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Abstract
The higher-order singular values for a tensor of order d are defined as the singular values of

the d different matricizations associated with the multilinear rank. When d ≥ 3, the singular
values are generally different for different matricizations but not completely independent.
Characterizing the set of feasible singular values turns out to be difficult. In this work, we
contribute to this question by investigating which first-order perturbations of the singular values
for a given tensor are possible. We prove that, except for trivial restrictions, any perturbation
of the singular values can be achieved for almost every tensor with identical mode sizes.
This settles a conjecture from [Hackbusch and Uschmajew, 2016] for the case of identical
mode sizes. Our theoretical results are used to develop and analyze a variant of the Newton
method for constructing a tensor with specified higher-order singular values or, more generally,
with specified Gramians for the matricizations. We establish local quadratic convergence and
demonstrate the robust convergence behavior with numerical experiments.

Keywords: Tensors · higher-order singular value decomposition · Newton method

1 Introduction

Various types of matricizations (or flattenings) of a higher-order tensor X are connected with
subspace-based decompositions for representing and compressing X, such as the Tucker, the
hierarchical Tucker, and the tensor train decompositions; see [1,6,7,9] for surveys. In particular, the
singular values of matricizations allow for quantifying the error committed when approximating X
by such decompositions of lower rank. In this work, we continue our study [8] of the singular values
for matricizations associated with the Tucker decomposition. In particular, we address the question
whether these singular values can be moved in arbitrary directions by small perturbations of X.

1.1 Notation

Let us briefly recall the notation from [8]. Let X ∈ Rn1×···×nd ∼= Rn1⊗·· ·⊗Rnd be a real tensor of
order d with mode sizes n1, . . . ,nd . There are d principal matricizations (flattenings)

M( j)
X ∈ Rn1×nc

j ∼= Rn j ⊗

(⊗
i6= j

Rni

)
,
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where we have set nc
j = ∏i6= j ni. The kth row of M( j)

X contains a vectorization (in some prespecified
ordering) of the slice X(· · · ,k, · · ·) with k fixed at position j.

We denote with

• σ
( j)
X ∈ Rn j the vector of singular values of M( j)

X (arranged, e.g., in decreasing order);

• ΣX = (σ
(1)
X , . . . ,σ

(d)
X ) ∈ Rn1×·· ·×Rnd the tuple of higher-order singular values of X;

• G( j)
X = M( j)

X (M( j)
X )T the Gram matrix of the jth matricization;

• S = {X ∈ Rn1×···×nd : ‖X‖F = 1} the unit sphere in Rn1×···×nd ;

• S( j) = {x ∈ Rn j : ‖x‖2 = 1} the unit sphere in Rn j ;

• S= S(1)×·· ·×S(d) the Cartesian product of unit spheres;

• Rn×n
sym the space of real symmetric n×n matrices.

Further notation will be introduced in the text.

2 Problem statement

The singular values σ
( j)
X of the matricizations M( j)

X are not unrelated for different j. For example,
if X ∈S then σ

( j)
X ∈ S( j) for all j. Beyond this simple fact, it is, however, not trivial to describe

the relations between σ
( j)
X . For instance, it is not clear which combinations of singular values

can actually occur. This amounts to the study of the following set (here Sn is the group of n×n
permutation matrices).

Definition 2.1. The set

F= F(n1, . . . ,nd) := {(π(1)
σ
(1)
X , . . . ,π(d)

σ
(d)
X ) : X ∈S , π

( j) ∈ Sn j for j = 1, . . . ,d}

is called the set of normalized feasible configurations.

By the discussion above, F is a subset of S, actually a subset of nonnegative tuples in S. An
interesting, but apparently hard problem is to decide for a given Σ ∈ S whether Σ ∈ F, e.g., by
constructing a tensor X ∈S with ΣX = Σ (possibly up to sorting). Numerically, this can be tested
using the alternating projection method from [8] or the Newton method introduced in Sec. 5.

In this work, we focus on a different question regarding feasible configurations, namely whether
F contains interior points (relative to S).

Problem 2.2. Does F contain interior points (relative to S) ? For which X ∈S is ΣX an interior
point?

