
Wegelerstraße  •  Bonn • Germany
phone +  - • fax +  -

www.ins.uni-bonn.de

Y. Nakatsukasa, T. Soma, A. Uschmajew

Finding a low-rank basis in a matrix subspace

INS Preprint No. 1505

March 2015
(Revised version, June 2016)

Finding a low-rank basis in a matrix subspace

Yuji Nakatsukasa · Tasuku Soma ·
André Uschmajew

Abstract For a given matrix subspace, how can we find a basis that consists
of low-rank matrices? This is a generalization of the sparse vector problem. It
turns out that when the subspace is spanned by rank-1 matrices, the matrices
can be obtained by the tensor CP decomposition. For the higher rank case, the
situation is not as straightforward. In this work we present an algorithm based
on a greedy process applicable to higher rank problems. Our algorithm first
estimates the minimum rank by applying soft singular value thresholding to
a nuclear norm relaxation, and then computes a matrix with that rank using
the method of alternating projections. We provide local convergence results,
and compare our algorithm with several alternative approaches. Applications
include data compression beyond the classical truncated SVD, computing
accurate eigenvectors of a near-multiple eigenvalue, image separation and
graph Laplacian eigenproblems.

Keywords low-rank matrix subspace · `1 relaxation · alternating projections ·
singular value thresholding · matrix compression

This work was supported by JST CREST (Iwata team), JSPS Scientific Research Grants No.
26870149 and No. 26540007, and JSPS Grant-in-Aid for JSPS Fellows No. 267749.

Y. Nakatsukasa
Mathematical Institute
University of Oxford, Oxford, OX2 6GG, United Kingdom
E-mail: yuji.nakatsukasa@maths.ox.ac.uk

T. Soma
Graduate School of Information Science & Technology,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
E-mail: tasuku soma@mist.i.u-tokyo.ac.jp

A. Uschmajew
Hausdorff Center for Mathematics & Institute for Numerical Simulation
University of Bonn, 53115 Bonn, Germany
E-mail: uschmajew@ins.uni-bonn.de

2 Yuji Nakatsukasa et al.

1 Introduction

Finding a succinct representation of a given object has been one of the central
tasks in the computer and data sciences. For vectors, sparsity (i.e., `0-norm) is
a common measure of succinctness. For example, exploiting prior knowledge
on sparsity of a model is now considered crucial in machine learning and
statistics [7]. Although the naive penalization of the `0-norm easily makes the
problem intractable, it turns out that exploiting the `1-norm as a regularizer
yields a tractable convex problem and performs very well in many settings [9,
11]. This phenomenon is strongly related to compressed sensing, which shows
under reasonable assumptions that the `1-recovery almost always recovers a
sparse solution for an undetermined linear system. Since matrices are more
complex objects, one may consider different criteria on succinctness for matrices,
namely the rank. Interestingly, a variety of concepts from sparse vector recovery
carry over to low-rank matrix recovery, for which the nuclear norm plays a
role analogous to the `1-norm for sparse vectors [25,26]. The nuclear norm
convex relaxation has demonstrated its theoretical and practical usefulness in
matrix completion and other low-rank optimization tasks, and is nowadays
accompanied by an endless array of optimization algorithms; see, e.g., [2,8,10,
12,45,46,54], and [55] for a general overview.

Recently, the sparse vector problem has been studied by several authors [5,
20,52,57]. In the sparse vector problem, we are given a linear subspace S in
Rn, and the task is to find the sparsest nonzero vector in S. The celebrated
results for `1-regularization are not directly applicable, and the sparse vector
problem is less understood. The difficulty arises from the nonzero constraints;
a natural `1-relaxation only yields the trivial zero vector. Thus the sparse
vector problem is nonconvex in its own nature. A common approach is based
on the hypercontractivity, that is, optimizing the ratio of two different norms.
An algorithm that optimizes the `1/`∞-ratio is studied in [20,57], and the
algorithm in [52] works with the `1/`2-ratio. Optimization of the `4/`2-ratio
was recently considered by Barak, Kelner, and Steurer [5]. A closely related
problem is the sparse basis problem, in which we want to find a basis of S that
minimizes the sum of the `0-norms. In addition to imposing the sparsity of
vectors as in the sparse vector problem, a major difficulty here lies in ensuring
their linear independence. The recent work [60,61] is an extensive theoretical
and practical approach to the very similar problem of sparse dictionary learning.

In this paper, we consider the following problem, which we call the low-rank
basis problem. Let M be a matrix subspace in Rm×n of dimension d. The goal
is to

minimize rank(X1) + · · ·+ rank(Xd)

subject to span{X1, . . . , Xd} =M.
(1)

The low-rank basis problem generalizes the sparse basis problem. To see this,
it suffices to identify Rn with the subspace of diagonal matrices in Rn×n. As a
consequence, any result on the low-rank basis problem (1) (including relaxations
and algorithms) will apply to the sparse basis problem with appropriate changes

Finding a low-rank basis in a matrix subspace 3

in notation (matrix nuclear norm for diagonal matrices becomes 1-norm etc.).
Conversely, some known results on the sparse basis problem may generalize
to the low-rank basis problem (1). An obvious but important example of this
logic concerns the complexity of the problem: It has been shown in Coleman
and Pothen [15] that even if one is given the minimum possible value for
‖x1‖0 + · · ·+ ‖xd‖0 in the sparse basis problem, it is NP-hard to find a sparse
basis. Thus the low-rank basis problem (1) is also NP-hard in general.

A closely related (somewhat simpler) problem is the following low-rank
matrix problem:

minimize rank(X)

subject to X ∈M, X 6= O.
(2)

This problem is a matrix counterpart of the sparse vector problem. Again, (2)
is NP-hard [15], even if M is spanned by diagonal matrices. Note that our
problem (2) does not fall into the framework of Cai, Candés, and Shen [8], in
which algorithms have been developed for finding a low-rank matrix X in an
affine linear space described as A(X) = b (matrix completion problems are of
that type). In our case we have b = 0, but we are of course not looking for
the zero matrix, which is a trivial solution for (2). This requires an additional
norm constraint, and modifications to the algorithms in [8].

1.1 Our contribution

We propose an alternating direction algorithm for the low-rank basis problem
that does (i) rank estimation, and (ii) obtains a low-rank basis. We also provide
convergence analysis for our algorithm. Our algorithm is based on a greedy
process, whose use we fully justify. In each greedy step we solve the low-rank
matrix problem (2) in a certain subspace, and hence our algorithm can also
solve the low-rank matrix problem.

Our methods are iterative, and switch between the search of a good low-rank
matrix and the projection on the admissible set. The second step typically
increases the rank again. The solution would be a fixed point of such a procedure.
We use two phases with different strategies for the first step, i.e., finding a
low-rank matrix.

In the first phase we find new low-rank guesses by applying the singular value
shrinkage operator (called soft thresholding) considered in Cai, Candés, and
Shen [8]. In combination with the subspace projection, this results in the matrix
analog of the alternating direction algorithm proposed very recently by Qu, Sun,
and Wright [52] for finding sparse vectors in a subspace. An additional difficulty,
however, arises from the fact that we are required to find more than one linearly
independent low-rank matrices in the subspace. Also note that our algorithm
adaptively changes the thresholding parameter during its execution, which
seems necessary for our matrix problem, although [52] fixes the thresholding
parameter before starting their algorithm. In our experiments it turns out that
the use of the shrinkage operator clearly outperforms alternative operations,

4 Yuji Nakatsukasa et al.

e.g., truncating singular values below some threshold, in that it finds matrices
with correct rank quite often, but that the distance to the subspace M is too
large. This is reasonable as the only fixed points of soft thresholding operator
are either zero, or, when combined with normalization, matrices with identical
nonzero singular values, e.g., rank-one matrices.

As we will treat the subspace constraint as non-negotiable, we will need
further improvement. We replace the shrinkage operator in the second phase
by best approximation of the estimated rank (which we call hard thresholding).
Combined with the projection onto the admissible set M, this then delivers
low-rank matrices in the subspace M astonishingly reliably (as we shall see,
this second phase is typically not needed when a rank-one basis exists).

Our convergence analysis in Section 4 provides further insights into the
behavior of the process, in particular the second phase.

1.2 Applications

The authors were originally motivated to consider the low-rank basis problem
by applications in discrete mathematics [29,38,47]. It can be useful also in
various other settings, some of which we outline below.

Compression of SVD matrices

Low-rank matrices arise frequently in applications and a low-rank (approximate)
decomposition such as the SVD is often used to reduce the storage to represent
the matrix A ∈ Rm×n: A ≈ UΣV T . Here Σ ∈ Rr×r where r is the rank. The
memory requirement for storing the whole A is clearly mn, whereas U,Σ, V
altogether require (m+ n)r memory (we can dismiss Σ by merging it into V).
Hence, the storage reduction factor is

(m+ n)r

mn
, (3)

so if the rank r is much smaller than min(m,n) then we achieve significant
memory savings.

This is all well known, but here we go one step further and try to reduce
the memory cost for representing the matrices U, V . Note that the same idea
of using a low-rank representation is useless here, as these matrices have
orthonormal columns and hence the singular values are all ones.

The idea is the following: if we matricize the columns of U (or V), those
matrices might have a low-rank structure. More commonly, there might exist
a nonsingular matrix W ∈ Rr×r such that the columns of UW have low-rank
structure when matricized. We shall see that many orthogonal matrices that
arise in practice have this property. The question is, then, how do we find such
W and the resulting compressed representation of U? This problem boils down
to the low-rank basis problem, in which M is the linear subspace spanned by
the matricized columns of U .

Finding a low-rank basis in a matrix subspace 5

To simplify the discussion here we assume m = s2 for an integer s (otherwise,
e.g. when m is prime, a remedy is to pad zeros to the bottom). Once we find an

appropriate W for U ∈ Rs2×r, we represent the matricization of each column
as a low-rank (rank r̂) matrix Ur̂Σ̂Vr̂, which is represented using 2sr̂ memory,
totaling to 2srr̂ + r2 where r2 is for W . Since the original U requires s2r
memory with r � s2, this can significantly reduce the storage if r̂ � r.

When this is employed for both U and V the overall storage reduction for
representing A becomes

4srr̂ + r2

mn
. (4)

For example, when m = n, r = δm and r̂ = δ̂s for δ, δ � 1 this factor is

4δδ̂ + δ2, (5)

achieving a “squared” reduction factor compared with (3), which is about 2δ.
Of course, we can further reduce the memory by recursively matricizing the

columns of Ur̂, as long as it results in data compression.

Computing and compressing an exact eigenvector of a multiple eigenvalue

Eigenvectors of a multiple eigenvalue are not unique, and those corresponding
to near-multiple eigenvalues generally cannot be computed to high accuracy.
We shall show that it is nonetheless sometimes possible to compute exact
eigenvectors of near-multiple eigenvalues, if additional property is present that
the eigenvectors are low-rank when matricized. This comes with the additional
benefit of storage reduction, as discussed above. We describe more details and
experiments in Section 5.4.

The rank-one basis problem

An interesting and important subcase of the low-rank basis problem is the
rank-one basis problem; in this problem, we are further promised that a given
subspace M is spanned by rank-one matrices. Gurvits [29] first considered the
rank-one basis problem in his work on the Edmonds problem [24]. Below let us
explain his original motivation and connections to combinatorial optimization.

