Institut fur Numerische Simulation
Rheinische Friedrich-Wilhelms-Universitat Bonn

Wegelerstrafle 6 - 53115 Bonn - Germany

phone +49 228 73-3427 - fax +49 228 73-7527
www.ins.uni-bonn.de

E. Kieri, B. Vandereycken

Projection methods for
dynamical low-rank approximation
of high-dimensional problems

INS Preprint No. 1709

July 2017






Projection methods for dynamical low-rank
approximation of high-dimensional problems*

Emil Kieri’ and Bart Vandereycken?

Abstract

We consider dynamical low-rank approximation on the manifold of
fixed-rank tensor trains (also called matrix product states), and anal-
yse projection methods for the time integration of such problems. First,
we prove error estimates for the explicit Euler method, amended with
quasi-optimal projections to the manifold, under suitable approximabil-
ity assumptions. Then, we discuss the possibilities and difficulties with
higher order explicit and implicit projected Runge-Kutta methods. In
particular, we discuss ways for limiting rank growth in the increments,
and robustness with respect to small singular values.

1 Introduction

In this work we consider high-dimensional time-dependent problems. The prob-
lems could either be ordinary differential equations (ODEs), such as the chemical
master equation [13], or partial differential equations (PDEs), such as the time-
dependent Schrodinger equation [23] or parabolic problems. When PDEs are
considered we apply a method of lines-approach, that is, we first discretise in
space such that the problem is approximated by a system of ODEs. We assume,
mostly for notational simplicity, that the problem considered is autonomous.
Denoting A(t) = dA/dt, the general form of our ODE is then

Alt) = F(A®),  A(0) = 4, (1)

on the Euclidean space V = RN1XXNa of dth order Nj x - -- X Ny tensors. We
denote by (-,-) and || - || the standard Euclidean inner product and norm on V.
The generalisation of the methods and theory in this work to complex-valued
tensors is straightforward. By adding ¢ as an extra constant variable, any ODE
can be brought to autonomous form. This can be done here as well although it
requires extending each dimension NV; of A by one.

The characterising difficulty of high-dimensional problems is the exponential
growth with the dimension of the amount of data and computational work; the
space V has H?Zl N; degrees of freedom. This makes also seemingly simple
problems computationally intractable when the dimension exceeds, say, three.
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Low rank approximation is one of the more promising approaches to tractable
computation of high-dimensional problems. In computational chemistry, low
rank methods such as Hartree-Fock and Multiconfigurational Time-Dependent
Hartree (MCTDH) have become standard tools; see, e.g., [22].

1.1 Approximation by tensor trains

Tensors can be represented in different data-sparse formats, with different defi-
nitions of rank. In this work we consider the tensor train (TT) format [25, 24].
Before being rediscovered by the mathematical community it was known to
physicists as matrix product states (MPS); see [27] for an overview. The rank
ofa TT X € Vis a (d+1)-tuple

r=(ro,...,74) with 7;=rank X, (2)

where X () ¢ R(N1N;)x(Nj+1-Na) ig the jth unfolding of X. The matrix X (/)
has the same elements as X, with the j first coordinate directions organised
as rows and the others as columns. For j = 0 and j = d we obtain a row or
column vector, and consequently ro = rq = 1. If r; < r and N; < N for all
j =1,...,d, X can be represented by at most dr’N numbers, breaking the
exponential scaling with the dimension. More concretely, we can define order 3
tensors C; € R™-1*NixX"i such that

1 Td—1
X(ir,.ovia) =Y o Y Ci(lyir, k) Ci(kjo1,ij k) - Calka,ia, 1),
k‘1:1 kd_lzl
(3)

The modelling assumption in this work is that the solution A(¢) to (1) can
be approximated by a TT of low rank. In other words, we expect the singular
values of the unfoldings A to decay such that we can neglect most of them
without losing too much information. We therefore look for an approximation
Y (t) to the exact solution A(t) which stays on the manifold

M, ={X eV : TT-rank(X) =r}

of tensors with fixed TT-rank r. We do this using the Dirac—Frenkel time-
dependent variational principle [5, 15, 17]:

Y(t) = P(Y()F(Y(#),  Y(0)=Yy€ M, (4)

where P(Y) is the £5-orthogonal projection onto the tangent space Ty M, of M,
at Y € M,. This is the locally best approximation to the differential equation—
we make the smallest possible perturbation of Y (¢) such that Y (¢) stays on the
manifold. If this perturbation is small we also get a bound on the global error
|lY'(t) — A(t)||, see Lemma 1 below. Y (t) will however in general not be the
globally best approximation on M, to A(t). The Dirac—Frenkel principle can
equivalently be written using a Galerkin condition, as find, for each t € [0,T],
Y (t) € M, such that

(Y(t),Z) = (F(Y(t), Z) for all Z € Ty My,

and Y (0) =Y, € M,.



1.2 Numerical challenges

Low rank approximation offers a reduction of the problem size which can enable
the computational solution of problems which would otherwise be inaccessible.
It does however not come without new challenges. Since the manifold M,
is not linear, (4) is a non-linear problem even if F' is linear. The projection
may introduce additional difficulties also when the original problem already is
non-linear. One main difficulty concerns the curvature of the manifold, which
is unbounded. The local curvature grows without bound as we approach the
boundary of the manifold, which consists of tensors of smaller rank, and the
closure

M, ={X eV : TTrank(X) <r}

is no longer a smooth manifold. The local curvature can be quantified in terms
of singular values of the matrix unfoldings of the tensor [20]. If the r;th singular
value o, (X)) > p>0forall j,and Y € M, is close enough to X, then

I(P(Y) - P(X))Z] < gny — Xx|12] (5)

for all Z € V and some constant ¢ which depends on the dimension, but not
on Y or X. In Appendix A we show that this bound is essentially sharp in the
sense that for any X, there exist a Y and a Z that attain the bound.