An interesting point about this question is that if ΣX is an interior point of F, then the higher-
order singular values of X are locally independent in the sense that for small, but otherwise arbitrary
perturbations Σ̃ = Σ+O(ε) ∈S, there exists a tensor X̃ with ΣX̃ = Σ̃ (up to sorting). For instance it
is then possible to perturb only the singular values in one direction j while keeping the others fixed.
Of course, this cannot hold for matrices (tensors of order d = 2), since a matrix and its transpose
have identical singular values. In fact, F(n1,n2) is the closure of a min(n1−1,n2−1)-dimensional
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submanifold of S(n1,n2) (which itself is of dimension n1 +n2−2), and hence contains no interior
point (unless n1 = n2 = 1). Also, we need to exclude tensors with n j > nc

j because the size n j×nc
j

of the matricization M( j)
X would then imply that some of the singular values are always zero. This

leads us to the following conjecture from [8, Conjecture 3.5].

Conjecture 2.3. For d ≥ 3, let n1, . . . ,nd satisfy the compatibility condition n j ≤ nc
j for j = 1, . . . ,d.

Then for almost all X ∈ S the higher-order singular value tuple ΣX is an interior point of
F(n1, . . . ,nd) with respect to the standard Lebesgue surface measure on S .

The main theoretical result of this paper is a rigorous proof of this conjecture for n×·· ·×n
tensors.

Theorem 2.4. Conjecture 2.3 is true for n×·· ·×n tensors of order d ≥ 3 and size n≥ 2.

2.1 Equivalent formulation using Gram matrices

Our proof of Theorem 2.4 follows the strategy sketched in [8, Remark 3.6]. The main role is played
by the map

Φ : Rn1×···×nd → Rn1×n1
sym ×·· ·×Rnd×nd

sym , X 7→ (G(1)
X , . . . ,G(d)

X ),

which takes a tensor to the collection of Gram matrices of its principal matricizations. Compared to
the mapping X 7→ ΣX, the function Φ is much simpler to study since it is quadratic. Note that Φ is
also homogeneous of degree two, that is,

Φ(tX) = t2
Φ(X) (2.1)

for all t ∈ R.
For K ∈ R, let us define

PK = {(G(1), . . . ,G(d)) ∈ Rn1×n1
sym ×·· ·×Rnd×nd

sym : tr(G( j)) = K for j = 1, . . . ,d}.

This set is a product of affine hyperplanes in Rn j×n j
sym , and therefore

dim(PK) =−d +
1
2

d

∑
j=1

n j(n j +1).

Further, we consider the linear space

P = R ·P1 (2.2)

= {(G(1), . . . ,G(d)) ∈ Rn1×n1
sym ×·· ·×Rnd×nd

sym : tr(G(i)) = tr(G( j)) for i, j = 1, . . . ,d},

which is of dimension
dim(P) = dim(PK)+1.

A simple but crucial observation is that Φ maps into P:

Φ(Rn1×···×nd )⊆P, (2.3)

whereas the Euclidean unit sphere S is mapped into the affine plane P1:

Φ(S )⊆P1. (2.4)

It turns out that Problem 2.2 admits an equivalent formulation in terms of the map Φ.
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Proposition 2.5. Let X ∈S . Then ΣX is an interior point of F relative to S, if and only if Φ(X) is
an interior point of Φ(S ) relative to P1.

Remark 1. Therefore, if Conjecture 2.3 is true, it means that the Gram matrices of tensor matriciza-
tions are generically locally independent, that is, they can be moved in arbitrary directions within
P . The simplicity of the map Φ compared to X 7→ ΣX also provides a convenient starting point for
a Newton method to be discussed in Sec. 5.

Proof of Proposition 2.5. Consider the spectral decomposition

G( j)
X =U ( j)

X Λ
( j)
X (U ( j)

X )T

with Λ
( j)
X = diag(σ ( j)

X )2. Knowing that ΣX or Φ(X) is an interior point implies σ
( j)
X > 0 (for Φ(X)

note that Φ(S ) contains only tuples of positive semidefinite matrices).
Now suppose that (G(1)

X , . . . ,G(d)
X ) = Φ(X) is an interior point of Φ(S ). If σ ( j) ∈ S( j) is a

positive vector sufficiently close to σ
( j)
X then the symmetric matrix G( j) =U ( j)

X diag(σ ( j))2(U ( j)
X )T ∈

P1 is in a prescribed neighborhood of G( j)
X . Since Φ(X) is an interior point, there exists a tensor