The task of Edmonds’ problem is to find a matrix of maximum rank in
a given matrix subspace. It is known that sampling a random element in a
matrix subspace yields a solution with high probability, and therefore the main
interest is to design deterministic algorithms (of course, this motivation is
closely related to polynomial identity testing and the P vs BPP conjecture [49]).
For some special cases, one can devise a deterministic algorithm by exploiting
combinatorial structure of a given subspace. In particular, if a given basis
consists of rank-one matrices (which are known), Edmonds’ problem reduces
to linear matroid intersection [47], which immediately implies the existence of
deterministic algorithms.

6 Yuji Nakatsukasa et al.

Gurvits [29] studied a slightly more general setting: a given subspace is only
promised to be spanned by some rank-one matrices, which are unknown. If one
can solve the rank-one basis problem, this setting reduces to the previous case
using the solution of rank-one basis problem. Indeed, he conjectured that the
rank-one basis problem is NP-hard, and designed a deterministic algorithm
for his rank maximization problem without finding these rank-one matrices
explicitly. We also note that Ivanyos et al. [38] investigated the Edmonds
problem for a matrix subspace on finite fields, which is useful for max-rank
matrix completion (see [31,32] and references therein).

Tensor decomposition

The rank-one basis problem has an interesting connection to tensor decomposi-
tion: finding a rank-one basis for a d-dimensional matrix subspace amounts
to finding a CP decomposition (e.g., [40, Sec. 3]) of representation rank d for
a third-order tensor with slices M1, . . . ,Md that form a basis for M. For the
latter task very efficient nonconvex optimization algorithm like alternating
least squares exist, which, however, typically come without any convergence
certificates. An alternative, less cheap, but exact method uses simultaneous
diagonalization, which are applicable when d ≤ min(m,n). Applying these
methods will often be successful when a rank-one basis exists, but fails if not.
This tensor approach seems to have been overseen in the discrete optimization
community so far, and we explain it in Appendix A.

Even in general, when no rank-one basis exists, the representation of
matrices M1, . . . ,Md in a low-rank basis can be seen as an instance of tensor
block term decomposition [17] with d blocks. Hence, given any tensor with slices
M1, . . . ,Md (not necessarily linearly independent), our method may be used to
obtain a certain block term decomposition with low-rank matrices constrained
to the span of M1, . . . ,Md. These matrices may then be further decomposed
into lower-rank components. In any case, the resulting sum of ranks of the basis
provides an upper bound for the CP rank of the tensor under consideration.

While in this paper we do not dwell on the potential applications of our
method to specific tensor decomposition tasks as they arise in signal processing
and data analysis (see [14,40] for overview), we conduct a numerical comparison
with a state-of-the-art tensor algorithm for CP decomposition for synthetic
rank-one basis problems; see Section 5.1.1.

1.3 Outline and notation

The rest of this paper is organized as follows. Section 2 proves that a greedy
algorithm would solve the low-rank basis problem, if each greedy step (which
here is NP-hard) is successful. In Section 3, we present our algorithm for the
low-rank basis problem that follows the greedy approach. We then analyze
convergence of phase II in our algorithm in Section 4. Experimental evaluation
of our algorithm is illustrated in Section 5. For the special case of the rank-one

Finding a low-rank basis in a matrix subspace 7

basis problem, we describe the alternative approach via tensor decomposition
in Appendix A.

Notation We summarize our notation: m× n is the size of the matrices in M;
d is the dimension of the subspace M⊆ Rm×n; r will denote a rank. We use
the notation mat(x) ∈ Rm×n for the matricization of a vector x ∈ Rmn, and
vec(X) ∈ Rmn denotes the inverse operation for X ∈ Rm×n.

2 The abstract greedy algorithm for the low-rank basis problem

As already mentioned, the low-rank basis problem (1) for a matrix subspace
M is a generalization of the sparse basis problem for subspaces of Rn. In [15] it
was shown that a solution to the sparse basis problem can be in principle found
using a greedy strategy. The same is true for (1), as we will show next. The
corresponding greedy algorithm is given as Algorithm 1. Indeed, this algorithm
can be understood as a greedy algorithm for an infinite matroid [51] of finite
rank. We can prove that Algorithm 1 finds a minimizer of (1), by adapting a
standard proof for greedy algorithms on finite matroids. Note that this fact
does not imply that (1) is tractable, since finding X∗` in the algorithm is a
nontrivial task.

Algorithm 1: Greedy meta-algorithm for computing a low-rank basis

Input: Subspace M⊆ Rm×n of dimension d.

Output: Basis B = {X∗1 , . . . , X∗d} of M.

1 Initialize B = ∅.
2 for ` = 1, . . . , d do

3 Find X∗` ∈M of lowest possible rank such that B ∪ {X∗` } is linearly independent.

4 B ← B ∪ {X∗` }
5 end

Lemma 1 Let X∗1 , . . . , X
∗
d denote matrices constructed by the greedy Algo-

rithm 1. Then for any 1 ≤ ` ≤ d and linearly independent set {X1, . . . , X`} ⊆
M with rank(X1) ≤ · · · ≤ rank(X`), it holds

rank(Xi) ≥ rank(X∗i) for i = 1, . . . , `.

Proof The proof is by induction. By the greedy property, X∗1 is a (nonzero)
matrix of minimal possible rank inM, i.e., rank(X∗1) ≤ rank(X1). For ` > 1, if
rank(X`) < rank(X∗`), then rank(Xi) < rank(X∗`) for all i = 1, . . . , `. But since
one Xi must be linearly independent from X∗1 , . . . , X

∗
`−1, this would contradict

the choice of X∗` in the greedy algorithm. ut

8 Yuji Nakatsukasa et al.

We say a linearly independent set B` = {X̂1, . . . , X̂`} ⊆ M is of minimal
rank, if

∑̀
i=1

rank(X̂i) = min

{∑̀
i=1

rank(Xi) : {X1, . . . , X`} ⊆ M is linearly independent

}
.

The following theorem is immediate from the previous lemma.

Theorem 2 Let X∗1 , . . . , X
∗
d denote matrices constructed by the greedy Algo-

rithm 1, and let B` = {X1, . . . , X`} ⊆ M be a linearly independent set with
rank(X1) ≤ · · · ≤ rank(X`). Then B` is of minimal rank if (and hence only if)

rank(Xi) = rank(X∗i) for i = 1, . . . , `.

In particular, {X∗1 , . . . , X∗` } is of minimal rank.

A remarkable corollary is that the ranks of the elements in a basis of lowest
rank are essentially unique.

Corollary 3 The output B = {X∗1 , . . . , X∗d} of Algorithm 1 solves the low-rank
basis problem (1), that is, provides a basis for M of lowest possible rank. Any
other basis of lowest rank takes the same ranks rank(X∗`) up to permutation.

It is worth mentioning that even for the analogous sparse basis problem our
results are stronger than Theorem 2.1 in [15] (which only states that B will
be a sparsest basis). Moreover, our proof is different and considerably simpler.
We are unaware whether the above results on the particular low-rank basis
problem have been observed previously in this simple way.

3 Finding low-rank bases via thresholding and projection

In this main section of this article, we propose an algorithm that tries to
execute the abstract greedy Algorithm 1 using iterative methods on relaxed
formulations.

The greedy algorithm suggests finding the matrices X1, . . . , Xd one after
another, during which we monitor the linear dependence when computing
X` with respect to the previously computed X1, . . . , X`−1, and apply some
restart procedure when necessary. Alternatively, one can try to find low-rank
matrices X1, . . . , Xd ∈M in parallel, monitor their linear independence, and
reinitialize the ones with largest current ranks in case the basis becomes close
to linearly dependent. In both cases, the linear independence constraint, which
substantially increases the hardness of the problem, is in principle ignored as
long as possible, and shifted into a restart procedure. Therefore, we mainly
focus on iterative methods to solve the problem (2) of finding a single low-rank
matrix X in M. The complete procedure for the low-rank basis problem will
be given afterwards in Section 3.3.

Finding a low-rank basis in a matrix subspace 9

The first algorithm we consider for solving the low-rank basis problem (2)
alternates between soft singular value thresholding (shrinkage) and projection
onto the subspaceM, and will be presented in the next subsection. During our
work on this paper, an analogous method for the corresponding sparse vector
problem of minimizing ‖x‖0 over x ∈ S, ‖x‖2 = 1 has been independently
derived and called a “nonconvex alternating direction method (ADM)” for
a modified problem in the very recent publication [52]. This reference also
contains a motivation for using the Euclidean norm for normalization. We have
decided to adopt this derivation, but will use the terminology block coordinate
descent (BCD) instead, which seems more in line with standard terminology
regarding the actual update rules. However, as it turns out, this algorithm alone
indeed provides good rank estimators, but very poor subspace representations.
This is very understandable when the target rank is higher than one, since
the fixed points of the singular value shrinkage operator explained below are
matrices whose positive singular values are all equal, which do not happen in
generic cases. Therefore, we turn to a second phase that uses hard singular value
thresholding (rank truncation) for further improvement, as will be explained
in Section 3.2.

3.1 Phase I: Estimating a single low-rank matrix via soft thresholding

The starting point is a further relaxation of (2): the rank function, that is, the
number of nonzero singular values, is replaced by the matrix nuclear norm
‖X‖∗, which equals the sum of singular values. This leads to the problem

minimize ‖X‖∗
subject to X ∈M, and ‖X‖F = 1.

(6)

The relaxation from rank to nuclear norm can be motivated by the fact that
in case a rank-one solution exists, it will certainly be recovered by solving (6).
For higher ranks, it is less clear under which circumstances the nuclear norm
provides an exact surrogate for the rank function under the given spherical
constraint. For an example of a space M spanned by matrices of rank at most
r for which the minimum in (6) is attained at a matrix of rank larger than r,
consider M1 = diag(1,−

√
ε,−
√
ε, 0, 0, 0, 0), M2 = diag(0, 1, 0,

√
ε,
√
ε, 0, 0), and

M3 = diag(0, 0, 1, 0, 0,
√
ε,
√
ε). Every linear combination involving at least two

matrices has at least rank four. So the Mi are the only matrices in their span of
rank at most three. After normalization w.r.t. the Frobenius norm, their nuclear
norm equals ‖Mi‖∗/‖Mi‖F = (1 + 2

√
ε)/
√

1 + 2ε = 1 + 2
√
ε+O(ε). But for ε

small enough, the rank five matrix X = M1−
√
εM2−

√
εM3 = (1, 0, 0, ε, ε, ε, ε)

has a smaller nuclear norm ‖X‖∗/‖X‖F = (1 + 4ε)/
√

1 + 4ε2 = 1 + 4ε+O(ε2)
after normalization.

10 Yuji Nakatsukasa et al.

Soft thresholding and block coordinate descent

Nevertheless, such counterexamples are rather contrived, and we consider (6) a
good surrogate for (2) in the generic case. The problem is still very challenging
due to the non-convex constraint. In [52] a block coordinate descent (BCD)
method has been proposed to minimize the `1-norm of a vector on an Euclidean
sphere in a subspace of Rn. As we explained above, this problem is a special
case of (6), and the algorithm can be generalized as follows.

Given a current guess X ∈M we are looking for a matrix Y of lower-rank
in a neighborhood if possible. For this task, we use the singular value shrinkage
operator Sτ [8]: letting X = UΣV T be a singular value decomposition with
Σ = diag(σ1, . . . , σrank(X)), σ1 ≥ · · · ≥ σrank(X) > 0, we choose Y as

Y = Sτ (X) = USτ (Σ)V T , Sτ (Σ) = diag(σ1 − τ, . . . , σrank(X) − τ)+, (7)

where x+ := max(x, 0) and τ > 0 is a thresholding parameter. The rank of
Y now equals the number of singular values σi larger than τ . Note that even
if the rank is not reduced the ratios of the singular values increase, since
(σi−τ)/(σj−τ) > σi/σj for all (i, j) such that τ < σj < σi. Hence a successive
application of the shift operator will eventually remove all but the dominant
singular value(s), even if the iterates are normalized in between (without in-
between normalization it of course removes all singular values). This effect is
not guaranteed when simply deleting singular values below the threshold τ
without shifting the others, as it would preserve the ratios of the remaining
singular values, and might result in no change at all if τ is too small. But even
if this hard threshold was chosen such that at least one singular value is always
removed, we found through experiments that this does not work as well in
combination with projections onto a subspace M as the soft thresholding.