This strong local curvature in the presence of small singular values leads to
a range of theoretical and practical difficulties. The difficulty which perhaps is
the most relevant for this work is the stiffness induced to time-dependent prob-
lems on the manifold. The parametrisation (3) of the manifold is not unique,
but if it is fixed at time ¢ = 0 one can introduce gauge conditions such that
the time-evolution of (4) has a unique parametrisation. One then gets ODEs
which determine the evolution of the parametrisation [20, 29]. These ODEs are
however stiff in the presence of small singular values since the Lipschitz constant
of their right-hand side grows at least as 1/p due to (5). Therefore, a time step
restriction h ~ p will be necessary for explicit methods.

As an illustration we consider the two-dimensional case. Then, tensor trains
coincide with matrices of the form Y = USVT € RV*N | where U,V € RVX*"
have orthonormal columns, and S € R™*". The most common gauge conditions
are UTU = VTV = 0, which lead to the system of ODEs

U=U-UUTF(Y)VS!,
$=UTFY)V, (6)
V=(I-VvVHFEY)TUus-T.
Clearly, this system breaks down when S is singular. If S is nearly singular,
the ODEs are very stiff leading to a severe step size restriction. This is, for

example, illustrated numerically in [14, Fig. 1]. A popular way around this is
regularisation. In the MCTDH method!, S is commonly regularised as [3, 21]

Sreg = S + €g exp(—S5/ep)

IThe MCTDH method is formulated for tensors in the Tucker format. As for tensor trains,
in two dimensions this format reduces to bounded rank matrices.



before it is inverted. The parameter ¢ is small, often of the order 10~8. This
prevents the system from breaking down, but also modifies the problem and its
solution. Furthermore, it still leads to systems with a large Lipschitz constant.
In this paper, we will propose to change the integrator to address this problem
more fundamentally.

A related difficulty with small singular values appears in low-rank optimisa-
tion. An optimisation problem minxeq J(X), with a closed convex set Q C V
and a strictly convex functional J : V — R, has a unique global minimum. If we
search for a low-rank approximation to the minimum by restricting the feasible
set to QNM,., the problem is no longer convex, and we may have introduced new
local minima. Except for certain very simple or restricted cases, convergence
theory for optimisation algorithms is therefore only local; see, e.g., the local
convergence analysis for alternating optimisation in [26]. Most importantly, we
can only guarantee convergence towards the global minimum if the initial guess
is within an O(p) distance from it.

Another largely open question in low-rank approximation is the one about
approximability: Given a problem, how can we know if a reasonably accurate
low-rank approximation exists? This question is resolved only for a small num-
ber of problems. For the Poisson problem, for example, approximability can
be confirmed using exponential sums [4, 6]. See also [7, 8] for an overview of
other examples. In this work, we will not bother about approximability, and
just assume it.

1.3 Contributions

As mentioned above, instead of solving (4) by regularising the ODE (6), we
change the integrator in a more fundamental way. This is related to the so-
called splitting projector integrators in [18, 19] that were shown in [14] to have
no time step restriction due to small singular values. In this work we obtain
integrators with similar properties but that are based on projected integrators.
The simplicity is the main advantage of such projection methods. The pro-
jected Euler method is the first method one would try when confronted with
the problem (4). We prove that projected Euler, as well as some higher order
projected Runge—Kutta methods, are accurate and robust. We also believe our
proof techniques are simpler than for the splitting projector integrators in [14].

The splitting integrators of [18, 19] are also accurate and robust, and albeit
conceptually a little more involved, they are still fairly easy to implement. How-
ever, while they allow for arbitrary order, the robustness is only proven up to
first order. In our case, we will be able to show higher order for certain meth-
ods. An important advantage of the splitting methods is that they retain some
geometric properties of the continuous problem. If the 5 norm of the solution
is conserved in the continuous problem, and norm-conserving methods are used
to solve the substeps of the splitting scheme, then the splitting integrator will
conserve the norm. This is not the case for our projection methods.

2 Assumptions and approximability

In this section we state the assumptions we make on the problem, and dis-
cuss their implications on the solvability of the problem and on its low-rank



approximability.

2.1 Assumptions
First, we assume that F' is Lipschitz continuous,
|[F(X)-F(Y)| <L|X -Y| forall X,Y €V. (7)

This gives via the Picard—Lindelof theorem (see, e.g., [11]) existence and unique-
ness of a solution to (1), at least on some finite time-interval. We also assume
that F satisfies the one-sided Lipschitz bound

(XY, F(X)-FY))<{|X-Y|?® foral X,Y €V, (8)

or equivalently if F is C!, that OF/dY has logarithmic norm bounded by /.
This bound follows directly from (7) with £ = L, but for many problems, in
particular for spatial semi-discretisations of partial differential equations, ¢ is
much smaller than L. Note that £ can be negative. When ¢ < L, much sharper
error estimates can be proven if (8) is taken into account. In the complex-valued
case, (8) is modified by taking the real part of the left-hand side.

To make higher order methods sensible, we also assume that the solution
is sufficiently smooth. More precisely, when considering method of order p, we

assume that
dP+1

(V)
can be uniformly bounded by a constant for all Y in a neighbourhood of the exact
solution. Here, ®¢, denotes the flow of F, that is, the mapping A(t) = ®%.(Ap)
where A(t) is the solution of (1) with initial value A(0) = A,.

To assure low-rank approximability, we assume that F' almost maps onto
the tangent bundle of M,:

|F(Y)—PY)F(Y)|| <e foral
Y € M, N {suitable neighbourhood of the exact solution}.

9)

This assumption implies that the solution Y (¢) of (4) is an O(e) perturbation
of A(t), the exact solution of (1); see Lemma 1 below. We call this difference
the modelling error. Except for in pathological special cases, there is no way to
avoid it. The only way to make the modelling error smaller is to improve the
model, which in our case means increasing the approximation rank.

We also assume that the solution Y(¢) of (4) stays on the manifold M,
on the considered time interval ¢ € [0,7]. That is, we assume that the rank
of Y(t) does not drop, but is always r. This is necessary for (4), and the
tangent space projection P(Y') in particular, to be well-defined. We still allow
the smallest non-zero singular values to be arbitrarily small. We need a similar
full approximation rank condition for the numerical approximation Y; at all time
steps. This will however be satisfied in practice due to numerical round-off.

2.2 Discussion on the approximability

In the following lemma, we use (9) to bound this modelling error. The result
and its proof are standard, (see, e.g., [11, Thm. 1.10.6]) but we include it here
since we will encounter this kind of bounds a few times more throughout the

paper.