Y such that G( j)
Y = G( j) for j = 1, . . . ,d. In particular, Y has the higher-order singular values

(σ (1), . . . ,σ (d)). It follows that ΣX is a relative interior point of F.
To prove the reverse implication, let ΣX be an interior point of F. Consider (G(1), . . . ,G(d))∈P1

sufficiently close to Φ(X) so that each G( j) is positive definite and therefore admits a spectral
decomposition G( j) = V ( j)Λ( j)(V ( j))T with Λ( j) = diag(σ ( j))2 for some positive vector σ ( j). By
continuity of eigenvalues, σ ( j) is close to σ

( j)
X . Since ΣX is an interior point of F, this implies that

there is a tensor Y with higher-order singular values (σ (1), . . . ,σ (d)). Denoting by V ( j)
Y the matrix

of eigenvectors for G( j)
Y , we apply the orthogonal transformation

(V (1)(V (1)
Y )T ⊗·· ·⊗V (d)(V (d)

Y )T ) ·Y.

Here, the application of the tensor product operator is in the usual sense.1 In particular, the jth Gram
matrix of this tensor is given by

V ( j)(V ( j)
Y )T M( j)

Y (M( j)
Y )TV ( j)

Y (V ( j))T =V ( j)
Λ
( j)(V ( j))T = G( j),

which completes the proof.

2.2 Sufficient conditions

Due to (2.4), Φ(X) will be an interior point of P1, if its derivative

Φ
′(X) : Rn1×···×nd → Rn1×n1

sym ×·· ·×Rnd×nd
sym

has rank dim(P1) on the tangent space TS (X) of S at X, because this implies that the restriction
Φ|S as a map to P1 is a submersion at X and hence maps an open neighborhood of X0 in S to an
open neighborhood of Φ(X0) in P1; see, e.g., [4, § 16.7.5]. Note that Φ′(X) maps TS (X) on the
linear space P0. Since Φ is homogenous, the total rank of Φ′(X) is one larger than its restriction to
that tangent space.

Hence we obtain the following sufficient conditions.

1Using the j-mode matrix product × j [9], the formula becomes Y×1 (V
(1)
Y )TV (1)×2 · · ·×d (V

(d)
Y )TV (d).
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Proposition 2.6. If X ∈S satisfies

rank(Φ′(X)) = dim(P) (2.5)

or, equivalently,
Φ
′(X)[TS (X)] = P0, (2.6)

then Φ(X) is an interior point of P1.

In fact, since Φ′(X) depends polynomially on the entries of X, we can state a little more.

Proposition 2.7. If there exists a single tensor X0 ∈ Rn1×···×nd satisfying (2.5), then almost all
X ∈ Rn1×···×nd satisfy (2.5). In particular, (2.5) holds for almost all X ∈ S with respect to the
standard Lebesgue surface measure and Conjecture 2.3 is true for n1×·· ·×nd tensors.

Proof. The genericity claim follows from a standard logic. Set r := dim(P) for brevity and assume
rank(Φ′(X0)) = r. Since, by (2.3), the rank of Φ′(X) cannot be larger than r, it suffices to prove
that it takes at least this value for all X ∈ Rn1×···×nd . This property can be encoded as p(X) 6= 0,
where p is a polynomial in the entries of X (for instance one may use the sum of squares of all r× r
minors of a matrix representation of Φ′(X)). Hence it either holds p(X) 6= 0 for almost all X, or
p≡ 0. By assumption, the latter is not the case.

To prove that the property (2.5) is generic with respect to the surface measure on S as well, we
could apply the same argument by using real-analytic charts of S (the set of zeros of a non-zero
real-analytic function is of measure zero). However, it also follows from what we have already
proved. Namely, by (2.1), rank(Φ′(tX)) = rank(Φ′(X)) for all t 6= 0. This implies that the set
of X ∈S with rank(Φ′(X)) ≤ dim(P1) = dim(P)− 1 must be of surface measure zero, since
otherwise there is a set of positive volume with rank(Φ′(X))≤ dim(P)−1, which in light of the
previous considerations is not possible.