The new matrix Y in (7) will typically not lie inM, nor will it be normalized
w.r.t. the Frobenius norm. Thus, introducing the orthogonal projector (w.r.t.
the Frobenius inner product) PM from Rm×n ontoM, which is available given
some basis M1, . . . ,Md of M, we consider the fixed point iteration:

Y = Sτ (X), X =
PM(Y)

‖PM(Y)‖F
. (8)

The projection PM is precomputed at the beginning and defined as MMT

(only M is stored), where M is the orthogonal factor of the thin QR decom-
position [27, Sec. 5] of the matrix [vec(M1), . . . , vec(Md)] ∈ Rmn×d, where the
(not necessarily low-rank) matrices Mi spanM. It is used in the following way:

PM(Y) = mat(MMT vec(Y)), (9)

To obtain the interpretation as BCD, we recall the fact that the shrinkage
operation provides the unique solution to the strictly convex problem

minimize
Y

τ‖Y ‖2∗ +
1

2
‖Y −X‖2F , (10)

Finding a low-rank basis in a matrix subspace 11

see [8]. Intuitively, (10) attempts to solve (6) in a neighborhood of the current
guess X, while ignoring the constraints. The parameter τ controls the balance
between small nuclear norm and locality: the larger it is the lower rank(Y)
becomes, but Y will be farther from X. Taking τ small has the opposite effect.
The explicit form (7) quantifies this qualitative statement, as the distance
between X and Y is calculated as

‖X − Y ‖2F =
∑
σi>τ

τ2 +
∑
σi≤τ

σ2
i .

As a result, we see that the formulas (8) represent the update rules when
applying BCD to the problem

minimize
X,Y

τ‖Y ‖∗ +
1

2
‖Y −X‖2F

subject to X ∈M, and ‖X‖F = 1,

which can be seen as a penalty approach to approximately solving (6).

Algorithm with adaptive shift τ

The considerations are summarized as Algorithm 2. At its core it is more or
less analogous to the algorithm in [52]. However, a new feature is that the
parameter τ is chosen adaptively in every iteration.

Algorithm 2: Phase I – Rank estimation
Input: Orthogonal projection PM on M; scalars δ,maxit, changeit > 0, τtol ≥ 0;

initial guess X ∈M with ‖X‖F = 1, initialize r = n.

Output: X, Y , and r, where X = PM(Y) ∈M, and Y is a matrix of low rank r

which is close to or in M.

1 for it = 1, . . . ,maxit do

2 X = UΣV T // singular value decomposition

3 s = |{σi : σi > τtol}| // ‘noiseless’ rank

4 X ← Ts(X)/‖Ts(X)‖F // remove ‘noisy’ singular values

5 τ = δ/
√
s // set singular value shift

6 Y ← Sτ (X) // shrinkage

7 r ← min(r, rank(Y)) // new rank estimate

8 X ← PM(Y) // projection onto subspace

9 X ← X/‖X‖F // normalization

10 Terminate if r has not changed for changeit iterations.

11 end

The choice of the singular value shift τ in line 5 is made to achieve faster
progress, and motivated by the fact that a matrix X of Frobenius norm 1
has at least one singular value below and one above 1/

√
rank(X), unless all

singular values are the same. Therefore, the choice of τ = 1/
√

rank(X) would

12 Yuji Nakatsukasa et al.

always remove at least one singular value, but can also remove all but the
largest singular value in case the latter is very dominant. To make the shift
more efficient in case that many small singular values are present, we rely
instead on an effective rank s which is obtained by discarding all singular
values below a minimum threshold τtol, considered as noise (line 3). On the
other hand, since the sought low-rank matrix may happen to have clustered
dominant singular values, it is important to choose a less aggressive shift by
multiplying with 0 < δ < 1. The choice of the parameters τtol and δ is heuristic,
and should depend on the expected magnitudes and distribution of singular
values for the low rank bases. In most of our experiments we used δ = 0.1 and
τtol = 10−3. With such a small value of τtol (compared to δ) the truncation
and normalization in line 4 are optional and make only a subtle difference.

Of course, one may consider alternative adaptive strategies such as τ ∼
‖X‖∗/ rank(X) or τ ∼ σrank(X). Also τtol and δ may be set adaptively.

Choice of the initial guess

Let us remark on the choice of the initial guess. As we shall see later and can
be easily guessed, with randomly generated initial X ∈ M, the output r is
not always the rank of the lowest-rank matrix in M. A simple way to improve
the rank estimate is to repeat Phase I with several initial matrices, and adopt
the one that results in the smallest rank. Another “good” initial guess seems
to be the analogue of that suggested in [52], but this is intractable because
the analogue here would be to initialize with a projection onto every possible
rank-one matrix, and there are clearly infinitely many choices. We therefore
mainly employ random initial guesses, and leave the issue of finding a good
initial guess an open problem.

The use as a rank estimator

In our experiments we observed that Algorithm 2 alone is often not capable of
finding a low-rank matrix in the subspace. Typically the two subsequences for
Y and X in (8) produce two different numerical limits: Y tends to a low-rank
matrix which is close to, but not in the subspace M; by contrast, the X are
always in the subspace, but are typically not observed to converge to a low-
rank matrix. In fact, we can only have X = Y in (8) for rank-one matrices, in
addition to the special case where the rank is higher but the singular values are
all equal. Therefore, in the general case, further improvement will be necessary
(phase II below). However, as it turns out, the rank found by the sequence
of Y provides a surprisingly good estimate also for the sought minimal rank
in the subspace. Moreover, the obtained X also provides the starting guess
X = PM for further improvement in the second phase, described next. An
analogous statement was proven in [53] for the sparse vector problem (which
can be regarded as a special case of ours), but the analysis there assumes the
existence of a sparse vector in a subspace of otherwise random vectors; here
we do not have such (or related) assumptions. In Section 4.1 we give some

Finding a low-rank basis in a matrix subspace 13

qualitative explanation for why we expect this process to obtain the correct
rank, but we leave a detailed and rigorous analysis of Algorithm 2 an open
problem and call this preliminary procedure “Rank estimation”.

3.2 Phase II: Finding a matrix of estimated rank via alternating projections

We now turn to the second phase, in which we find the matrix X ∈M such
that rank(X) = r, the output rank of Phase I. Essentially, the soft singular
value thresholding in Phase I is replaced by hard thresholding.

Alternating projections

In Phase II of our algorithm we assume that we know a rank r such that M
contains a matrix of rank at most r. To find that matrix, we use the method
of alternating projections between the Euclidean (Frobenius) unit sphere in
the subspace M and the closed cone of matrices of rank at most r. The metric
projection (in Frobenius norm) on this cone is given by the singular value
truncation operator Tr defined as

Tr(X) = UTr(Σ)V T , Tr(Σ) = diag(σ1, . . . , σr, 0, . . . , 0),

where X = UΣV T is an SVD of X with Σ = diag(σ1, . . . , σmin(m,n)). The
method of alternating projections hence reads

Y = Tr(X), X =
PM(Y)

‖PM(Y)‖F
. (11)

Conceptually, this iteration is the same as (8) with the soft thresholding
operator Sτ replaced by the hard thresholding operator Tr. Alternatively, (11)
can be interpreted as employing BCD for the problem

minimize
X,Y

‖Y −X‖F

subject to X ∈M, ‖X‖F = 1, and rank(Y) ≤ r.

As a result, we obtain Algorithm 3.
The authors of the aforementioned reference [52], who proposed Algorithm 2

for the sparse vector problem, also suggest a second phase (called “rounding”),
which is, however, vastly different from our Algorithm 3. It is based on linear
programming and its natural matrix analogue would be to solve

minimize ‖X‖∗
subject to X ∈M, and tr(X̃TX) = 1.

(12)

Here X̃ is the final matrix X from Algorithm 2. In [52,53] it is shown for the
vector case that if X̃ is sufficiently close to a global solution of (6) then we can
recover it exactly by solving (12).

14 Yuji Nakatsukasa et al.

Algorithm 3: Phase II – Alternating projections
Input: Orthogonal projection PM on M; rank r ≥ 1; scalars maxit, tol > 0; initial

guess X ∈M.
Output: X, Y , where X = PM(Y) ∈M, and Y is a matrix of rank r, and hopefully

‖X − Y ‖F ≤ tol.
1 while ‖X − Y ‖F > tol and it ≤ maxit do
2 X = UΣV T // singular value decomposition

3 Y ← Tr(X) // best rank-r approximation

4 X ← PM(Y) // projection onto subspace

5 X ← X/‖X‖F // normalization

6 end

Comparison with a convex optimization solver

Note that unlike our original problem (1) or its nuclear norm relaxation (6), (12)
is a convex optimization problem, since the constraints are now the linear
constraint tr(X̃TX) = 1 along with the restriction in the subspace X ∈
M. Nuclear norm minimization under linear constraints has been intensively
considered in the literature, see [8,55] and references therein for seminal work.
A natural approach is to attempt to solve (12) by some convex optimization
solver.

In view of this, we conduct experiments to compare our algorithm with one
where Phase II is replaced by the cvx optimization code [28]. For the test we
used the default tolerance parameters in cvx. We vary n while taking m = n
and generated the matrix subspace M so that the exact ranks are all equal
to five. Here and throughout, the numerical experiments were carried out in
MATLAB version R2014a on a desktop machine with an Intel Core i7 processor
and 16GB RAM.

The runtime and accuracy are shown in Table 1. Here the accuracy is mea-
sured as follows: letting X̂i for i = 1, . . . , d be the computed rank-1 matrices,
we form the mn × d matrix X̂ = [vec(X̂1), . . . , vec(X̂d)], and compute the
error as the subspace angle [27, Sec. 6.4.3] between X̂ and the exact subspace
[vec(M1), . . . , vec(Md)]. Observe that while both algorithms provide (approxi-
mate) desired solutions, Algorithm 5 is more accurate, and much faster with the
difference in speed increasing rapidly with the matrix size (this is for a rough
comparison purpose: cvx is not very optimized for nuclear norm minimization).

Table 1: Comparison between Alg. 5 and Phase II replaced with cvx.

(a) Runtime(s).

n 20 30 40 50
Alg. 5 1.4 2.21 3.38 4.97
cvx 28.2 186 866 2960

(b) Error

n 20 30 40 50
Alg. 5 2.9e-15 8.0e-15 9.5e-15 2.1e-14
cvx 6.4e-09 5.2e-10 5.7e-10 2.8e-10

Finding a low-rank basis in a matrix subspace 15

Another approach to solving (12) is Uzawa’s algorithm as described in [8].
However, our experiments suggest that Uzawa’s algorithm gives poor accuracy
(in the order of magnitude 10−4), especially when the rank is not one.

In view of these observations, in what follows we do not consider a general-
purpose solver for convex optimization and focus on using Algorithm 3 for
Phase II.