Lemma 1. Given the assumptions in Section 2.1, and with the error in the
initial value bounded by ||Ag — Yo|| < 8, the dynamical low-rank approximation
(4) yields an error bounded by

t
1Y () — AD)]| < 6 + 5/ ot ds.

0
Proof. Denote P+ (Y)Z = Z — P(Y)Z. From the bound

1d
sV — Al = = A PONE(Y) - F(4))

=Y - A FY)-F(A) - — A P-Y)F(Y))
<Y = A|? + ||y = A|||PH(YV)F(Y)],

we obtain the differential inequality
d
—||Y — Al </||lY — A .
S — Al <Y - Al +2

Its solution satisfies (see, e.g., [11, Ch. 1.10])
t
1Y (£) = A(D)[| < e"[[Y(0) — A(0)] +/ e =)eds. O
0

The most direct approximability assumption would be to directly demand
that the modelling error ||Y(¢) — A(t)|| is small. We use the condition (9)
instead, mainly because it is easier to work with this assumption—it is a local
assumption which matches well the local nature of the Dirac—Frenkel principle.
Both conditions are difficult to verify a priori. If one can decompose F' as

F:FT+FE7

where Fr : M, — T M, maps onto the tangent bundle and || F.|| < e, then (9)
obviously holds. A common example of terms mapping onto the tangent bundle
are operators acting in a single coordinate direction. Since the tangent space
is a linear space, linear combinations of such terms also map onto the tangent
bundle. As an example, in the matrix case A(t) € RM >Nz,

FT(A) = MA+ AMy € TyM,. for all A € Mr,

and for any choice of M; € RM*M and M, € RM>*N2 Most discretisations
of the Laplace operator, in any dimension, are of this form. However, if the
diffusion is anisotropic, or if a curvilinear coordinate transformation is employed,
this structure will be lost and the diffusion operator no longer map onto the
tangent bundle.

Demanding that the remainder F; is small is arguably a strong assumption.
If the manifold has tiny, high-frequency wiggles, the best approximation on it
could stay close to A(t) but at the same time (9) is violated. On the other
hand, (9) does appear to hold in neighbourhoods of the exact solutions of many
interesting problems. In Figure 1 we plot ||[P1(Y (¢))F(Y (t))|| against ¢ for the
numerical solution of the hyperbolic problem

u; = —b - Vu + 0.8u2, x € (—mm) t>0,
d
10
u(0,x) = H e, (10)
j=1



with periodic boundary conditions and b = (1,1,...,1). We consider the prob-
lem in four dimensions, and discretise the gradient with second order upwind
finite differences. We use 64 spatial grid points per dimension and the ap-
proximation rank r = (1,5,5,5,1), and time-step on the low-rank manifold
using projected Euler (which will be introduced in Section 4) with time step
h =1/200. It is not obvious a priori that the right-hand side almost maps onto
the tangent bundle, as the non-linear term in the right-hand side, which in the
spatially discrete case is a Hadamard product, squares the rank. Still, we see
in Figure 1 that the normal component stays moderate. The norm is scaled by
the spatial step size to mimic the continuous L? norm:

N, Ny
laf? = A2y > uR (11)

ki1=1 ka=1

0.03

0.02

0.01

1P~ (u(®)) F(u(®)) |

0.08.

Figure 1: Component in the normal space of the right-hand side of (10), plotted
against time. ||F'(u(t))| ranges between 3.2 and 9.0 over the same time interval,
and the norm of the non-linear term ranges between 0.62 and 4.2. The spike
near t = 0 is due to the initial data being rank-deficient.

3 An idealised projection method

The central idea in this work is to solve problem (4) using projection methods
[10, Ch. IV.4]. A standard projection method typically behaves as follows:

1. Take one time step with a one-step method, most likely (unless in very
special cases) leaving the manifold.

2. Retract or project the new solution back to the manifold.

The discussion on projection methods in [10] concerns problems which are quite
different from ours. They are of low or moderate dimension, and the curvature
of the manifold stays nicely bounded. Furthermore, the solution to the original
problem stays on the manifold, that is, there is no modelling error. Evolution
on the manifold, which, for example, might be the set of constant energy or



angular momentum, is a property of the exact solution. These differences make
our problems more difficult. As our problems are of very high dimension, we
must take care so that the amount of data does not grow unreasonably in any
intermediate step. We must also treat tangent space projections with care,
so that the strong curvature of the manifold does not give rise to time step
restrictions.

To implement a projection method we need a mapping R : V — M,, an
extended retraction [1], from the full space to the manifold. We assume that
the retraction is quasi-optimal, that is, there exists a constant C'z such that for
all A eV,

IR(A) — All < Cr|Pas,(4) — A, (12)

where
P, (A) 3 argmin || X — A
XeM,

is the best approximation of A on M,. The best approximation for TT is
known to exist [8, Thm. 11.56], which means it is available in our theoretical
argumentation, but in general it is highly impractical to compute it. The best
approximation need not be unique since M, is not a convex set. In that case,
P, (A) means any best approximation. However, Ppy, (A) is unique if A is
sufficiently close to M,. A practical, quasi-optimal extended retraction is given
by successively truncating the singular value decompositions (SVDs) of the un-
foldings AY), 5 = 1,...,d. This method is known as TT-SVD [24]. It has
quasi-optimality constant Cr = v/d — 1, and can be computed efficiently if A
has larger but still moderate rank, and is represented in the TT format. See
also [8].

Using the exact flow of F', we shall now construct the following idealised
projection method: for time step h, compute

Yipr = R(®H(Y)). (13)

This is not a practical method, first, because we usually have no means of com-
puting the exact flow, and second, because the exact solution will in general have
full rank before retracting, making the method prohibitively expensive—recall
that only working with low-rank tensors is our way of making computations
tractable. The method, however, brings the idea about. It satisfies the follow-
ing error estimate without a restriction due to small singular values.

Theorem 2. Under the assumptions of Section 2.1 and assuming (12), and
with the bound ||Yo — Aol| < & of the error in the initial data, the idealised
projection method (13) satisfies the error estimate

Yo — A(nh)|| < C(6 +¢)

on the finite time-interval 0 < nh < T, for all 0 < h < hg. The constant C
depends only on ¢, T, hg and Cr, but not on h.