3 Proof of Theorem 2.4 (Conjecture 2.3 for n×·· ·×n tensors)

By Proposition 2.7, Theorem 2.4 is proven via the construction of an n×·· ·×n tensor X0 for each
d ≥ 3 and n≥ 2 such that Φ′(X0) has rank dn(n+1)/2−d +1. By the definition of Φ, we have

Φ
′(X)[H] =

(
M(1)

X (M(1)
H )T +M(1)

H (M(1)
X )T , . . . ,M(d)

X (M(d)
H )T +M(d)

H (M(d)
X )T

)
. (3.1)

We first discuss the case d = 3, n = 2 separately and then give a general construction that is valid
for all other cases.

Case d = 3, n = 2. Consider a general 2×2×2 tensor X with its matricization

M(1)
X = X =

(
a c
b d

∣∣∣∣ e g
f h

)
.
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A matrix representation of Φ′(X) : R2×2×2 → R2×2
sym ×R2×2

sym ×R2×2
sym can be directly computed

from (3.1):

Φ
′(X) =



2a 0 2c 0 2e 0 2g 0
b a d c f e h g
0 2b 0 2d 0 2 f 0 2h
2a 2b 0 0 2e 2 f 0 0
c d a b g h e f
0 0 2c 2d 0 0 2g 2h
2a 2b 2c 2d 0 0 0 0
e f g h a b c d
0 0 0 0 2e 2 f 2g 2h


.

We know that rank(Φ′(X))≤ 7 for all X. Choosing the particular tensor X0 given by the matriciza-
tion

M(1)
X0

=

(
1 1
1 0

∣∣∣∣ 0 0
0 1

)
,

we have

Φ
′(X0) =



2 0 2 0 0 0 0 0
1 1 0 1 0 0 1 0
0 2 0 0 0 0 0 2
2 2 0 0 0 0 0 0
1 0 1 1 0 1 0 0
0 0 2 0 0 0 0 2
2 2 2 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 2


, Z =



1 1 0 0 0 1 0
1 1 0 0 0 1 0
0 2 0 0 0 0 2
1 0 1 0 1 0 0
0 0 2 0 0 0 2
2 2 2 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 0 0 2


. (3.2)

The 7×7 matrix Z is obtained by omitting rows 1, 4 and column 4 from Φ′(X0). One calculates
that detZ = 16, which implies that rankΦ′(X0) = 7 = dn(n+1)/2−d +1.

General construction. Let X0 be the n×·· ·×n tensor of order d that has all entries zeros except
for

X0(k, . . . ,k) = 1, k = 1, . . . ,n,

and

X0(k,1,1, . . . ,1) = 1, k = 1, . . . ,n,

X0(1,k,1, . . . ,1) = 1, k = 1, . . . ,n,
...

X0(1, . . . ,1,1,k) = 1, k = 1, . . . ,n.

In other words, X0 has ones on its diagonal, and in all fibers intersecting with (1, . . . ,1). For example,
when d = 3 and n = 4, this results in a matricization

M(1)
X0

=


1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 . (3.3)
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Note that X0 is super-symmetric and hence all matricizations are essentially the same.

Theorem 3.1. For all d,n satisfying d = 3,n≥ 3 or d ≥ 4,n≥ 2, the tensor X0 constructed above
satisfies (2.5).

The rest of this section is concerned with the proof of Theorem 3.1.

3.1 Theorem 3.1 for d = 3, n = 3

This case is treated explicitly, in analogy to the case d = 3, n = 2 discussed above. As the involved
matrices are quite large, we refrain from displaying them and only describe the construction. We first
construct the 18×27 matrix representation of Φ′(X0) analogous to (3.2). After omitting rows 1,7
and columns 4,6,7,8,9,11,13,15,17,21,23, the resulting 16×16 matrix has determinant 384. Thus,
rank(Φ′(X0)) = 16 = dn(n+1)/2−d +1.

3.2 Theorem 3.1 for remaining cases

To prove Theorem 3.1 for the remaining cases we show (2.6) by constructing elements H from the
tangent space TS (X0) (that is, H is orthogonal to X0) such that Φ′(X0) applied to these elements
yields a basis of the space P0. Using (3.1), it is easy to verify that such a basis is obtained from the
following two lemmas by sweeping through all combinations of j, k and ` as indicated. In particular,
note that the diagonal vectors appearing in Lemma 3.2 (i) form a basis of the subspace of all vectors
in Rn whose entries sum up to zero.