3.3 A greedy algorithm for the low-rank basis problem

Restart for linear independence

Algorithms 2 and 3 combined often finds a low-rank matrix inM. To mimic the
abstract greedy Algorithm 1, this can now be done consecutively for ` = 1, . . . , d.
However, to ensure linear independence among the computed matrices Xi,
a restart procedure may be necessary. After having calculated X1, . . . , X`−1
and ensured that they are linearly independent, the orthogonal projector P`−1
onto span{X1, . . . , X`−1} is calculated. While searching for X` the norm of
X` − P`−1(X`) is monitored. If it becomes too small, it indicates (since X` is
normalized) that X` is close to linearly dependent on the previously calculated
matrices X1, . . . , X`−1. The process for X` is then randomly restarted in the
orthogonal complement of span{X1, . . . , X`−1} within M, which is the range
of Q`−1 = PM − P`−1.

Algorithm 4: Restart for linear independence
Input: Orthogonal projection Q`−1, matrix X` and tolerance restarttol > 0.

Output: Eventually replaced X`.

1 if ‖Q`−1(X`)‖F < restarttol then

2 Replace X` by a random element in the range of Q`−1.

3 X` ← X`/‖X`‖F
4 end

In our implementation, we do not apply a random matrix to Q`−1 to
obtain a random element in the range. Instead Q`−1 is stored in the form of
an orthonormal basis for which random coefficients are computed. We note
that restarting was seldom needed in our experiments, except for the image
separation problem in Section 5.3. A qualitative explanation is that the space
Q` = PM−P` from which we (randomly) obtain the next initial guess is rich in
the components of matrices that we have not yet computed, thus it is unlikely
that an iterate X` converges towards an element in P`.

Final algorithm and discussion

The algorithm we propose for the low-rank basis problem is outlined as Algo-
rithm 5. Some remarks are in order.

16 Yuji Nakatsukasa et al.

Algorithm 5: Greedy algorithm for computing a low-rank basis

Input: Basis M1, . . .Md ∈ Rm×n for M, and integer restartit > 0.

Output: Low-rank basis X1, . . . , Xd of M.

1 Assemble the projection PM.

2 Set Q0 = PM.

3 for ` = 1, . . . , d do

4 Initialize normalized X` randomly in the range of Q`−1.

5 Run Algorithm 2 (Phase I) on X`, but every restartit iterations run Algorithm 4.

6 Run Algorithm 3 (Phase II) on X`, but every restartit iterations run

Algorithm 4.

7 Assemble the projection P` on span{X1, . . . , X`} (ensure linear independence),

8 Set Q` = PM − P`.
9 end

1. The algorithm is not stated very precisely as the choice of many input
parameters are not specified. We will specify at the beginning of Section 5
the values we used for numerical experiments.

2. Analogously to (9), the projections P` are in practice obtained from a QR
decomposition of [vec(X1), . . . , vec(X`)].

3. Of course, after Algorithm 2 one can or should check whether it is necessary
to run Algorithm 3 at all. Recall that Algorithm 2 provides a rank-estimate
r and a new matrix X` ∈ M. There is no need to run Algorithm 3 in
case rank(X`) = r at that point. However, we observed that this seems
to happen only when r = 1 (see next subsection and Section 5.1), so in
practice it is enough to check whether r = 1.

4. There is a principal difference between the greedy Algorithm 5, and the
theoretical Algorithm 1 regarding the monotonicity of the found ranks. For
instance, there is no guarantee that the first matrix X1 found by Algorithm 5
will be of lowest possible rank in M, and it will often not happen. It seems
to depend on the starting value (recall the discussion on the initial guess
in Section 3.1), and an explanation may be that the soft thresholding
procedure gets attracted by “some nearest” low-rank matrix, although a
rigorous argument remains an open problem. In any case, finding a matrix
of lowest rank is NP-hard as we have already explained in the introduction.
In conclusion, one should hence not be surprised if the algorithm produces
linearly independent matrices X1, . . . , Xd for which the sequence rank(X`)
is not monotonically increasing. Nevertheless, at least in synthetic test,
where the exact lowest-rank basis is exactly known and not too badly
conditioned, the correct ranks are often recovered, albeit in a wrong order;
see Figures 1, 3 and Section 5.1.

5. It is interesting to note that in case the restart procedure is not activated
in any of the loops (that is, the if-clause in Algorithm 4 always fails),
one would have been able to find the matrices X1, . . . , Xd independently
of each other, e.g., with a random orthogonal basis as a starting guess.
In practice, we rarely observed that restart can be omitted, although it

Finding a low-rank basis in a matrix subspace 17

might still be a valuable idea to run the processes independently of each
other, and monitor the linear independence of X1, . . . , Xd as a whole. If
some of the X` start converging towards the same matrix, or become close
to linearly dependent, a modified restart procedure will be required. A
practical way for such a simultaneous restart is to use a QR decomposition
with pivoting. It will provide a triangular matrix with decreasing diagonal
entries, with too small entries indicating basis elements that should be
restarted. Elements corresponding to sufficiently large diagonal elements in
the QR decomposition can be kept. We initially tried this kind of method,
an advantage being that the overall cost for restarts is typically lower. We
found that it typically works well when all basis elements have the same
rank. However, the method performed very poorly in situations where the
ranks of the low-rank basis significantly differ from each other. Nonetheless,
this “parallel” strategy might be worth a second look in future work.

3.4 Complexity and typical convergence plot

The main step in both Algorithms 2 and 3 is the computation of an SVD of
an m × n matrix, which costs about 14mn2 + 8n3 flops [27, Sec. 8.6]. This
is done at most 2maxit times (assuming the same in both algorithms) for d
matrices. Since we check the need for restarting only infrequently, the cost
there is marginal. The overall worst-case complexity of our greedy Algorithm 5
hence depends on the choice of maxit. In most of our experiments, the inner
loops in Algorithms 2 and 3 terminated according to the stopping criteria, long
before maxit iterations was reached.

Figure 1 illustrates the typical convergence behavior of Algorithm 5 for a
problem with m = 20, n = 10, and d = 5, constructed randomly using the
MATLAB function randn, and the exact ranks for a basis are (1, 2, 3, 4, 5). The
colors correspond to ` = 1, . . . , 5: these are also indicated at the top of the
figure. For each `, the evolution of the n = 10 singular values of X` are plotted
during the iteration (always after projection on M). The shaded areas show
Phase I, the unshaded areas Phase II. In both phases we used maxit = 1000
and restartit = 50, moreover, Phase I was terminated when the rank did not
change for changeit = 50 iterations (which appears to be still conservative),
while Phase II was terminated when X` remained unchanged up to a tolerance
of 10−14 in Frobenius norm. The number of SVDs is in principle equal to the
number of single iterations, and governs the complexity, so it was used for the
x-axis. Illustrating the fourth remark above, the ranks are not recovered in
increasing order, but in the order (1, 5, 3, 2, 4) (corresponding to the number of
curves per ` not converging to zero). Repeated experiments suggest that all
orderings of rank recovery is possible.

Regarding the convergence of a single matrix, we make two observations in
Figure 1. First, one can nicely see that in Phase I the singular values beyond
σr` usually decrease until they stagnate at a certain plateau. The length of
this plateau corresponds to the 50 iterations we have waited until accepting an

18 Yuji Nakatsukasa et al.

Fig. 1: Typical convergence of Algorithm 5 for a randomly generated problem
with m = 20, n = 10, d = 5. Each color represents one outmost loop ` = 1, . . . , 5.
The shaded regions indicate Phase I, and the rest is Phase II. The exact ranks
are (1, 2, 3, 4, 5), but recovered in the order (1, 5, 3, 2, 4).

unchanged rank (before projection) as a correct guess. Except for the first (red)
curve, which shows convergence towards a rank-one basis element, the error
level of this plateau is too high to count as a low-rank matrix. Put differently,
the (normalized) low-rank matrix Y` found by the shrinkage, on which the rank
guess is based, is unacceptably far away from the subspace, illustrating the
need for Phase II. Phase II seems unnecessary only when a rank-one matrix is
targeted.

Second, the convergence of σr+1, . . . , σn towards zero in the second phase
is typically linear, and tends to be faster if the limit is lower in rank. We give
an explanation for this observation in Section 4.

The fact that the matrices are obtained in somewhat random order can
be problematic in some cases, such as the low-rank matrix problem where
only one matrix of lowest rank is sought. One remedy is to try multiple initial
guesses for Phase I, and adopt the one that results in the lowest rank estimate
r. Figure 2 is a typical illustration when three initial guesses are attempted.
The shaded regions represent Phase I repeated three times for each greedy
step, and the ones that were adopted are shaded darkly. Observe that now the
matrices are obtained in the correct rank order (1, 2, 3, 4, 5).

Finally, Figure 3 contains an outcome of the initial experiment (without
multiple initial guesses) with square matrices of size m = n = 20. The ranks
are recovered in another ordering, namely (5, 1, 2, 3, 4). One can see that the
ratio of the number of iterations in Phases I and II is quite different, and

Finding a low-rank basis in a matrix subspace 19

Fig. 2: Same settings as Figure 1, but with three random initial guesses. Darkly
shaded region represent the initial guess that was adopted. For instance, for
the first matrix (red curve) the rank was estimated to be four in the first run
of Phase I, and one in the second and third. The second was adopted, Phase II
was not necessary. The final rank order is the correct (1, 2, 3, 4, 5).

the overall number of required SVDs is smaller. The convergence analysis in
Section 4, which suggests a typical convergence factor

√
r
n , gives a partial

explanation. The main reason we give this third plot is the following interesting
fact: the maximum rank a matrix in the generated subspace can have is
1 + 2 + 3 + 4 + 5 = 15. Consequently, there seems to be a principal difference
here from the previous example in that the subspace does not contain a full-rank
matrix. This is perhaps part of why this problem seems somewhat easier in
terms of the total number of iterations. Indeed, a close inspection of Figure 3
reveals that for each `, we have five singular values below machine precision
(recall that the plot shows the singular values after projection on the subspace).

4 Convergence analysis

Given the hardness of the low-rank basis problem, the formulation of conditions
for success or failure of Algorithm 5 must be a challenging task. Not to mention
the discontinuous nature of the restart procedure, a satisfying rigorous and
global convergence result remains a potentially interesting problem for future
work.

Here we confine ourselves to a local convergence analysis of Phase II for a
single matrix given a correct rank estimate r, which is an alternating projection
method. We will consider the simplest case where at the point of interest the

20 Yuji Nakatsukasa et al.

Fig. 3: m = n = 20. All matrices in the subspace are rank-deficient, and we
observe that the number or SVDs is fewer.

tangent space of the manifold of rank-r matrices intersects trivially with the
tangent space of the sphere in M, which is arguably the simplest possible
assumption when it comes to local convergence of the alternating projection
method between smooth manifolds.

Regarding Phase I, we can at least note that if X ∈ M is a normalized
rank-one matrix, then in a neighborhood of X a single step of Algorithms 2
and 3, respectively, will give the same result (this is also true for some similar
choices of τ discussed above). Under the same assumptions as for Phase II
this hence shows the local convergence of Phase I toward isolated normalized
rank-one matrices inM, see Corollary 5 below. Since this is a local convergence
analysis, it of course does not fully explain the strong global performance of
both Algorithms 2 and 3 in the rank-one case as seen in Figures 1– 3 and
Tables 2 and 3.

In general, using the shrinkage operator cannot be guaranteed to converge
to a local solution. We have already noted that a matrix of rank larger than two
cannot be a fixed point of the shrinkage operator (unless all nonzero singular
values are the same). One could construct examples where in a fixed point
of (8) X has the same rank as Y , but generically this seems extremely unlikely.
Therefore, the convergence of Phase I is in general a less relevant question.
The main problem is in which situations it provides a correct rank estimate, at
least locally. Except for the rank-one case we have no precise arguments, but
we give a qualitative explanation at the end of Section 4.1.