Proof. Let ®% . be the flow of (4). From Lemma 1 with § = 0, we get
@ (Vi) — @ (¥)]| < chmax{1,e"}.
Since <I>§é #(Y:) € M, the best approximation satisfies the same bound:

1Pat, (P (Y:) — @5(Y:)|l < ehmax{1,e™}. (14)



By the quasi-optimality (12) of R, we therefore obtain the bound
leirnll = IR(@E(Y:) - Bo(Vi)]| < Che, € =Crmax{l,e™}  (15)

for the local error e;11 = Yii1 — ®L(V;).

To bound the global error £ = Y,, — @}h(Y})), we use a standard Lady
Windermere’s fan argument with error transport along the exact solution curves,
as described in [11, Ch. I1.3]. First, we expand into the telescoping sum

E =Y, —®¥(Ap)

=3 (@) — @ Y)) + B (V) — @ (Ao).
=1

Each of the terms
By = o0 M) — oM (@h(Yiny)), i=1,...n,
Eo = OF"(Yo) — @3 (Ao),
can now be bounded as in the proof of Lemma 1 using the logarithmic norm.

In particular,

L0l () — @ (1) 2 = (@ (X) — @l (¥), F(@}(X) ~ F(@}(Y)))
<D (X) - (V)|
which leads to
125(X) — @5 (Y)|| < [ X ~ Y.
Together with (15), this results in the bounds
| E;|| < em=OPe|| < heCe!M=Dh 4 =1, ..  n, (16)

| Eo|| < ef™s.

The global error can be then bounded as
IV, — @ (Vo) < Y |IEi] < ™6+ Ce Y hetrin,
i=0 i=1
Bounding the Riemann sum as (see also [11, Ch. I1.3])
fonh eé(nh—t) dt = (eénh _ 1)/[ if £ > 0,

> hett T < L, if £ =0,
i=1 fonh elnh=n=t) 4t — ¢=th(etrh _1)/¢ if £ <0,

we end up with a bound independent of h for all h < hg. This gives the desired
result (but with a different constant C'). O

As mentioned above, this method is mostly of theoretical value since the
exact flow is not at our disposal. To make it practical, one can use a one-step



method to approximate it. In this work, we shall consider explicit Runge-Kutta
methods with s stages that applied to (1) can be written as

j—1
kj:F(Ai+hZajlkl), i=1...,s,
T (17)
Aip1 = A+ 1> bik;,
j=1

and that are of order p, that is, for all 0 < h < hg:
[Aip1 — (A < CphPt, (18)

with Cf, independent of h.
Probably the most straight-forward way to obtain a projection method is

j—1
ki =F(Yi+hY apk), j=1,...s,
= (19)
Yipr =R(Yi+h) biks).
j=1

Using similar techniques as in the projected Euler case (see Section 4 below),
this method can be shown to have a global error of O(h? + ¢). Except for
the unavoidable modelling error €, the bound reflects the right order. Unfortu-
nately, the computational feasibility of this approach depends very much on the
function F. For the vast majority of problems, however, F' will be an operator
that increases the rank of its argument. For example, for a simple Laplacian,
the ranks are doubled, whereas Hadamard products multiply the ranks. Rep-
resentations of F' using TT-matrices, or matrix product operators (see, e.g.,
[31]) also increase the rank of F' linearly. This approach therefore soon becomes
impractical for higher-order methods since the ranks of the internal stages k;
grow exponentially with the number of stages s.

In Section 5 we will show how one can use tangent space projections and
retractions to limit the rank growth of projected Runge-Kutta methods, and
analyse the accuracy of such methods. This enables methods of higher order.
It is however still, also for a first order projection method, essential that F' can
be evaluated efficiently, exploiting the low-rank structure.

4 A practical projected Euler method

The most elementary projection method is projected Euler. Applied to (4), it
reads
Yiy1 = R(Y; + hP(Y;)F(Y;)). (20)

As long as F can be evaluated in an efficient way for Y; of low rank, time
stepping can be done efficiently. In addition, if F(Y;) is the sum of several
terms F;(Y;), we can compute P(Y;) by sequentially summing each projected
term P(Y;)F;(Y;). This is usually cheaper and since the tangent space Ty M,
is a vector space, there is less risk of numerical cancellation this way, compared

10



to retracting F(Y;) (see also [16, Sect. 3.2]). Finally, computing the retraction
is also efficient since the elements of Ty M, are tensors of at rank at most 2r,
which also applies to the argument of R in (20) since

Yi + hP(Y)F(Y;) = P(Y))(Y; + hF(Y)).

The analysis of (20) is fairly straightforward. It satisfies the following local
and global error estimates.

Lemma 3. Under the assumptions of Theorem 2, the local error of the projected
Euler method (20) is bounded by

[Yisr — @5(Y)|| < Ch(e + ),
where the constant C is independent of h for all h < hg.

We postpone the proof of this lemma, and immediately state the global error
estimate as Theorem 4 below. Compared to the idealised method in Theorem 2,
we see that the price to pay to obtain a practical method is an additional term
O(h) in the global error. This is to be expected when using explicit Euler. In
addition, there is again no step size restriction due to small singular values.

Theorem 4. Under the assumptions of Theorem 2, the projected Euler method
(20) satisfies the error estimate

1Y, — A(nh)|| < C(6 +e+h)

on the finite time-interval 0 < nh < T, for all 0 < h < hg. The constant C
depends only on L, T, hy, and Cr, but not on h.

Proof. The proof is similar as for Theorem 2, but with the different local error
from Lemma 3:

ei=Y; —®h(Yi_1), el < Ch(e+h).