Lemma 3.2 (Diagonal entries). For any 1≤ j≤ d and 2≤ k≤ n there exists H ∈ TS (X0) such that

(i) the diagonal of M( j)
X0

(M( j)
H )T is the vector (1,0, . . . ,0,−1,0, . . . ,0) with −1 at position k;

(ii) the diagonal of M(i)
X0
(M(i)

H )T is zero for i 6= j.

Lemma 3.3 (Off-diagonal entries). For any 1≤ j ≤ d and 1≤ ` < k ≤ n there exists H ∈ TS (X0)
such that

(i) the only nonzero of M( j)
X0

(M( j)
H )T is at position (k, `);

(ii) M(i)
X0
(M(i)

H )T = 0 for all i 6= j.

Proof of Lemma 3.2 Because X0 is super-symmetric, it suffices to treat j = 1. For fixed 2≤ k≤ n
consider H with all entries zeros except for an entry 1 at position (1, . . . ,1) and an entry −1 at
position (k,1, . . . ,1). The pth diagonal entry of M(i)

X0
(M(i)

H )T is the Frobenius inner product of the
slices X0(· · · , p, · · ·) and H(· · · , p, · · ·) with p at position i.

When i 6= j = 1, the slice H(· · · , p, · · ·) contains non-zero entries only when p = 1, namely an
entry 1 at (1, . . . , [1], . . . ,1) and an entry −1 at (k,1, . . . , [1], . . . ,1). (To simplify notation, we use
square brackets to indicate the fixed index of slices.) Since the entries of X0 are 1 at both of these
positions, the slices are orthogonal for p = 1 as well. In turn, we have proved that M(i)

X0
(M(i)

H )T has a
zero diagonal when i 6= 1.

When i = j = 1, the slices H(p, · · ·) are non-zero only if p = 1 or p = k. In both cases they
contain a single non-zero entry at ([1],1 . . . ,1) resp. ([k],1, . . . ,1), which will be multiplied with a 1
at the corresponding position of X0(p, · · ·) when forming the inner product. Hence, the diagonal
entries of M(1)

X0
(M(1)

H )T are as asserted.

Proof of Lemma 3.3 Again, it suffices to consider j = 1. Three cases will be distinguished.

7



Case d ≥ 4, n≥ 2

This case is simpler than the case d = 3 and we therefore treat it first. Given 1 ≤ ` < k ≤ n, we
consider the tensor H that contains only zeros except for a nonzero at position (`,k, . . . ,k).

The (p,q) entry of M(i)
X0
(M(i)

H )T is the Frobenius inner products of the slices X0(· · · , p, · · ·) and
H(· · · ,q, · · ·) with p,q at positions i. When i 6= 1, this slice of H is nonzero only if q = k, in which
case the nonzero entry is at (`,k, . . . , [k], . . . ,k). The nonzero entries of X0 are at multi-indices where
either all indices are the same, or contain d−1 indices equal to one. Since 1≤ ` < k and d ≥ 4, it
follows that X0(`,k, . . . ,k, p,k, . . . ,k) = 0 for any p and hence none of the slices X0(· · · , p, · · ·) has
a nonzero matching the one at (`,k, . . . , [k], . . . ,k). We conclude M(i)

X0
(M(i)

H )T = 0 for i 6= 1.
When i = 1, we note that the slice H(q, · · ·) has a nonzero entry only if q = `, namely at

([`],k, . . . ,k). Since k > 1, a slice X0(p, · · ·) has a nonzero at the same place only if p = k. Hence
the only nonzero entry of M(1)

X0
(M(1)

H )T is at (p,q) = (k, `).

Case d = 3, 2≤ ` < k ≤ n.

In this case, we again consider the tensor H which contains only zeros except at entry (`,k,k).
For i = 2, the (p,q) entry of M(i)

X0
(M(i)

H )T is the Frobenius inner product of the slices X0(·, p, ·)
and H(·,q, ·). This slice of H is non-zero only if q = k, in which case the nonzero entry is at (`, [k],k).
The slice X0(·, p, ·) on the other hand has possibly nonzeros at (p, [p], p) and (α, [p],β ) where either
α or β (or both if p = 1) are equal to one. Since 2≤ ` < k, it is not possible that α = `,β = k and,
hence, M(i)

X0
(M(i)

H )T = 0. The argument for i = 3 is analogous.
Considering i = 1, we note that the slice H(q, ·, ·) is zero unless q = `, in which case it has a

single nonzero entry at ([`],k,k). Since k > ` ≥ 1, the slice X0(p, ·, ·) has a nonzero at the same
place only if p = k. The only nonzero entry of M(1)

X0
(M(1)

H )T is therefore at (p,q) = (k, `).