Finding a low-rank basis in a matrix subspace 21

4.1 Local convergence of Phase II

Algorithm 3 is nothing else than the method of alternating projections for
finding a matrix in the intersection B ∩Rr of the closed sets

B = {X ∈M : ‖X‖F = 1}

and

Rr = {X ∈ Rm×n : rank(X) ≤ r}.

The local convergence analysis of the alternating projection method for
nonconvex closed sets has made substantial progress during the last years [3,
42,43,50], often with reference to problems involving low-rank matrices. In
these papers one finds very abstract result in the language of variational
analysis or differential geometry, but validating the required assumptions for
specific situations can be complicated. The most recent work [23, Theorem 7.3],
however, contains a very general and comprehensive result that the method of
alternating projections is essentially locally convergent (in the sense of distance
to the intersection) for two semialgebraic sets of which one is bounded, which
is the case here. Moreover, convergence is R-linear and point-wise in case of an
intrinsically transversal intersection point [23, Theorem 6.1]. A notable special
case, for which the result has already been obtained in [3, Theorem 5.1], is
a clean (or nontangential) intersection point. As the assumption (14) made
below implies such a clean intersection for the problem at hand, the subsequent
Theorem 4 follows. Nevertheless, we provide a direct and self-contained proof for
the problem at hand based on elementary linear algebra, which may contribute
to the understanding of alternating projection method when specifically used
for low-rank constraints. In Remark 6 we discuss alternatives to the main
assumption (14) in the context of the available literature in a bit more detail,
and provide a sufficient condition for (14) in Lemma 7.

To state the result, we assume that X∗ ∈ Tr ∩ B has exactly rank r. By
semi-continuity of rank, all matrices in a neighborhood (in Rm×n) of X have
rank at least r. Therefore, we can locally regard Algorithm 3 as an alternating
projection between B and the smooth manifold of matrices of fixed rank r.
Letting X∗ = U∗Σ∗V

T
∗ be a thin SVD of X∗ where Σ∗ contains positive singular

values, the tangent space to that manifold at X is [34]

TX∗Rr =

{
[U∗ U

⊥
∗]

[
A B
C 0

]
[V∗ V

⊥
∗] : A ∈ Rr×r, B ∈ Rr×(m−r), C ∈ R(n−r)×r

}
.

(13)
For our analysis we make the following genericity assumption:

TX∗Rr ∩ TX∗B = {0}. (14)

Here TX∗B is the tangent space of B, which is the orthogonal complement of
X∗ within M. Since TX∗Rr contains X∗, (14) is expressed in terms of M as

TX∗Rr ∩M = span{X∗}. (15)

22 Yuji Nakatsukasa et al.

We remark that (14) ultimately implies that X∗ is an isolated point of Rr ∩ B,
so actually it then holds Rr ∩M = span{X∗}. Then we have the following
result.

Theorem 4 Assume X∗ ∈ Tr ∩ B has rank r, and that this rank is used in
Algorithm 3. If (14) holds, then for X ∈ B close enough to X∗ the new iterate

Xnew = PM(Tr(X))
‖PM(Tr(X))‖F constructed by the algorithm is uniquely defined, and

‖Xnew −X∗‖F
‖X −X∗‖F

≤ cos θ +O(‖X −X∗‖2F),

where θ ∈ (0, π2] is the subspace angle between TX∗B and TX∗Rr, defined by

cos θ = max
X∈TX∗B
Y ∈TX∗Rr

|〈X,Y 〉F |
‖X‖F ‖Y ‖F

.

As a consequence, the iterates produced by Algorithm 3 are uniquely defined
and converge to X∗ at a linear rate for close enough starting values.

In accordance with our observations in Section 3.4, we also have a result
for Phase I in the rank-one case.

Corollary 5 If r = 1, the statement of Theorem 4 also holds for Algorithm 2.
In fact, both algorithms produce the same iterates in some neighborhood of X∗.

Here it is essential that the value of shift τ is bounded below by a fixed
fraction of the Frobenius norm of X, as it is the case for in Algorithm 2, a
lower bound being δ/

√
min(m,n).

Proof of Theorem 4 Since X and X∗ are in B, we can write

X −X∗ = E +O(‖X −X∗‖2F)

with E ∈ TX∗B. We partition the principal error E as

E = [U∗ U
⊥
∗]

[
A B
C D

]
[V∗ V

⊥
∗]T . (16)

Of course, ‖E‖2F = ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D‖2F , and due to (13), our
assumption implies

‖D‖2F ≥ sin2 θ · ‖E‖2F . (17)

Since X∗ has rank r, it follows that all matrices in some neighborhood
have a unique best rank-r approximation (by perturbation arguments for the
singular values). In this neighborhood Xnew is uniquely defined. To relate ‖E‖
to ‖Tr(X)−X∗‖ we consider the two matrices

F =

[
I CΣ−1∗

−CΣ−1∗ I

]
[U∗ U

⊥
∗]T ,

Finding a low-rank basis in a matrix subspace 23

and

G = [V∗ V
⊥
∗]

[
I −Σ−1∗ B

Σ−1∗ B I

]
,

both of which are orthogonal up to O(‖E‖2F):

‖FTF − I‖F = O(‖E‖2F), ‖GTG− I‖F = O(‖E‖2F).1

Therefore, denoting by F̃ , G̃ the orthogonal polar factors of F,G, respectively,
we also have2

F = F̃ +O(‖E‖2), G = G̃+O(‖E‖2F). (18)

One now verifies that

F̃XG̃ = FXG+O(‖E‖2F) =

[
Σ∗ +A 0

0 D

]
+O(‖E‖2F),

or, since F̃ and G̃ are orthogonal,

X = F̃T
[
Σ∗ +A 0

0 D

]
G̃T +O(‖E‖2F).

For E small enough, the best rank-r approximation of the principal part is
obtained by deleting D. Hence,

Tr(X) = Tr
(
F̃T
[
Σ∗ +A 0

0 D

]
G̃T
)

+O(‖E‖2F)

= F̃T
[
Σ∗ +A 0

0 0

]
G̃T +O(‖E‖2F). (19)

To get the last equality we have used results from matrix perturbation the-
ory [65] (see also [59, Sec.V.4]), which shows that under the perturbation
O(‖E‖2F), the singular subspace corresponding to the r largest singular values

of X gets perturbed by O(
‖E‖22
gap) where gap is the smallest distance between

the singular values of Σ∗ +A and those of D. For ‖E‖F sufficiently small such
that ‖E‖F = o(σmin(Σ∗)), this bound is O(‖E‖22). Together with the fact that
the perturbation in the singular values is bounded also by O(‖E‖22) (since the
condition number of singular values is always 1), we obtain the final equality
above.

Therefore, taking also (18) into account, we obtain

‖Tr(X)−X∗‖F = ‖F̃Tr(X)G̃− FX∗G‖F +O(‖E‖2F)

=

∥∥∥∥[A+Σ∗ 0
0 0

]
−
[
Σ∗ −B
−C CΣ−1∗ B

]∥∥∥∥
F

+O(‖E‖2F)

=

∥∥∥∥[A B
C 0

]∥∥∥∥
F

+O(‖E‖2F).

1 Here and in the following, the error constant behind O(‖E‖F) depends mainly on the
condition of Σ∗, which can be very large, but is fixed in this type of local analysis.

2 From a polar decomposition ZT = UP one gets ZTZ−I = (ZT −U)(P+I)UT , and since
the singular values of (P + I)UT are all at least 1, it follows that ‖Z−UT ‖F ≤ ‖ZTZ− I‖F .

24 Yuji Nakatsukasa et al.

Here we used O(‖CΣ−1∗ B‖2F) = O(‖E‖2F), which holds since ‖Σ−1∗ ‖2 can
be regarded as a constant that does not depend on ‖E‖F . Since O(‖E‖) =
O(‖X −X∗‖), we arrive at

‖Tr(X)−X∗‖F
‖X −X∗‖F

=

√
‖E‖2F − ‖D‖2F +O(‖X −X∗‖2F)

‖E‖F +O(‖X −X∗‖2F)

≤
√

1− sin2 θ +O(‖X −X∗‖2F)

= cos θ +O(‖X −X∗‖2F),

(20)

where we have used (17). Since X∗ ∈M, it now follows that

‖PM(Tr(X))−X∗‖F ≤ ‖Tr(X)−X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F).
(21)

Finally, we consider the normalization step. Recalling ‖X∗‖F = 1, by a simple
geometric argument on the unit sphere we obtain∥∥∥∥ Y

‖Y ‖F
−X∗

∥∥∥∥
F

≤ 1

cosφ
‖Y −X∗‖F , (22)

where φ ∈ [0, π2] such that sinφ = ‖Y −X∗‖F . By Taylor expansion, 1√
1−ξ2

=

1 +O(ξ2). Substituting ξ = sinφ and Y = PM(Tr(X)) in (22) gives

‖Xnew −X∗‖F ≤ ‖PM(Tr(X))−X∗‖F +O(‖PM(Tr(X))−X∗‖3F).

Using (21), we arrive at

‖Xnew −X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F),

completing the proof. ut

From Theorem 4 we can obtain a rough estimate for the convergence factor
that we can expect to observe in practice. Consider the “generic” case where
the error term E in (16) is randomly distributed, that is, each element is of

comparable absolute value. Then we have ‖D‖2F ≈
(n−r)2
n2 ‖E‖2F , and plugging

this into (20) gives ‖Tr(X)−X∗‖F
‖X−X∗‖F ≤

√
2nr+r2

n + O(‖X −X∗‖2F). This suggests

that we typically expect a convergence factor ≈ O(
√

r
n). This estimate reflects

the experiments quite well; see Section 5.2.
The above proof provides some insight into the behavior of Algorithm 2 in

Phase I. In this case Tr(X) in (19) is replaced by Sτ (X). Provided again that
we start with a matrix X close to X∗ so that ‖D‖2 ≤ τ , the operation Sτ (X)
again removes the D term, emphasizing the components towards X∗ just like
in Phase II as shown above. However, now the Σ∗ + A term is also affected,
and thus Phase I stagnates where the thresholding effect in Σ∗ +A is balanced
with the error terms that come in from the projection PM. Then the rank
estimate r is of correct rank rank(X∗), but neither X nor Y in Algorithm 2 is
close to X∗; reflecting the remark at the end of Section 3.1.

Finding a low-rank basis in a matrix subspace 25

Remark 6 The conditions (14), resp. (15), allow for a simple proof but of course
impose some restrictions, most obviously d = dim(M) ≤ (m− r)(n− r) + 1. In
a seminal attempt, Lewis and Malick [43] obtained the local convergence of the
method of alternating projections between two smooth submanifoldsM and N
of Rn towards some X∗ ∈M∩N under the condition that TX∗M+TX∗N = Rn
(transversality). This allows for a non-trivial intersection, but imposes lower
bounds on the dimensions, in our case d ≥ (m − r)(n − r) + 1. Andersson
and Carlsson [3] relaxed the condition to TX∗(M ∩ N) = TX∗M ∩ TX∗N
under the assumption that M∩N is a C2 manifold. This does not impose
restriction on the dimensions, and contains (15) as a special cases. Still these
conditions can fail in the situation at hand (M a subspace of Rm×n, N = Rr),
for instance when M = TX∗Rr, to mention one counter-example. As already
mentioned, the recent results of Drusvyatskiy, Ioffe and Lewis [23] subsumes
the previous results under the more general condition of intrinsic transversality.
Another recent work, by Noll and Rondepierre [50], contains local convergence
for alternating projections under very weak but abstract assumptions, which
do not involve tangential conditions in first place. It may be that their result
applies to our setting, but we have not been able to validate this.