Using the same notation as in the proof of Theorem 2, the global error is then
estimated as

1V, = @ (Vo) < Y NEi| < ™5+ Cle+h) D he!=0n,

i=0 i=1
and the result follows again by bounding the Riemann sum. O
We now prove the local error.
Proof of Lemma 3. Let us write
Y; + hP(Y;)F(Y;) = Y; + hF(Y;) — hP~(Y;)F(Y;),

and note that |hP+(Y;)F(Y;)|| < he by assumption (9). Since Euler’s method
has order one, we have for all h < hg that

|®h(Y;) — (Y; + hE(Y)))|| < Cph?,

11



with Cr independent of h (but it might depend on L). This means that (20)
can be rewritten as

Yirr = R(®E(Y:) +hA),  with |A] = O(e + h). (21)

Hence, one step of the projected Euler is an idealised projection method (13)
but for a perturbation of the flow.
To bound the local error

eir1 = Yig1 — ®p(Y;) = R(PE(Y:) + hA) — B (Y),
let us introduce the notation
Z=0L(Y:)+hA and Z=0k(Y).
Using (12) and by definition of P, ,
IR(Z) = 2| < Cr min | X ~Z+(Z - 2)|
XeM,

< Cr(IPm,(Z) - Z|| + 1 Z - Z])).
From this we obtain the useful result
IR(Z) = Z|| < Cr|Pm,(Z) = Z|| + (1 + CR)||Z - Z|.. (22)

Since Z = ®".(V;), the first term can be bounded as (14) in the proof of Theo-
rem 2. We therefore obtain as bound for the local error

lei1]l < Crhemax{1, e} + (1 + Cr)R|A|| < Ch(e + Al),  (23)

with C independent of h if h < hg. Since ||A|| = O(e+ h), this gives the desired
result. O

The local error in Lemma 3 does not depend on the curvature of M,, that
is, on the singular values of Y;. This may seem surprising given the essentially
tight bound (5). However, the recurring assumption in this paper is that we
assume that the solution can locally be well approximated by low rank. A
similar robustness property also holds for the best rank r approximation of a
matrix A (see, e.g., [2, (11)]):

[Pr.(A+ E) = Paa, (A)| < 2(|A = Par, (Al + [ E)-

From (22), one can generalise this result to quasi-optimal retractions of tensors
as

IR(A+ E) = R(A)|| < (14 Cr)([|A = R(A)[ + [ E]])-
However, while it clearly shows that R is well behaved for good approximations,
we did not see directly a way to exploit it.

Remark 5. Consider the equation A(X) — B with A a linear and symmetric
positive definite operator on V. Given a preconditioner M of the same type, one
can try to find low-rank solutions to A(X) — B by integrating the gradient flow

X = ~P(X)IM"(A(X) - B)).

When the projected Euler method (20) is used, we get the “geometric” version
of the the preconditioned Richardson iteration, as introduced in [16, (3.6)]. It
was shown in [16] that this version is typically much more efficient than without
tangent space projection.
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5 Projected Runge—Kutta methods of higher or-
der

Recall that the scheme (19) is formally a high-order projected Runge-Kutta
scheme but due to the rank growth of the intermediate stages, it becomes quickly
computationally prohibitive. In this section, we will construct more efficient
methods that have more stages but with a limited rank growth. We do this by
projecting onto the tangent space and retracting back to the manifold.

To this end, we first write the standard Runge-Kutta scheme (17) applied
to F' in its equivalent form

j—1
Zj:Ai+hZale(Zl)7 7=1... s,
= (24)
A1 = Ai+ 1Y biF(Z;).
j=1

The equivalence follows by identifying k; = F(Z;). To obtain a fully projected
integrator, we apply (24) to the vector field X — P(R(X))F(R(X)). With Y;
as initial value, we obtain our projected Runge—Kutta method

2 =Y 4 B anPRZ)FR(ZY), =1,
=1 s (25)
Yisr = R(Yi +h Y _b;P(R(Z;))F(R(Z))).

Such schemes are sometimes called internal projection methods [9] since they
extend the domain of the vector field Y — P(Y)F(Y) from the manifold M,
to the whole space V by projecting all the intermediate stages. This is needed
to have a well-defined tangent space projection throughout the scheme.

For efficient implementation, (25) can also be written in the more usual
notation with stages:

771:}/;7
H]:P(UJ)F(T]])7 jzl,...,S,
j—1
n]:R(}/l+hZajl’il)7 ]:25a57 (26)

=1

Y =R(Yi+h > bjk;).

j=1

Since n; € M, and k; € T, M,, the rank of x; is at most 2r. This way, the
retraction is applied to tensors of rank at most 2sr, which is considerably less
than in (19).

Below, we illustrate the performance of projected Runge—Kutta methods
with a numerical example. We consider a non-linear Schrodinger equation on a
two-dimensional lattice [28], where A : [0,T] — RY*¥ evolves according to

iA = %(BA+AB) — alA%A. (27)

13



The cubic nonlinearity is taken element-wise. The matrix B = tridiag (1,0, 1)
models the coupling of the lattice sites. We use a lattice of size N = 100 and
the initial data

A;1(0) :exp(i (J —051)2 (K ;21/1)2) +exp<— (j _052)2 (k _052)2),

where o = 10, pu; = 60, us = 50, v1 = 50, and vo = 40. We solve (27) at
approximation rank r = 12 with a range of time steps using projected Runge—
Kutta methods of first, second and third order (PRKp), and compute the error
at time 7' = 5 in Frobenius norm, as compared to a full-rank reference solution
computed with the 4th order Runge-Kutta method and time step h,f = 0.0025.
Apart from the explicit Euler method, we build projected versions of the fol-
lowing second and third order Runge-Kutta methods:

PRK1: b =1
PRK2: ag1 =1, by = by = 1, (28)
PRKS: a21 = %’ (L31 = 07 a32 = %7 bl = i, b2 = 0, b3 = %.

Recall that PRK1 is our projected Euler method from Section 4 and PRK2 is
constructed from Heun’s method.

The results are shown in Figure 2, in two separate setups with with o = 0.1
on the left, and with o = 0.3 on the right. When the time-step is reduced, the
error initially decays for all methods, until a point where the modelling error
becomes dominant and the error stagnates. Before stagnation we observe first
and second order of accuracy for PRK1 and PRK2, respectively. We can not
determine a clear order of accuracy for PRK3, but it is more accurate than the
other two methods before stagnation. For the smaller value of «, the rate at the
first refinement is close to third order. A reason might be that the modelling
error disturbs the convergence before we reach the asymptotic regime. For the
higher value of «, the modelling error is larger and stagnation happens already
at a larger time step and error.

