm(u) :=
(
[t0]g(·, u), ..., [t0, ..., tm−1]g(·, u)

)
.

From those matrices, we define the next determinants

(3.41) Fq(t, u) := det
(
g(t, u),Bq(u)

)
∀ q = 0, ..., m.

The function Fq has the property that for ℓ 6= q and for any shifting integer i, we have

(3.42) [t0, ..., tℓ]Fq(· + i, 2πp/µ) = 0 ∀ p = 0, ..., µ− 1.

Indeed, from relation (3.40), we obtain

[t0, ..., tℓ]Fq(· + i, 2πp/µ) = det
(
[t0, ..., tℓ]g(· + i, 2πp/µ), Bq(2πp/µ)

)

= ω−ji det
(
[t0, ..., tℓ]g(·, 2πp/µ), Bq(2πp/µ)

)
= 0

because [t0, ..., tℓ]g(·, 2πp/µ) must be amongst the columns of the matrix Bq(2πp/µ).

We will introduce now some functions ψ0, ψ1,..., ψm. For each q = 0, 1, ..., m, we define

(3.43) ψq(t) :=
1

µ

µ−1∑

p=0

Fq(t, 2πp/µ)

[t0, ..., tq]Fq(·, 2πp/µ)
.

As a consequence, we deduce for any shifting parameter i ∈ Z

(3.44) [t0, ..., tℓ]ψq(· + i) = 0 for any ℓ 6= q.
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On the other hand, we proceed as above in order to obtain

(3.45) [t0, ..., tq]Fq(· + i, 2πp/µ) = ω−ji[t0, ..., tq]Fq(·, 2πp/µ).

Hence, we obtain the next divided difference

[t0, ..., tq]ψq(· + i) =
1

µ

µ−1∑

p=0

[t0, ..., tq]Fq(· + i, 2πp/µ)

[t0, ..., tq]Fq(·, 2πp/µ)
(3.46)

=
1

µ

µ−1∑

p=0

ω−pi = δ0,i.(3.47)

The higher degree interpolant will be defined as the following spline

(3.48) H(f)(x) :=

µ−1∑

p=0

m∑

q=0

v(q)
p ψq(x− p).

If we apply relations (3.44) and (3.47) to the function H(f) of (3.48), we obtain for

any ℓ = 0, ..., m

[t0, ..., tℓ]H(f)(· + i) =

µ−1∑

p=0

m∑

q=0

v(q)
p [t0, ..., tℓ]ψq(· + i− p)

=

µ−1∑

p=0

v(ℓ)
p [t0, ..., tℓ]ψℓ(· + i− p) =

µ−1∑

p=0

v(ℓ)
p δ0,i−p = v

(ℓ)
i .

That is to say, if we choose t0 = · · · = tm, we obtain from (2.4) the following higher

order interpolation properties:

(3.49) H(f)(ℓ)(ai) = H(f)(ℓ)(t0 + i) = v
(ℓ)
i ∀ ℓ = 0, ..., m.

Since the function H(f) is a linear combination of the cardinal splines (2.9), it is

immediate to compute its Fourier coefficients by using relation (3.21).

4. Implicitizing tensor product functions

This section is occupied by the description of the implicitization process. Before giving

the detail, let us introduce some preliminary notions. We will use the multi-index no-

tation α = (α1, ..., αN) where each αi could be positive, negative or zero. Additionally,

we denote |α| = α1 + · · ·+ αN . We will use also the next two index sets

Jn := {α = (α1, ..., αN) : |α| ≤ n},(4.50)

Kn := {α = (α1, ..., αN) : |α| ≤ n, αi ≥ 0}.(4.51)

For two multi-indices α = (α1, ..., αN) and β = (β1, ..., βN), we define

(4.52) α − β := (α1 − β1, ..., αN − βN ).



IMPLICIT TENSOR PRODUCT SPLINES 13

(a) (b)

(c) (d)

Figure 4. Low frequency coefficients capture the geometric shape

(a)Original NURBS curve and its control polygon, (b)n = 13, (c)n = 18,

(d)n = 25.

By using relation (3.19), it is possible to approximate the original shape by the trun-

cated series (3.20). That expression captures the initial shape efficiently. Further, the

approximation can be done with any desired accuracy and the shape is recovered very

quickly. As an illustration, we can see in Fig. 4 the images of the representation of a

curve by the truncated series. We can compare the original shape in Fig. 4(a) and the

approximated ones in Figs. 4(b)–4(d).