We conclude with a sufficient condition for (14) which might be useful in
some very structured cases; see Proposition 9 in the appendix for an example.
We denote by ran(X) and ran(XT) the column and row space of a matrix X,
respectively.

Lemma 7 Let X∗ ∈M have rank r. Assume there exists a (d−1)-dimensional
subspace M̃ ⊆ M complementary to span{X∗} with the following property:
for every X̃ ∈ M̃ it holds ran(X∗) ∩ ran(X̃) = 0 and ran(XT

∗) ∩ ran(X̃T) = 0.
Then (14) holds.

Proof Consider X = αX∗ + βX̃ ∈ M with X̃ ∈ M̃. Let P and Q denote
the orthogonal projections on ran(X∗)

⊥ and ran(XT
∗)⊥, respectively. Then

X ∈ TX∗Rr if and only if

0 = PXQT = βP X̃QT .

It holds P X̃QT 6= 0. To see this we note that P X̃QT = 0 would mean
ran(X̃QT) ⊆ ran(X∗), which by assumption implies X̃QT = 0. But then
ran(X̃T) ⊆ ran(XT

∗), a contradiction. Hence X ∈ TX∗Rr if and only if β = 0,
which proves the equivalent condition (15). ut

5 Experiments

Unless stated otherwise, the standard parameters in the subsequent experiments
were τtol = 10−3, δ = 0.1 and changeit = 50 in Alg 2, and maxit = 1000
and restartit = 50 for both Phase I and Phase II in Algorithm 5. The typical
termination tolerance in Phase II was tol = 10−14. The restart tolerance
restarttol in Alg. 4 was set to 10−3 but was almost never activated.

26 Yuji Nakatsukasa et al.

5.1 Synthetic averaged examples

We fix m = n = 20, d = 5, and a set of ranks (r1, . . . , rd). We then randomly
generate d random matrices M1, . . . ,Md of corresponding rank by forming
random matrices U` ∈ Rm×r` and V` ∈ Rn×r` with orthonormal columns,
obtained from the QR factorization of random Gaussian matrices using MAT-
LAB’s randn and setting M` = U`V

T
` . To check the average rate of success of

Algorithm 5, we run it 100 times and calculate

– the average sum of ranks
∑d
`=1 rank(Y`) found by Phase I of the algorithm,

– the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase I,

– the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase II,

– the average iteration count (# of SVDs computed) in each Phase.

Table 2 shows the results for some specific choices of ranks. Phase II was always
terminated using tol = 10−14, and never took the maximum 1000 iterations.
From Table 2 we see that the ranks are sometimes estimated incorrectly,
although this does not necessarily tarnish the final outcome.

Table 2: Synthetic results, random initial guess.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)

(1 , 1 , 1 , 1 , 1) 5.05 2.59e-14 (55.7) 7.03e-15 (0.4)

(2 , 2 , 2 , 2 , 2) 10.02 4.04e-03 (58.4) 1.04e-14 (9.11)

(1 , 2 , 3 , 4 , 5) 15.05 6.20e-03 (60.3) 1.38e-14 (15.8)

(5 , 5 , 5 , 10 , 10) 35.42 1.27e-02 (64.9) 9.37e-14 (50.1)

(5 , 5 , 10 , 10 , 15) 44.59 2.14e-02 (66.6) 3.96e-05 (107)

A simple way to improve the rank estimate is to repeat Phase I with several
initial matrices, and adopt the one that results in the smallest rank. Table 3
shows the results obtained in this way using five random initial guesses.

Table 3: Synthetic results, random initial guess from subspace repeated 5 times.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)

(1 , 1 , 1 , 1 , 1) 5.00 6.77e-15 (709) 6.75e-15 (0.4)

(2 , 2 , 2 , 2 , 2) 10.00 4.04e-03 (393) 9.57e-15 (9.0)

(1 , 2 , 3 , 4 , 5) 15.00 5.82e-03 (390) 1.37e-14 (18.5)

(5 , 5 , 5 , 10 , 10) 35.00 1.23e-02 (550) 3.07e-14 (55.8)

(5 , 5 , 10 , 10 , 15) 44.20 2.06e-02 (829) 8.96e-06 (227)

We observe that the problem becomes more difficult when the ranks vary
widely. As mentioned in Section 3.1, choosing the initial guesses as in [52] also

Finding a low-rank basis in a matrix subspace 27

worked fine, but not evidently better than random initial guesses as in Table 3.
From the first rows in both tables we validate once again that for the rank-one
case, Phase II is not really necessary – Phase I is recovering a rank-one basis
reliably.

5.1.1 Comparison with tensor CP algorithm

As we describe in Appendix A, if the subspace is spanned by rank-one matrices,
then the CP decomposition (if successfully computed; the rank is a required
input) of a tensor with slices Mk, where M1, . . . ,Md is any basis ofM, provides
a desired rank-one basis. Here we compare our algorithm with the CP-based
approach. Specifically, we compare with the method cpd in Tensorlab [56] with
the exact decomposition rank (the dimension d of M) as input. By default,
this method is based on alternating least-squares with initial guess obtained by
an attempt of simultaneous diagonalization. When applied to a rank-one basis
problem, cpd often gives an accurate CP decomposition with no ALS iteration.

As seen from the tables above, given a rank-one basis problem, our Algo-
rithm 5 will typically terminate after Phase I. On the other hand, since we
assume a rank-one basis to exist (otherwise the CP approach is not necessar-
ily meaningful for finding a subspace basis), we can also use the alternating
projection algorithm from Phase II with rank one directly from random ini-
tializations. In summary, we obtain three error curves: one for tensorlab, one
for soft thresholding (Phase I) and one for alternating projection (Phase II).
The errors are computed as in the experiments in Section 3.2 via the subspace
angle.

We also present the runtime to show that our algorithms are not hopelessly
slow in the special rank-one case. Just running Phase II results in an algorithm
faster than Algorithm 5, but it is still slower than cpd. Note that while Tensorlab
is a highly tuned toolbox, we did not try too hard to optimize our code regarding
the choice of parameters and memory consumption. More importantly, unlike
cpd our algorithm does not require the rank r and is applicable even when
r > 1.

Growing matrix size n We first vary the matrix size n, fixing the other param-
eters. The runtime and accuracy are shown in Figure 4. We observe that if the
CP rank is known, the CP-based algorithm is both fast and accurate.

Growing dimension d We next vary the dimension d, in particular allowing
it to exceed n (but not n2). In this case, linear dependencies among the left
factors a` and right factors b`, respectively, of a rank-one basis a1b

T
1 , . . . ,adb

T
d

must necessarily occur. It is known that in this scenario obtaining an exact CP
decomposition via simultaneous diagonalization, as in part attempted by cpd,
becomes a much more subtle problem, see the references given in Section A.1.
And indeed, we observe that for d > n the accuracy of Tensorlab deteriorates,
while our methods do not. The runtime and accuracy for n = 10 are shown in
Figure 5. However, this effect was less pronounced for larger m = n.

28 Yuji Nakatsukasa et al.

matrix size n
100 200 300 400 500 600 700 800 900 1000

10-3

10-2

10-1

100

101

102

103
Runtime(s)

Phase I
Phase II
Tensorlab

matrix size n
100 200 300 400 500 600 700 800 900 1000

10-15

10-10

10-5

100
Error

Phase I
Phase II
Tensorlab

Fig. 4: Rank-1 basis matrices r = 1, fixed d = 10, varying m = n between 50
and 500. The accuracy is not identical but nearly the same. Tensorlab performs
well.

dimension d
2 4 6 8 10 12 14 16 18 20

10-4

10-3

10-2

10-1

100
Runtime(s)

Phase I
Phase II
Tensorlab

dimension d
2 4 6 8 10 12 14 16 18 20

10-15

10-10

10-5

100
Error

Phase I
Phase II
Tensorlab

Fig. 5: Rank-1 basis matrices r = 1, Fixed m = n = 10, varying d between 2
and 20. Our Algorithm gives better accuracy when d > n.

We conclude that the CP-based algorithm is recommended if (i) the basis
matrices are known to be of rank one, and (ii) the dimension is lower than
min(m,n). Our algorithm, on the other hand, is slower, but substantially
different in that it does not need to know that a rank-one basis exist, but will
detect (in Phase I) and recover it automatically. Also it seems indifferent to
linear dependent factors in the CP model.

5.2 Quality of the convergence estimate

In Section 4 we analyzed the convergence of Algorithm 3 in Phase II and
showed that, when the error term is randomly distributed the convergence
factor would be roughly

√
r
n , recall the remark after Theorem 4. Here we

illustrate with experiments how accurate this estimate is.

Finding a low-rank basis in a matrix subspace 29

In Figure 6 we plot a typical convergence of ‖Tr(X)−X‖F as the iterations
proceed. We generated test problems (randomly as before) varying n on the
left (n = 10, 100) and varying r on the right (r = 2, 10). The dashed lines
indicate the convergence estimate (

√
r
n)` after the `th iteration. Observe that

in both cases the estimated convergence factors reflect the actual convergence
reasonably well, and in particular we verify the qualitative tendency that (i)
for fixed matrix size n, the convergence is slower for larger rank r, and (ii) for
fixed rank r, the convergence is faster for larger n.

Iteration
0 5 10 15 20 25

<
r+

1

10-10

10-5

100

n =20, r =2

n =100, r =2

Iteration
0 50 100 150

<
r+

1

10-10

10-5

100

n =20, r =2

n =20, r =10

Fig. 6: Convergence of ‖Tr(X) −X‖F as the iterations proceed in Phase II.
The convergence factor is faster for larger matrices when the rank is fixed
(left), and slower for higher rank when the matrix size is fixed (right), reflecting
Theorem 4.

5.3 Image separation

One well known use of the SVD is for data and image compression, although
currently it is no longer used for the JPEG format or other modern image
formats. It is known that most images can be compressed significantly without
losing the visible quality by using a low-rank approximation of the matrix that
represents the image.

Since each grayscale image can be expressed as a matrix, here we apply
our algorithm to a set of four incomprehensible images (shown as “mixed” in
Figure 7) that are random linear combinations of four ‘original’ low-rank images.
The latter were obtained from truncating four pictures (the famous ‘Lena’, along
with photos of Audrey Hepburn, Angelina Jolie and Arnold Schwarzenegger,
taken from the labeled faces in the wild dataset [37]) to rank exactly 15 using
singular value decomposition. As shown in Figure 7, we can recover these
low-rank images from the mixed ones using our Algorithm. In this experiment
we had to decrease the minimal threshold in Phase I to τtol = 5 · 10−4 for
obtaining the correct rank guess 15 for all four images. The standard choice

30 Yuji Nakatsukasa et al.

τtol = 10−3 underestimated the target rank as 14, which resulted in poorer
approximations in the subspace after Phase II (since it does not contain a rank
14 matrix), that is, the gap after singular value number 15 was less pronounced
than in Fig. 7. Nevertheless, the visual quality of the recovered images was
equally good.

We also note that in this experiment, and only in this experiment, restarting
(Algorithm 4) was invoked several times in Phase II, on average about 2 or 3
times.