1
10 / 10!

o ) /
e S o
g, =10
O 10 O
-5 -3
1075 10° 101 10/ 10° 101
h h

Figure 2: Error after time-stepping with PRK1 (blue), PRK2 (green), and
PRK3 (red). o = 0.1 (left) and o = 0.3 (right).

5.1 Error analysis

We will now prove that the projection methods in the experiment above (see
also Figure 2) retain their classical order of accuracy up to the modelling error
O(e). In addition to the usual order p of the Runge-Kutta scheme (24), our

14



Theorem 6 below also uses the stage orders qi, . ..qs. They are defined from the
local errors of the Z;, that is, for all h < hy,

1Z; — 95" (A < CLh% ™, j=1,...,s, (29)

where ¢; = Z{;ll aj;. The constant Cy, is independent of h.
Given the coeflicients of the Runge-Kutta method, g; can be found by ver-
ifying the following quadrature relations (see, e.g., [11, Lemma IL.7.5]):

j—1
=1 C}— =1 i
a;i¢ = -, T=1...,q;.
T
=1

For the schemes from above, we have the following orders.

PRK1: =0
PRK2: q1 = 0, qo = 1, (30)
PRK3: =0, qgp=1, gs=2.

For explicit Runge-Kutta methods of higher order p, these stage orders g; are
significantly smaller than p. Usually, one has ¢; < g2 < --- < g5 but this is not
always true for methods with many stages. It is a harmless assumption in the
context of Theorem 6.

Theorem 6. Let (26) be a projected Runge—Kutta method with s stages, based
on an explicit Runge—Kutta method of order p and stage orders g1 < go < --- <
qs. Denote

_ Jmin(p, g2 + 1), if by # 0,
min(p5Q3+17q2+2)7 ZbeZO

Then, under the assumptions of Theorem 2, the global error is bounded by
Y — A(nh)|| < C(6 + ¢+ h1),

on the finite time-interval 0 < nh < T, for all 0 < h < hg. The constant C
depends only on Cp, ho, L, Cr, s, Ca = max;;|a;;|, and Cp = max; |b;|, but
not on h.

From (28) and (30), we see that PRK1, 2, and 3 indeed retain their classical
order, that is, ¢ = p. Unfortunately, we cannot generalise to higher order due
to the ga + 2 term in Theorem 6. This can be understood by studying the
quadrature rule defined by the nodes c; and weights b;. Due to the limited
number of degrees of freedom in explicit methods, it is impossible to raise g
much higher. See also Remark 8 on how to obtain ¢ = 4.

Like for the other projection methods, the proof for the global error in The-
orem 6 follows immediately from the local error. To this end, we first need the
following technical lemma regarding the perturbation of (25) compared to (24).

Lemma 7. Under the assumptions of Theorem 2 and assuming g1 < qo < -+ <
qs are the stage orders of the order p Runge—Kutta scheme (24), let A; =Y; and
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denote ¢; = min(q;, g2 +1). Then (25) satisfies forO0 <h <hg andj=1,...,s
the following bounds:

> 0 ifj=1,
1Z; = Z;|| < {Ch(5+ Bty g1, (31)
IP(R(2;))F(R(2;)) — F(Z;)|| < {g‘gg e Z; ; 1 (32)

where C' depends only on Cr, L, Cr, ho, s, and Ca = max;; |a;;|.

Proof. By definition of an explicit Runge-Kutta method, Z; =Y, = Zl. Ob-
serving that R(Y;) = Y; due to quasi-optimality, we have F(R(Z1)) = F(Y;) =
F(Zy). Hence, the approximability assumption (9) gives

IP(R(Z1))F(R(Z1)) — F(Z1)|| < e.

Hence, the statements of the lemma are true for j = 1.
We show the rest by induction using the short-hand notation

P, = P(R(Z;)), F; = F(R(Z;)), F; = F(Z;). (33)

Let j > 2 and assume (31)—(32) are true up to and including j — 1. By defini-
tions (24)—(25) of the schemes, it holds that

j—1
12; = Zill < hY_ laql| PFy — Fi- (34)
=1

The induction hypothesis on (32) for [ =1,...,5 — 1 then gives
1Z; — Z;|| < CaCh(se + h®+t 4 ... 4 pli=—1+1),

Since g2 = ¢2 and ¢ < gi+1, it follows that go < g3 < --- < gj—;. Absorbing
higher powers of h in a constant Cz for 0 < h < hg, we can write

1Z; — Z;|| < Czh(e + het).

This establishes (31) for j.
To show (32) for j, it suffices to bound |R(Z;) — Z;|| since by Lipschitz
continuity of F and the approximability assumption (9), we have

1P Fj = Fjll < |3 Fy = Fyl| + || Fj — F|
<e+ LIR(Z5) — Z;ll-
In turn, we can now directly use (22) from the proof of Lemma 3:
IR(Zj) = Zjll < Crl[Pm.(Z5) = Zi|| + (1 + Cr)IZ; = Z;-

This second term above is (31). For the first, write Zj = @;ﬂh(Yg) + hA; with
1Al = CLh% due to the stage order condition (29). Then (14) in the proof of
Theorem 2 shows that

> > th th
[P (Z5) = Zill < [[Paa (P (Yi)) = @ (V)| + Al A
< ehmax{1,e "} + CLp%+L, (35)
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Collecting all the bounds, we arrive at
|P(R(Z;))F(R(Z;) — F(Z)H < Crh((1+h)e +h% + h2tY) f e

Absorbing again higher powers of h in the constant, we have shown (32) for j.
Tracing the constants C'; and Cp through the proof, it is clear that they can
be taken as stated in the lemma. O

With this lemma at hand, we can more easily estimate the local error.