Case d = 3, n≥ 4, 1 = ` < k ≤ n.

Let us first assume 2 < k < n. Then we consider the tensor H which contains only zero entries,
except that the slice H(1, ·, ·) contains the submatrix

H([1],k−1 : k+1,k−1 : k+1) =

 0 −1
2

1
2

−1
2 1 −1

2
1
2 −1

2 0

 .

For example, when n = 4, k = 3, the resulting tensor has the matricization

M(1)
H =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
0 0 −1

2
1
2

0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
0 −1

2 1 −1
2

0 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
0 1

2 −1
2 0

0 0 0 0
0 0 0 0
0 0 0 0

 . (3.4)

A comparison with (3.3) immediately shows that M(1)
X0

(M(1)
H )T has a single nonzero entry at (k,1).

One also easily checks that M(i)
X0
(M(i)

H )T = 0 for i = 2,3. For instance, for i = 3 this can be seen from
the fact that the ‘frontal’ slices of X0 depicted in (3.3) are pair-wise orthogonal in the Frobenius
inner product to the ‘frontal’ slices of H given in (3.4). This reasoning remains valid for larger n, as
H will only have additional zero blocks.
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When k = 2, one considers the submatrix

H([1],2 : 4,2 : 4) =

 1 −1
2 −1

2
−1

2 0 1
2

−1
2

1
2 0

 ,

whereas for k = n one chooses

H([1],n−2 : n,n−2 : n) =

 0 1
2 −1

2
−1

2 0 −1
2

−1
2 −1

2 1

 .

This completes the proof of Lemma 3.3.

4 Numerical evidence for unequal mode sizes

The construction of the tensor X0 from Section 3 does not extend to cases where the mode sizes
n1, . . . ,nd are not identical. At this point, we are not aware of a construction that admits analytic
verification of the condition of Proposition 2.7 for general n1, . . . ,nd . For a specific choice of
n1, . . . ,nd , it is certainly possible to extend the technique from Section 3.1. In the following, we use
a simpler approach to provide strong numerical evidence for d = 3 and a range of (small) mode
sizes.

We used MATLAB with Tensor Toolbox [2] to construct the matrix representation of Φ′(X)
with the range restricted to Rn1×n1

sym × ·· · ×Rnd×nd
sym ; see (3.2) for an example. This matrix has

size N× (n1 · · ·nd) with N = 1
2 ∑

d
j=1 n j(n j + 1) and, by Proposition 2.7, Conjecture 2.3 holds if

Φ′(X) has rank N− d + 1 for some X. To verify this condition numerically we have computed
σN−d+1

(
Φ′(X)

)
/σ1
(
Φ′(X)

)
for random X, where σk(·) denotes the kth largest singular value of

a matrix. If this ratio is sufficiently larger than 10−16 in double precision then Conjecture 2.3 is
likely to hold, because singular values are perfectly well conditioned [5]. Table 1 displays the results
obtained for tensors constructed by typing

rand(’seed’,0); X = rand(n1,n2,n3);

in MATLAB. The condition of Proposition 2.7 is confirmed for all mode sizes tested, with the notable
exceptions (n1,n2,n3) = (2,2,5) and (n1,n2,n3) = (2,5,2), for which the compatibility condition
n j ≤ nc

j of Conjecture 2.3 is not satisfied.

5 A fast iterative method for assigning higher-order singular values

In [8], an alternating projection method for prescribing higher-order singular values was proposed.
This method was observed to converge linearly to a feasible set of singular values, but no theoretical
analysis was provided. Based on the results of the present paper, we develop a variant of the Newton
method for which local quadratic convergence can be proven.