Of course, separation problems like this one have been considered extensively
in the image processing literature [1,6,67], which is known as image separation,
and we make no claims regarding the actual usefulness of our approach in image
processing. This example is included simply for an illustrative visualization of
the recovery of the low-rank matrix basis by Algorithm 5. In particular, our
approach would not work well if the matrices of the images are not low-rank
but have gradually decaying singular values. This is the case here for the
original images from the database, which are not of low rank. Without the
initial truncation our algorithm did not work in this example.

original

mixed

computed

singular values

15 60
10

-10

10
0

15 60
10

-10

10
0

15 60
10

-10

10
0

15 60
10

-10

10
0

Fig. 7: We start with the middle images, which are obtained as random linear
combinations of the rank-15 images (of size 200×200) in the top row. We apply
our algorithm to obtain the four images in the third row lying in the same
subspace (they were sorted accordingly). The fourth row shows the singular
values of the recovered images.

Finding a low-rank basis in a matrix subspace 31

5.4 Computing exact eigenvectors of a multiple eigenvalue

Eigenvectors of a multiple eigenvalue are not unique. For example, the identity
matrix I has any vector as an eigenvector. However, among the many possibili-
ties one might naturally wish to obtain “nice” eigenvectors: for example, the
columns of I might be considered a good set of “nice” eigenvectors for I, as
they require minimum storage.

Numerically, the situation is even more complicated: a numerically stable
algorithm computes eigenpairs (λ̂, x̂) with residual Ax̂− λ̂x̂ = O(u‖A‖), where
u is the unit roundoff. Since the eigenvector condition number is O(1

gap) [58,

Sec. 1.3] where gap is the distance between λ and the rest of the eigenvalues,

the accuracy of a computed eigenvector is typically O(u‖A‖gap). This indicates

the difficulty (or impossibility in general) of computing accurate eigenvectors
for near-multiple eigenvalues in finite precision arithmetic. The common com-
promise is to compute a subspace corresponding to a cluster of eigenvalues,
which is stable provided the cluster is well separated from the rest [4, Sec. 4.8].

Here we shall show nonetheless that it is sometimes possible to compute
exact eigenvectors of (near) multiple eigenvalues, if additional property is
present that the eigenvectors are low-rank when matricized. As we discussed in
the introduction, this also lets us compress the memory to store the information.
Below we illustrate how this can be done with examples.

5.4.1 Eigenvectors of a multiple eigenvalue of a circulant matrix

As is well known, the eigenvector matrix of a circulant matrix is the FFT
matrix [27, Sec. 4.8]. One can easily verify that each column of an n2 × n2
FFT matrix F is rank-one when matricized to n × n, exemplifying a strong
low-rank property.

Let us consider a circulant matrix A ∈ Cn2×n2

defined by

A =
1

n2
FΛF ∗, (23)

where Λ = diag(λ1, . . . , λn2).
Suppose for the moment that one is oblivious of the circulant structure (or

perhaps more realistically, we can think of a matrix A that is not circulant
but has d eigenvectors consisting of columns of F ; such a matrix gives similar
results) and attempts to compute the d smallest eigenvalues of A by a standard
algorithm such as QR.

For the reason explained above, the numerically computed eigenvectors x̂i
obtained by MATLAB’s eig have poor accuracy. For concreteness suppose
that λ1 = λ2 = · · · = λd and λd+i = λd+i−1 + 1 for integers i, and we look
for the eigenvectors corresponding to the first d eigenvalues. With n = 10 and
d = 5, the smallest angle between x̂i and the first d columns of the Fourier
matrix were O(1) for each i (it should be 0 if x̂i was exact). Nonetheless, the
subspace spanned by the d computed eigenvectors [x̂1, . . . , x̂d] has accuracy

32 Yuji Nakatsukasa et al.

O(u), as there is sufficient gap between λk and λd+1. We therefore run our
algorithm with the n× n matrix subspace

M = span{mat(x̂1), . . . ,mat(x̂d)}.

Our algorithm correctly finds the rank (= 1), and finds the eigenvectors
[x1, . . . , xd], each of which is numerically rank-one and has O(u) angle with a
column of the Fourier matrix. This is an example where by exploiting structure
we achieve high accuracy that is otherwise impossible with a backward stable
algorithm; another established example being the singular values for bidiagonal
matrices [21, Ch. 5].

For example, we let n2 = 202 and compute the smallest 5 eigenvalues of a
circulant matrix A = 1

nFdiag(1 + ε1, 1 + ε2, 1 + ε3, 1 + ε4, 1 + ε5, 6, . . . , n
2)F ∗

where εi = O(10−10) was taken randomly. The matrix A therefore has a cluster
of five eigenvalues near 1. The “exact” eigenvectors are the first five columns
of the FFT matrix.

Table 4: Accuracy (middle columns) and memory usage for computed eigenvec-
tors of a 202 × 202 circulant matrix.

v1 v2 v3 v4 v5 memory
eig 4.2e-01 1.2e+00 1.4e+00 1.4e+00 1.5e+00 O(n2)

eig+Alg. 5 1.2e-12 1.2e-12 1.2e-12 1.2e-12 2.7e-14 O(n)

Note that our algorithm recovers the exact eigenvector of a near-multiple
eigenvalue with accuracy O(10−12). Furthermore, the storage required to store
the eigenvectors has been reduced from 5n2 to 5n.

5.4.2 Matrices with low-rank eigenvectors

Of course, not every vector has low-rank structure when matricized. Nonetheless,
we have observed that in many applications, the eigenvectors indeed have a
low-rank structure that can be exploited. This observation may lead to the
ability to deal with problems of scale much larger than previously possible.

Circulant matrices are an important example, as we have seen above (which
clearly includes symmetric tridiagonal, symmetric banded, etc). We have ob-
served that a sparse perturbation of a circulant matrix also has such structure.

Other examples come from graph Laplacians. We have numerically observed
that typically the Laplacian matrix of the following graphs have eigenvectors
(corresponding to the smallest nonzero eigenvalues) that are low-rank: binary
tree, cycle, path graph and the wheel graph all have rank 3 irrelevant of the
size, the lollipop graph has rank 4 (regardless of the ratio of the complete/path
parts), and the ladder graph has rank 2 and circular ladder (rank 2) regardless
of the size, and barbell always has rank 5. Clearly, not every graph has such
structure: a counterexample is a complete graph. Our empirical observation is
that sparse graphs tend to have low-rank structure in the eigenvectors.

Finding a low-rank basis in a matrix subspace 33

Note that the low-rankness of the eigenvector depends also on the ordering
of the vertices of the graph.3 An ordering that seemed natural have often
exhibited low-rank property.

Our algorithm does not need to know a priori that a low-rank structure is
present, as its phase I attempts to identify whether a low-rank basis exists. We
suspect that identifying and exploiting such structure will lead to significant
improvement in both accuracy and efficiency (both in speed and memory).
Identifying the conditions under which such low-rank structure is present is
left as an open problem. We expect and hope that the low-rank matrix basis
problem will find use in applications beyond those described in this paper.

A Finding rank-one bases via tensor decomposition

In this appendix, we describe the rank-one basis problem as a tensor decomposition problem.
Recall that in this problem, we are promised that the given subspace M is spanned by rank-
one matrices. Thus we can apply Algorithm 3 (Phase II) with the precise rank guess directly.
Alternatively, we can also stop after Algorithm 2 (Phase I), which in practice performs well
(see Section 5.1). The following tensor decomposition viewpoint leads to further algorithms.

Let M1, . . . ,Md be an arbitrary basis of M, and let T be the m× n× d tensor whose
3-slices are M1, . . . ,Md. The fact that M possesses a rank-one basis is equivalent to the
existence of d (and not less) triplets of vectors (a`,b`, c`) where a` ∈ Rm,b` ∈ Rn, c` ∈ Rd,
such that

Mk =

d∑
`=1

ck,`a`b
T
` , k = 1, . . . , d (24)

(here ck,` denotes the kth entry of c`). Namely, if such triplets (a`,b`, c`) exist, then the

assumed linear independence of the Mk automatically implies that rank-one matrices a`b
T
`

belong toM. Using the outer product of vectors (denoted by ◦), we may express this relation
in terms of the tensor T as

T =

d∑
`=1

a` ◦ b` ◦ c`. (25)

This type of tensor decomposition into a sum of outer products is called the CP decomposition,
and is due to Hitchcock [36] (although the term CP decomposition appeared later). In general,
the smallest d required for a representation of the form (25) is called the (canonical) rank of
the tensor T . We refer to [40] and references therein for more details. In summary, we have
the following trivial conclusion.

Proposition 8 The d-dimensional matrix space M = span(M1, . . . ,Md) possesses a rank-
one basis if and only if the tensor T whose 3-slices are the M1, . . . ,Md has (canonical) rank
d. Any CP decomposition (25) of T provides a rank-one basis a1b

T
1 , . . . ,adb

T
d of M.

We remark that computing the rank of a general third-order tensor is known to be
NP-hard [33,35]. Therefore, it is NP-hard to check whether a matrix space M admits a
rank-one basis. Nevertheless, we might try to find a rank-one basis by trying to calculate
a CP decomposition (25) from linearly independent M1, . . . ,Md. We outline two common
algorithms.

3 We thank Yuichi Yoshida for this observation.

34 Yuji Nakatsukasa et al.

A.1 Simultaneous diagonalization

If the tensor T ∈ Rm×n×r is known to have rank d and d ≤ min(m,n), it is “generi-
cally” possible to find a CP decomposition (25) in polynomial time using simultaneous
diagonalization [16,19,41].

Let us introduce the factor matrices A = [a1, . . . ,ad] ∈ Rm×d, B = [bd, . . . ,bd] ∈ Rn×d,
and C = [c1, . . . , cd] ∈ Rd×d.Then (24) reads

Mk = ADkB
T , k = 1, . . . , d,

where Dk = diag(cTk), in which cTk denotes the kth row of C. In other words, a rank-one basis
exists, if the M1, . . . ,Md can be simultaneously diagonalized. The basic idea of the algorithm
of Leurgans, Ross, and Abel in [41] is as follows. One assumes rank(A) = rank(B) = d. Pick
a pair (k, `), and assume that Dk and D` are invertible, and that DkD

−1
` has d distinct

diagonal entries. Then it holds

MkM
+
` A = ADkB

T (BT)+D−1
` A+A = ADkD

−1
` ,

where superscript + denotes the Moore-Penrose inverse. In other words, A contains the
eigenvectors of MkM

+
` to distinct eigenvalues, and is essentially uniquely determined (up to

scaling and permutation of the columns). Alternatively, for more numerical reliability, one
can compute an eigenvalue decompositions of a linear combination of all MkM

+
` instead,

assuming that the corresponding linear combination of DkD
−1
` has distinct diagonal entries.

Similarly, B can be obtained from an eigendecomposition, e.g. of MT
k (MT

`)+ or linear
combinations. Finally,

Dk = A+Mk(BT)+, k = 1, . . . , d,

which gives C. The algorithm requires the construction of Moore-Penrose inverses of matrices
whose larger dimension is at most max(m,n). Hence, the complexity is O(mn2).

The condition that the DkD
−1
` or a linear combination of them should have distinct

diagonal entries is not very critical, since it holds generically, if the matrices M1, . . . ,Md

are randomly drawn from M, or, when this is not possible, are replaced by random linear
combination of themselves. The condition rank(A) = rank(B) = d on the other hand, is
a rather strong assumption on the rank-one basis a1b

T
1 , . . . ,adb

T
d . It implies uniqueness

of the basis, and restricts the applicability of the outlined algorithm a priori to dimension
d ≤ min(m,n) of M. There is an interesting implication on the condition (14) that we used
for the local convergence proof of our algorithms. Theorem 4 and Corollary 5 therefore apply
at every basis element a`b

T
` in this setting.