Proof of Theorem 6. Using the same notation as in (33), we shall bound the
local error of (25) as follows:

1Yie1 = @E YD) < Yier = Yigall + [[Yigr — @RV, (36)

where }71-+1 =Y, + hZ;zl bjf'j is one step of (24) with A; =Y;. Since Y;41 =
R(Y; + h325_, bjPjFy), we can use (22) from the proof of Lemma 3 to bound
the first term above as

[Yis1 = Yisr|l < CrlIPat, (Yiga) = Yiga | + (1 + Cr)IIR Y (0, P,F; — Fy)|

Jj=1

< (1 + CR)(Eh max{l,e[h} + 5th + hCB Z ||PJFJ — ﬁJ”)

Jj=1

Here, we formally used the same bound as in (35). Now applying Lemma 7, the
local error becomes

~ _ _ +1 if b 0,
Virt = Vil < Che 410, G={® o #
min(gs + 1,¢2 +2) if bo = 0.
since g2 = @2 < @3 < -+ < ¢s. The second term in (36) is simply the local
error (18). The global error is now obtained in the same way as in the proof of
Theorem 2. O

Remark 8. It is possible to improve Theorem 6 if ajo = 0 for all 7 > 4 and
by = b3 = 0. The final order then satisfies ¢ = min(p, g4 + 1,93+ 2,92 + 3). For
example, the (embedded) Runge—Kutta rule 6(5)9b from [30] with s = 8 stages
and order p = 6 is of this form. Since go =2 and g3 = --- = qs = 3, one obtains
order q = 4.

5.2 A simplified method

An alternative way of constructing explicit projection methods is to project the
increment of the Runge—Kutta step onto the tangent space at the result of the
previous step, and then retracting. That is, we define

j—1
ki =PY)F(Yi+hY ajk), j=1,...,s,
. (37)
Yipr =R(Y; +h > bikj).

Jj=1
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Since all the k; are in the same tangent space, they and all their linear combina-
tions have ranks bounded by 2r, which makes retracting the substeps unneces-
sary. In effect, by keeping Y; constant, the method computes an approximation
of R(P(Y;)®%(Y;)) by approximating the exact flow with a standard Runge—
Kutta method. The downside of this method is that, since we treat the tangent
space projection in a “forward Euler” manner, we should not expect more than
first order of accuracy. However, experimental evidence suggests that when the
solution stays closer to the manifold than the worst-case guarantee, taking P(Y;)
constant does not completely destroy the higher-order accuracy.

In Figure 3 we compare this simplified method to the methods PRK1, 2,
and 3 that satisfy Theorem 6. We use the same example problem as before,
with @ = 0.1. At first order, the two approaches yield identical methods. At
second order, the results are very similar, even though the simplified method
should formally be of first order only. At third order, we see how the simplified
method performs slightly worse than the method of the form (26). We leave it
as an open problem to rigorously analyse this behaviour.

10!

10t

error

1073

1073 10 101

h

Figure 3: Error after time-stepping with standard (solid lines) and simplified
(dashed) explicit Runge-Kutta methods of first, second and third order, for the
same non-linear lattice Schrodinger equation as before, with a = 0.1.

6 Projected implicit methods

In this section, we explore implicit projection methods for stiff problems. Con-
sider the following discretised linear parabolic problem

A=-BA)+ f(t),  A(0) = uo, (38)

where B is a linear and symmetric positive definite operator. In the canonical
example of the heat equation, B is a discretised version of —A for which L is very
large but ¢ < 0. Except for the idealised method, all projected methods that
we have seen so far will be subject to severe step size restrictions under mesh
refinement since the constants in their global errors depended on L. This is es-
sentially because we approximated ®/(Y;) by an explicit Runge-Kutta method.
The usual solution is to resort to implicit methods.

Applied to (38), implicit methods will result in linear systems. For instance,
the standard backward Euler method for (38) reads

Yipr = Yi+ hF(tig1,Yig1) = Yi + h(=BYi1 + fisr),
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with f; = f(t;), or equivalently,
(I + hB)f/H_l = ﬁ + hfi+1. (39)

Since Yi41 is an unconditionally stable O(h) approximation of O(Y;), we can
define Vi1 = R(Yi41) as a projected implicit method. In the same way as our
analysis of the projected Euler case from Section 4, this method would have a
global error of O(e + h), where the implicit constant depends on ¢, and not L.

Unfortunately, solving (39) in higher dimensions is computationally out of
reach except for a few special cases. The most notable is when B has the
Laplacian structure —A. In that case, the system (39) can be solved efficiently
using exponential sums [4, 6] if f has low rank as well. When B is a general
symmetric and positive definite operator, we propose a different strategy. First,
we write (39) into the equivalent optimisation problem

1 ~
Yip1 = argmin o (Y, (I + hB)Y) — (Y, Y + hfiy1).
vey 2

Instead of first solving this problem exactly in V' and then retracting back M.,
we solve it immediately on the manifold by restricting the feasible set in the
optimisation problem:

1
Yiy1 =argmin (Y, I + hB)Y) — (Y, Y; + hfit1). (40)
vem, 2

Computing the global minimum of (40) is in most cases still out of reach. How-
ever, there exist many algorithms that are give accurate approximation in prac-
tice. In the numerical experiments below, we will use alternating least squares
(ALS) [12, 26] and just assume—or better, hope—it has computed the global
solution to (40).

The method (40) satisfies the following error estimates.

Theorem 9. Under the assumptions of Theorem 2, the projected implicit Euler
method (40) applied to (38) has a local error bounded by

[Yisr — @5(Y3)|| < Ch(e + ),
and a global error bounded by
1Y — Amh)| < C'(e + h),

on the finite time-interval 0 < nh < T, for all 0 < h < hg. The constants C
and C' depend on the spectral radius of B, but are independent of h.