In this section, we suppose that the initial parametric functions X1,...,XM from relation

(2.1) are of the form given in (3.20). That is to say, we suppose that each component

function is expressed as

(4.53) Xp(u1, ..., uN) =
∑

|α|≤n

Cp(α1, ..., αN)(eju1)α1 ...(ejuN )αN .
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By using the notation zi := ejui, we have a multivariate rational function in z :=

(z1, ..., zN):

(4.54) Xp =
∑

|α|≤n

Cp(α1, ..., αN)zα1

1 ... zαN

N =
∑

|α|≤n

Cp(α)zα.

We will use the convolution of two sequences A =
(
A(α)

)
α∈Jn1

and B =
(
B(α)

)
α∈Jn2

as D := A ∗ B =
(
D(α)

)
α∈Jn1+n2

where

(4.55) D(α) :=
∑

β

A(β)B(α − β) ∀α ∈ Jn1+n2
.

As a consequence, any product XpXq can be expressed using the convolution as follows

(4.56) XpXq =
∑

α

(Cp ∗ Cq)(α)zα.

For each m = (m1, ..., mM) such that |m| ≤ Q which is a parameter discussed below,

we introduce the notation

(4.57) Mm,α :=
(
C1 ∗ · · · ∗ C1︸ ︷︷ ︸

m1

∗ · · · ∗ CM ∗ · · · ∗ CM︸ ︷︷ ︸
mM

)
(α)

so that we obtain

(4.58)

M∏

i=1

Xmi

i =
∑

|α|≤nQ

Mm,α zα.

As a consequence, we obtain a constant complex matrix M :=
(
Mm,α

)
m∈KQ
α∈InQ

. Let us

designate Y :=
(∏M

i=1X
mi

i

)
m∈KQ

and Z := (zα)α∈JnQ
. Hence, relation (4.58) amounts

to

(4.59) Y = MZ.

For a sufficiently large value of Q, there exists v = (vm)m∈KQ
⊂ C which is a left

annihilator of the complex matrix M. That is, vM = 0 or equivalently

(4.60)
∑

m∈KQ

vmMm,α = 0 ∀α ∈ JnQ.

That means, relation (4.59) provides the implicit function corresponding to the parametriza-

tion (2.1) as follows

(4.61) F(X1, ..., XM) := vY =
∑

m∈KQ

vm

M∏

i=0

Xmi

i = 0.
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Since the initial parametric functions Xi are real valued, so are the products
∏M

i=0X
mi

i .

Therefore, we deduce from (4.61)

(4.62)
∑

m∈KQ

Re(vm)

M∏

i=0

Xmi

i + j Im(vm)

M∏

i=0

Xmi

i = 0.

Thus, the final implicitization is

(4.63) F (X1, ..., XM) :=
∑

m∈KQ

um

M∏

i=0

Xmi

i where um := Re(vm) ∈ R.

The above implicitization method has several advantages. First, the function F is a

multivariate polynomial. Additionally, the coefficients um ∈ R can be computed once

for all and they can be stored for future reference. The implicitization method presented

here works even for curves with a large number of control points. Finally, the implicit

representation in (4.63) can be efficiently evaluated by means of such techniques as

Hörner scheme.

5. Efficient computation

In this section, we want to consider the practical perspective of the above method.

For the computer implementation of the multivariate case, the matrix M in relation

(4.59) is not readily applicable to the search of annihilator because the entries are

enumerated by the multi-indices. In order to overcome that problem, we need a simple

enumeration of the multi-indices (for instance lexicographic) to obtain a matrix which

we still denote by M such that the entries Mpq are indexed by p ∈ I and q ∈ J where

(5.64) I :=
{
1, 2, ...,Card(KQ)

}
, J :=

{
1, 2, ...,Card(InQ)

}
.

Let us now briefly discuss about the determination of the left annihilator v of a complex

matrix M by means of a singular value decomposition (SVD). A left annihilator of M

corresponds to a right annihilator of MT . That means, the problem amounts to finding

a nontrivial element of ker(MT ). Suppose we have an SVD decomposition of MT :

(5.65) MT = UΣV ∗

where U and V are orthonormal square matrices and Σ is a diagonal matrix containing

the singular values of MT . A basis of ker(MT ) consists of the column vectors of V

which correspond to the zero singular values in Σ. Since we need only one annihilator,

there is no need to compute a complete singular value decomposition. It is sufficient to

find a few singular values closest to zero.
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Now, let us turn our attention to the fast computation of the entities in the higher

degree spline interpolation by means of FFT. The next method becomes more advan-

tageous as the number of samples µ grows. For each fixed x and q, one needs an efficient

way to evaluate gq(x, 2πp/µ) for all p = 0, ..., µ− 1.

gq(x, 2πp/µ) =

∞∑

ℓ=−∞

N q+1(x+ ℓ)(e−2πjp/µ)ℓ(5.66)

=

µ−1∑

k=0

∞∑

ℓ=−∞

N q+1(x− ℓµ+ k)(e−2πjp/µ)k−ℓµ(5.67)

=

µ−1∑

k=0

ake
−2πjkp/µ,(5.68)

where ak :=
∑∞

ℓ=−∞N q+1(x− ℓµ + k)e2πjpℓ. Note that ak can be very efficiently com-

puted by using the de Boor algorithm because only very few terms of it are non-zero.