5.1 Newton method

Given a collection of symmetric, positive definite matrices (G(1), . . . ,G(d)), we aim at finding a
tensor X such that

Φ(X) = (G(1), . . . ,G(d)). (5.1)
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Table 1: Computed values of σN−d+1
(
Φ′(X)

)
/σ1
(
Φ′(X)

)
for random n1×n2×n3 tensors X.

n1 = 2
n3 = 2 n3 = 3 n3 = 4 n3 = 5

n2 = 2 0.034 0.027 0.016 6×10−17

n2 = 3 0.035 0.046 0.013 0.011
n2 = 4 0.012 0.028 0.032 0.033
n2 = 5 7×10−17 0.030 0.034 0.028

n1 = 3
n3 = 3 n3 = 4 n3 = 5 n3 = 6

n2 = 3 0.060 0.071 0.053 0.045
n2 = 4 0.060 0.061 0.053 0.040
n2 = 5 0.054 0.055 0.060 0.051
n2 = 6 0.034 0.046 0.052 0.050

n1 = 4
n3 = 4 n3 = 5 n3 = 6 n3 = 7

n2 = 4 0.059 0.055 0.053 0.048
n2 = 5 0.059 0.067 0.059 0.057
n2 = 6 0.043 0.059 0.059 0.057
n2 = 7 0.055 0.057 0.057 0.053

n1 = 5
n3 = 5 n3 = 6 n3 = 7 n3 = 8

n2 = 5 0.066 0.062 0.059 0.046
n2 = 6 0.061 0.062 0.056 0.053
n2 = 7 0.057 0.054 0.055 0.056
n2 = 8 0.047 0.054 0.056 0.054

Our method and the analysis simplify if we do not impose a normalization on ‖X‖F . We only
assume that the right-hand side of (5.1) is contained in the linear space P from (2.2), that is, the
traces of all G( j) are equal. For the rest of this section, we restrict the co-domain of Φ to P , that is,
Φ : Rn1×···×nd →P .

If we are only interested in perturbing singular values, we compute the spectral decomposition
of the Gram matrices for an initial tensor X0,

G( j)
X0

=U ( j)
X0

Λ
( j)
X0
(U ( j)

X0
)T ,

and set
G( j) =U ( j)

X0
Λ
( j)(U ( j)

X0
)T

with
Λ
( j) = Λ

( j)
X0

+O(ε).

After a suitable normalization, (G(1), . . . ,G(d)) ∈P . In view of our results, (5.1) is likely to have at
least one solution for sufficiently small ε .

Applying the Newton method to (5.1) requires solving an equation of the form

Φ
′(Xn)[Hn] = Φ(Xn)− (G(1), . . . ,G(d)). (5.2)

Because P is linear, the right-hand side is contained in P .
Suppose that Φ′(Xn) : Rn1×···×nd →P satisfies the full rank condition (2.5) of Proposition 2.7.

Then Φ′(Xn) has full row rank, in other words, (5.2) is consistent. Following [3, Sec. 4.4], we
choose the solution of smallest norm:

Hn = Φ
′(Xn)

+
(
Φ(Xn)− (G(1), . . . ,G(d))

)
, (5.3)

where Φ′(Xn)
+ : P → Rn1×···×nd denotes the Moore-Penrose pseudoinverse of Φ′(Xn). The next

iterate is
Xn+1 = Xn−Hn. (5.4)
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5.2 Convergence analysis

In the following, we study the convergence of (5.3)–(5.4). For this purpose, we need to choose
a norm on P . Given G̃ = (G̃(1), . . . , G̃(d)) ∈P , we let ‖G̃‖ be the norm obtained by taking the
Euclidean norm of the vector containing all entries in the upper triangular parts of the symmetric
matrices G̃( j). Based on this norm, we define

κ(X) := 1/sup{‖Φ′(X)+G̃‖F : G̃ ∈P, ‖G̃‖= 1}= σdim(P)(Φ
′(X)), (5.5)

which is positive for any X satisfying (2.5).

Theorem 5.1. Assume that X0 satisfies (2.5) and

‖Φ(X0)− (G(1), . . . ,G(d))‖ ≤ κ(X0)
2

6
√

d
(5.6)

for (G(1), . . . ,G(d)) ∈P . Then all iterates Xn defined by (5.3)–(5.4) satisfy (2.5) and converge to a
solution of (5.1). Moreover,

‖Xn+1−Xn‖F ≤
1
2

ω‖Xn−Xn−1‖2
F

holds with ω = 6
√

d/κ(X0).