Proof. Let Y; = 37; It can be verified by a direct calculation that the solution
Y;11 is the point on M, which minimises the error Y — (I + hB)~1(Y; + hfii1)
in the norm induced by the positive definite operator (I + hBB), that is,

Yip1 = argmin |[Y — (I +hB) " (Yi + hfir1) | (1418
YeM,

— argmin [ — Vi l|rens. (41)
YeM

r
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Note that B has a real spectrum and Ap,;, > 0, since B is symmetric and positive
definite. We denote the spectral bounds of B by o(B) C [Amin, Amax] and use
the equivalence of norms,

VIV < WYl z4ns) < TV

with v = V1 + hdpin > 1 and I' = /1 + hApax. The local error is then bounded
by
[Yit1 — @Y < [[Yigr — @YD) + [|Yig1 — Yiga |-
The first term is local error for backward Euler: for all 0 < h < hg,
Hifi+1 - @’%(Yz)\l = O(hz)-

Using that Y;; is the solution of (41) and y > 1, the other term can be bounded
as

Vi1 = Yisall <47 Viga — 371‘+1||(1+h3)
< |1Pm, Yis1) = Yisa | g 4ns)
STIPum, (Yigr) — Yiga|l-

Since Yiy1 = ®%(Y;) + hA with [|A]| = O(h), we can use (35) in the proof of
Theorem 7 with ¢; =1 and Z; = Y;4,. This gives

[P, (Yiz1) = Yiga|| < Ch(e + h).
The global error is obtained in the same way as in the proof of Theorem 2. [

The error bound depends on the spectral radius of B in a way that is not
typical for implicit methods. This is unfortunate, and diminishes the advantage
over explicit methods, at least in theory. For the heat equation, the spectral
radius Amax of B = —A is proportional to Az =2, and the factor multiplying the
error is I' = /T + hAmax ~ /1 + h/Ax2. That is, we must have h ~ Az? to get
the normal O(h) global error. In a numerical experiment below we will, however,
see that the situation does not need to be that bad, and that (40) is competitive.
We can understand why it works as follows: The factor I' appears when we use
the equivalence of the standard Euclidean norm and the (I + hB)-norm. The
(I + hB)-norm is similar to a (discrete) H'-norm. The L? and H! norms are
not equivalent norms—and in the discrete case, the spectral radius (which tends
to infinity as Az — 0) appears in the bounds. But for smooth arguments, the
L? and H' norms are of comparable size, without any bad dependence of Ax

appearing.
The accuracy of the second order projected trapezoidal method,
o1 h h h
Yip1 = argmin (Y, (I + SB)Y) — (Y, (I = SB)Yi + S (fi + fit1)),  (42)
YeM, 2 2 2 2

can be analysed similarly. One then reaches the following result.

Corollary 10. With the same notation and under the same assumptions as in
Theorem 9 but now for the projected trapezoidal method (42), we have

Vi1 — @H(Yi)|| < Ch(e + 1?),
Y, — u(nh)|| < C'(e + h?).
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We verify the results with an example problem. We solve the heat equation
onx € Q=10,1% d =3, and t € [0,1], with homogeneous Dirichlet boundary
conditions. We use the following source term and initial condition:

d

d
f(x,t) = H 100z, 347 up(x) = Hsin(m:i).
i=1

i=1

The Laplace operator —A is discretised using second order central finite dif-
ferences on an equispaced grid with 50 points per coordinate direction. We
time-step on the manifold of TT-tensors with rank (1,5,5,1) using the pro-
jected implicit Euler and trapezoidal methods. The error is computed in the
weighted ¢3-norm (11) with a reference solution computed at full rank using the
trapezoidal method, with time step hyof = 1/2048. The ALS method is imple-
mented as a standard left-right sweep with exact solution of the local systems
(see, e.g., [12] for details). The iteration is stopped if the new residual after a
full sweep stagnates within 1% of the previous one.

The results are shown in Figure 4. For implicit Euler, the first order accuracy
is clearly visible. The trapezoidal method converges at second order for some
time, and then seems to stagnate. Quite surprisingly, the error of the trapezoidal
method is larger than the error of the implicit Euler method at all considered
step sizes.

Finally, we test the impact of the unfortunate dependence on the spectral
radius by comparing to the explicit Euler method. It turns out that for the
explicit projected Euler method we have to take much smaller time steps to
get a stable solution. If we apply von Neumann stability analysis to the stan-
dard explicit Euler method (without projections and retractions) and a similar
problem with periodic boundary conditions, we get the time step restriction
h < Az?/(2d). In our example, we have d = 3 and Az = 1/49, which yields
the bound h < 1/14406 on the time step. The stability of the projected explicit
Euler method is not as straightforward to analyse. Experimentally we note that
for the problem of Figure 4, h = 1/10000 gives a stable (and accurate) solu-
tion, while the solution blows up for h = 1/5000. For comparison, the smallest
time step used with the implicit projection methods in Figure 4 was h = 1/256.
This supports the claim that the dependence on the spectral radius is not that
problematic for smooth solutions.
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A Tightness of curvature bound

We here show that the bound (5) is sharp, in the sense that for any X, we
can choose Y and Z such that the bound is attained. To keep the notation
manageable, we restrict ourselves to the case of square matrices.

We consider the manifold M,. of real N x N matrices of rank r. Let X € M,
be any matrix on the manifold, and construct its SVD X = USV7T such that
U,V € RVX" have orthonormal columns u; and v;, respectively, and S € R™" is
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Figure 4: Error for solving the heat equation at various time steps using the
projected implicit Euler method (blue), and the projected trapezoidal method

(green).

a diagonal matrix with elements s;; = o; > 0 in decreasing order. Next, choose
Y € M, such that Y = USVT, where also V € RVN*" has orthonormal columns
v;, and v; = v; for i =1,...,7 — 1. Then,

Y — X = o,un (0, —v,) 7,
and thereby
1Y = X2 = (Y = X)T(Y = X)) = 20%(1 = 5Tv,). (43)

Now take any Z € RN*N, Since P(X)Z =UUTZ+zZVvVT —UUTZVVT (see,
e.g., [18, eq. (2.5)]), we get

(P(Y)-P(X)Z=I-U0UDZ(VVT —vVT) = (I -UvU")Z(5,5F — v.ol).

We choose Z = @9, where @ is normalised and orthogonal to the columns of

U. Then, | Z|| =1 and
I(P(Y) = P(X))Z|* = [|a(o7 — o7 vpo)|? =1 = (97 v,)%.

Since v, and ¥, are normalised, |#1v,| < 1. We choose 9, such that 0 <
9Xv, < 1. Then,

|(P(Y) ~ P(X)Z|| = /1~ (0,)? > /1 — T,

and by (43) and || Z|| = 1, we get

I(P(Y) = P(X))Z]| >

1
Y - X||||Z],
\/iar” 1zl

which shows the claim that (5) is essentially a tight estimate.
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