In fact, we have

(5.69) ak :=

⌈x/µ⌉∑

ℓ=
⌈

x−q−1

µ

⌉
−1

N q+1(x− ℓµ+ k)e2πjpℓ

where the domain of summation becomes tighter as the number of samples µ becomes

larger. All the expressions in (5.68) are in fact DFT which can be quickly computed

by using the FFT method such as the Cooley-Tuckey algorithm [6] that requires only

O(µ log(µ)) operations.

6. Numerical results and discussion

In this section, we would like to consider some numerical results related to the above

implicitization. First of all, we consider the errors which are due to truncation of the

Fourier series which we saw in (3.20). Since the Fourier coefficients of the Splines

linearly depend on those of their bases, we consider the error of truncation of the bases

functions Nk
i . Below, we consider the following expression for a fixed i

(6.70) εn,k(x) :=
∣∣∣N̂k

i (x) −
∑

|ζ|≤n

N̂k
i (ζ)ejζx

∣∣∣, εn,k := max
xk∈I

εn,k(xk).

We made tests for different ranges of the parameter k which specifies the bases smooth-

ness and the size of the truncation threshold n. Above, the set I represents a discrete

finite set on the domain of definition of Nk
i . In Table 6.1, we find the resulting values

of εn,k for different values of n and k.

It can be observed that the error of approximation is not so good when the smoothness

is low. For the case k = 2, we have the piecewise linear bases functions from Fig. 2(a)
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n k = 2 k = 3 k = 4 k = 5 k = 6

5 1.96e-02 3.44e-03 1.10e-03 1.25e-03 9.84e-03

10 6.91e-03 5.09e-03 2.75e-04 4.11e-04 6.51e-03

20 9.64e-03 2.49e-03 2.95e-05 4.26e-05 1.30e-03

25 1.04e-02 1.69e-03 7.18e-06 1.54e-05 6.73e-04

35 1.02e-02 9.66e-04 8.95e-07 1.06e-06 7.35e-05

45 9.58e-03 2.51e-04 1.24e-06 1.01e-07 2.92e-06

50 9.52e-03 1.50e-04 7.94e-07 1.01e-07 6.27e-07

60 8.92e-03 2.97e-05 3.41e-07 1.72e-07 4.63e-07

70 8.79e-03 1.97e-05 1.02e-07 1.11e-07 4.79e-07

Table 6.1. Error due to truncation: non-smooth curves are more diffi-

cult to approximate.

(a) (b)

Figure 5. (a) Parametric curve (b) Points (X1, X2) such that

|F (X1, X2)| < ε.

and one needs large truncation threshold n to have good accuracy. In practice, most

splines correspond to at least k = 4 which corresponds to smoothness C2. That is

for example the case for the famous cubic splines [12] which are used in most data

interpolation of real CAD programs.

Another test in which we are interested is the application of the above method to the

implicitization of curves. For that, we have considered two parametric curves. After

finding the implicitization using the above method, we sort from a set of samples those

points (X1, X2) such that their values by the implicit functions verify F (X1, X2) < ε.

The results of such tests can be found in Fig. 5 and Fig. 6.

To close this paper, let us discuss briefly about its limitations. The method presented

here is for periodic knots. Therefore, to make it more practical, it must be combined

with a process which closes an open spline. Furthermore, as in most implicitization

methods, we cannot theoretically exclude the existence of branch points – i.e. those

points which annhilate the implicit functions but which are not member of the initial
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(a) (b)

Figure 6. (a) Parametric curve (b) Points (X1, X2) such that

|F (X1, X2)| < ε.

splines – although they do not happen often in practice. To circumvent those problem,

one can restrict to the convex hull of the control points. Points outside the convex hull

must have nothing to do with the spline. If that is not yet sufficient, one can split the

convex hull recursively, but such a description is beyond the scope of this paper. On the

other hand, the approach which we have presented above cannot be immediately used

for surfaces having holes or trimmed boundaries. If one wants to treat such surfaces,

one has to convert them first into sets of tensor product patches. Afterwards, one can

apply the presented method here to the resulting tensor product patches. Our earlier

technique in [16, 17] serves well as a preprocessing step before using the above approach.
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