Proof. Let us first note that Φ′(Y) is linear in Y and (3.1) implies the bound

‖Φ′(Y)[H]‖2 ≤
d

∑
j=1

∥∥M( j)
Y (M( j)

H )T +M( j)
H (M( j)

Y )T
∥∥2

F ≤ 4d‖Y‖2
F‖H‖2

F .

Hence, the induced operator norm of Φ′(Y) satisfies ‖Φ′(Y)‖ ≤ 2
√

d‖Y‖F .
Now, let F(X) := Φ(X)− (G(1), . . . ,G(d)). By (5.6),

‖F ′(X0)
+F(X0)‖F = ‖Φ′(X0)

+F(X0)‖F ≤
κ(X0)

6
√

d
=: δ .

Set ρ := 2δ = κ(X0)/(3
√

d). Then for every X such that ‖X−X0‖ ≤ ρ it holds that

κ(X)≥ κ(X0)−‖Φ′(X0−X)‖ ≥ κ(X0)−2
√

dρ = κ(X0)/3 > 0.

This implies that X satisfies (2.5) and

‖Φ′(X)+(Φ′(Y)−Φ
′(X))[Y−X]‖F ≤ 3

κ(X0)
‖(Φ′(Y−X))[Y−X]‖

≤ 6
√

d
κ(X0)

‖Y−X‖2
F = ω‖Y−X‖2

F .

Because of δω ≤ 1, all conditions of a Newton-Kantorovich-like theorem for underdetermined
systems are satisfied and the claim of the theorem follows from [3, Thm. 4.19].
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5.3 Numerical examples

Numerically, we observed rather robust convergence of the Newton method (5.3)–(5.4). In the
following, we report on two examples that are representative for our observations.

Example 5.2. We created a random 10× 10× 10 tensor X0, computed the Gram matrices and
perturbed every Gram matrix by a random perturbation of norm ε . If a perturbed matrix happens
to be indefinite, it is shifted by the smallest eigenvalue to become positive semidefinite. All Gram
matrices are normalized to have trace 1. The Newton method has been applied with starting
tensor X0 to match the perturbed Gram matrices. Figure 1 shows the obtained results for ε ∈
{10−1,10−2,10−3}. For ε = 10−2 and ε = 10−3, we clearly observe local quadratic convergence.
For ε = 10−1, one of the Gram matrices has a zero eigenvalue. Clearly, such perturbed Gram
matrices cannot represent an interior point in the image of Φ, and we can therefore not expect local
quadratic convergence. It turns out that the Newton method still converges but it deteriorates to
linear convergence.

0 2 4 6 8 10
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−20

10
−15

10
−10

10
−5

10
0

ε = 10
−1

ε = 10
−2

ε = 10
−3

Figure 1: Error ‖Φ(Xn)− (G(1), . . . ,G(d))‖ vs. iteration number n for Example 5.2.

Example 5.3. We use the same tensor X0 as in Example 5.2 as a starting point, but now prescribe,
rather arbitrarily, diagonal Gram matrices

G(1) = G(2) = G(3) =
1
10

diag(1,2, . . . ,10). (5.7)

The Newton method still converges quadratically; see Figure 2. Having diagonal Gram matrices,
the resulting tensor is an HOSVD tensor as defined in [8]. Despite the fact that the Gram matrices
are actually all equal, the resulting tensor is not diagonal. In fact, a diagonal tensor never satisfies
condition (2.5).

We now modify the last Gram matrix as follows:

G(1) = G(2) =
1

10
diag(1,2, . . . ,10), G(3) = diag(1,0, . . . ,0). (5.8)

This is not a feasible configuration and, not surprisingly, the Newton method does not converge for
this example.
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Figure 2: Error ‖Φ(Xn)− (G(1), . . . ,G(d))‖ vs. iteration number n for Example 5.3, using the
diagonal Gram matrices (5.7) (diagonal I) and (5.8) (diagonal II)
.

6 Conclusions and open problems

In this work, we have shown that the higher-order singular values can be moved in arbitrary
directions for almost every tensor with identical mode sizes. Numerical evidence suggests that
this property also holds for tensors with unequal, compatible mode sizes. While our results reveal
insights into the independence of the higher-order singular values, a complete characterization of the
set of feasible higher-order singular values remains an open problem. Also, it would be interesting
to extend our results to other subspace-based tensor decompositions, such as the tensor train and
hierarchical Tucker decompositions, for which one has to investigate more complicated systems of
tensor matricizations.
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