Proposition 9 Let a1b
T
1 , . . . ,adb

T
d be a rank-one basis such that rank(A) = rank(B) = d.

Then (14) holds at any basis element X∗ = X` = a`b
T
` .

Proof This follows immediately from Lemma 7 by taking M̃ = span{akb
T
k

: k 6= `}. ut

De Lathauwer [16] developed the idea of simultaneous diagonalization further. His
algorithm requires the matrix C to have full column rank, which in our case is always true
as C must contain the basis coefficients for d linearly independent elements M1, . . . ,Md.
The conditions on the full column rank of A and B can then be replaced by some weaker
conditions, but, simply speaking, too many linear dependencies in A and B will still lead
to a failure. A naive implementation of De Lathauwer’s algorithm in [16] seems to require
O(n6) operations (assuming m = n).

Further progress on finding the CP decomposition algebraically under even milder
assumptions has been made recently in [22]. It is partially based on the following observation:
denoting by m` = vec(M`) the n2 × 1 vectorization of M` (which stacks the column on top
of each other), and defining Matr(T) = [m1, . . . ,mr] ∈ Rmn×d, we have

Matr(T) = (B�A)CT , (26)

Finding a low-rank basis in a matrix subspace 35

where B�A = [a1 ⊗ b1, . . . ,ad ⊗ bd] ∈ Rmn×d is the so called Khatri-Rao product of B
and A (here ⊗ is the ordinary Kronecker product). If C (which is of full rank in our scenario)
would be known, then A and B can be retrieved from the fact that the matricizations of the
columns of Matr(T)C−T = B�A must be rank-one matrices. In [22] algebraic procedures
are proposed that find the matrix C from T .

Either way, by computing the CP decomposition for T we can, at least in practice,
recover the rank one basis {a`b

T
` } in polynomial time if we know it exists. This is verified in

our MATLAB experiments using Tensorlab’s cpd in Section 5.1.1.

A.2 Alternating least squares

An alternative and cheap workaround are optimization algorithms to calculate an approximate
CP decomposition of a given third-order tensor, a notable example being alternating least
squares (ALS), which was developed in statistics along with the CP model for data analysis [13,
30]. In practice, they often work astonishingly well when the exact rank is provided.

Assuming the existence of a rank-one basis, that is, rank(T) = d, the basic ALS algorithm
is equivalent to a block coordinate descent method applied to the function

f(A,B,C) =
1

2

∥∥∥∥∥T −
d∑
`=1

a` ◦ b` ◦ c`

∥∥∥∥∥
2

F

.

The name of the algorithm comes from the fact that a block update consists in solving a
least squares problem for one of the matrices A, B or C, since f is quadratic with respect
to each of them. It is easy to derive the explicit formulas. For instance, fixing A and B, an
optimal C with minimal Frobenius norm is found from (26) as C = Matr(T)T (BT �AT)+.
The updates for the other blocks look similar when using appropriate reshapes of T into a
matrix; the formulas can be found in [40].

The question of convergence of ALS is very delicate, and has been subject to many
studies. As it is typical for these block coordinate type optimization methods for nonconvex
functions, convergence can, if at all, ensured only to critical points, but regularization might
be necessary, see [62,44,48,66,64,63] for some recent studies, and [40] in general. Practical
implementations are typically a bit more sophisticated than the simple version outlined
above, for instance the columns of every factor matrix should be rescaled during the process
for more numerical stability. Also a good initialization of A, B, and C can be crucial for the
performance. For instance one may take the leading HOSVD vectors [18] or the result of
other methods [39] as a starting guess for ALS.

References

1. Abolghasemi, V., Ferdowsi, S., Sanei, S.: Blind separation of image sources via adaptive
dictionary learning. IEEE Trans. Image Process. 21(6), 2921–2930 (2012)

2. Ames, B. P. W., Vavasis, S. A.: Nuclear norm minimization for the planted clique and
biclique problems. Math. Program. 129(1, Ser. B), 69–89 (2011)

3. Andersson, F., Carlsson, M.: Alternating projections on nontangential manifolds. Constr.
Approx. 38(3), 489–525 (2013)

4. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the
solution of algebraic eigenvalue problems. A practical guide. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA (2000)

5. Barak, B., Kelner, J. A., Steurer, D.: Rounding sum-of-squares relaxations. In: Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 31–40
(2014)

6. Bell, A. J., Sejnowski, T. J.: An information-maximization approach to blind separation
and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

36 Yuji Nakatsukasa et al.

7. Bühlmann, P., van de Geer, S.: Statistics for high-dimensional data. Methods, theory
and applications. Springer, Heidelberg (2011)

8. Cai, J.-F., Candès, E. J., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

9. Candès, E. J.: The restricted isometry property and its implications for compressed
sensing. C. R. Math. Acad. Sci. Paris 346(9-10), 589–592 (2008)

10. Candès, E. J., Recht, B.: Exact matrix completion via convex optimization. Found.
Comput. Math. 9(6), 717–772 (2009)

11. Candes, E. J., Tao, T.: Near-optimal signal recovery from random projections: universal
encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

12. Candès, E. J., Tao, T.: The power of convex relaxation: near-optimal matrix completion.
IEEE Trans. Inform. Theory 56(5), 2053–2080 (2010)

13. Carroll, J. D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3),
283–319 (1970)

14. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H. A.:
Tensor decompositions for signal processing applications: From two-way to multiway
component analysis. IEEE Signal Proc. Mag. 32(2), 145–163 (2015)

15. Coleman, T. F., Pothen, A.: The null space problem. I. Complexity. SIAM J. Algebraic
Discrete Methods 7(4), 527–537 (1986)

16. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra
and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666
(electronic) (2006)

17. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms. II. Definitions
and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)

18. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposi-
tion. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (electronic) (2000)

19. De Lathauwer, L., De Moor, B., Vandewalle, J.: Computation of the canonical decompo-
sition by means of a simultaneous generalized Schur decomposition. SIAM J. Matrix
Anal. Appl. 26(2), 295–327 (electronic) (2004/05)

20. Demanet, L., Hand, P.: Scaling law for recovering the sparsest element in a subspace.
Inf. Inference 3(4), 295–309 (2014)

21. Demmel, J. W.: Applied numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA (1997)

22. Domanov, I., De Lathauwer, L.: Canonical polyadic decomposition of third-order tensors:
reduction to generalized eigenvalue decomposition. SIAM J. Matrix Anal. Appl. 35(2),
636–660 (2014)

23. Drusvyatskiy, D., Ioffe, A. D., Lewis, A. S.: Transversality and alternating projections
for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015)

24. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur.
Standards Sect. B 71B, 241–245 (1967)

25. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Electrical Engi-
neering Deptartment Stanford University (2002)

26. Fazel, M., Hindi, H., Boyd, S. P.: A rank minimization heuristic with application to
minimum order system approximation. In: In Proceedings of the 2001 American Control
Conference, pp. 4734–4739 (2001)

27. Golub, G. H., Van Loan, C. F.: Matrix computations. Johns Hopkins University Press,
Baltimore, MD (2013)

28. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming,
version 2.1, March 2014. URL http://cvxr.com/cvx

29. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. System Sci.
69(3), 448–484 (2004)

30. Harshman, R. A.: Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16,
1–84 (1970)

31. Harvey, N. J. A., Karger, D. R., Murota, K.: Deterministic network coding by matrix
completion. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 489–498 (2005)

http://cvxr.com/cvx

Finding a low-rank basis in a matrix subspace 37

32. Harvey, N. J. A., Karger, D. R., Yekhanin, S.: The complexity of matrix completion.
In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
1103–1111 (2006)

33. H̊astad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)
34. Helmke, U., Shayman, M. A.: Critical points of matrix least squares distance functions.

Linear Algebra Appl. 215, 1–19 (1995)
35. Hillar, C. J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), Art. 45, 39

(2013)
36. Hitchcock, F. L.: The expression of a tensor or a polyadic as a sum of products. Journal

of Mathematics and Physics 6, 164–189 (1927)
37. Huang, G. B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A

database for studying face recognition in unconstrained environments. Tech. Rep. 07-49,
University of Massachusetts, Amherst (2007)

38. Ivanyos, G., Karpinski, M., Qiao, Y., Santha, M.: Generalized Wong sequences and their
applications to Edmonds’ problems. In: Proceedings of the 31st International Symposium
on Theoretical Aspects of Computer Science, vol. 117543, pp. 397–408 (2014)

39. Kindermann, S., Navasca, C.: News algorithms for tensor decomposition based on a
reduced functional. Numer. Linear Algebra Appl. 21(3), 340–374 (2014)

40. Kolda, T. G., Bader, B. W.: Tensor decompositions and applications. SIAM Rev. 51(3),
455–500 (2009)

41. Leurgans, S. E., Ross, R. T., Abel, R. B.: A decomposition for three-way arrays. SIAM
J. Matrix Anal. Appl. 14(4), 1064–1083 (1993)

42. Lewis, A. S., Luke, D. R., Malick, J.: Local linear convergence for alternating and
averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009)

43. Lewis, A. S., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1),
216–234 (2008)

44. Li, N., Kindermann, S., Navasca, C.: Some convergence results on the regularized
alternating least-squares method for tensor decomposition. Linear Algebra Appl. 438(2),
796–812 (2013)

45. Liu, Y.-J., Sun, D., Toh, K.-C.: An implementable proximal point algorithmic framework
for nuclear norm minimization. Math. Program. 133(1-2, Ser. A), 399–436 (2012)

46. Liu, Z., Vandenberghe, L.: Interior-point method for nuclear norm approximation with
application to system identification. SIAM J. Matrix Anal. Appl. 31(3), 1235–1256
(2009)

47. Lovász, L.: Singular spaces of matrices and their application in combinatorics. Bol. Soc.
Brasil. Mat. (N.S.) 20(1), 87–99 (1989)

48. Mohlenkamp, M. J.: Musings on multilinear fitting. Linear Algebra Appl. 438(2),
834–852 (2013)

49. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC (2010)
50. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections.

Found. Comput. Math. 16(2), 425–455 (2016)
51. Oxley, J.: Infinite matroids. In: N. White (ed.) Matroid Applications, vol. 40, pp. 73–90.

Cambridge University Press (1992)
52. Qu, Q., Sun, J., Wright, J.: Finding a sparse vector in a subspace: Linear sparsity

using alternating directions. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
K. Weinberger (eds.) Advances in Neural Information Processing Systems 27, pp. 3401–
3409. Curran Associates, Inc. (2014)

53. Qu, Q., Sun, J., Wright, J.: Finding a sparse vector in a subspace: Linear sparsity using
alternating directions. arXiv:1412.4659 (2014)

54. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430
(2011)

55. Recht, B., Fazel, M., Parrilo, P. A.: Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

56. Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab v2.0, Available online, January
2014. URL http://www.tensorlab.net/

57. Spielman, D. A., Wang, H., Wright, J.: Exact recovery of sparsely-used dictionaries. In:
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pp. 3087–3090. AAAI Press (2013)

http://www.tensorlab.net/

38 Yuji Nakatsukasa et al.

58. Stewart, G. W.: Matrix algorithms. Vol. II. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA (2001). Eigensystems

59. Stewart, G. W., Sun, J. G.: Matrix perturbation theory. Computer Science and Scientific
Computing. Academic Press, Inc., Boston, MA (1990)

60. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere I: Overview
and the geometric picture. arXiv:1511.03607 (2015)

61. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere II: Recovery
by Riemannian trust-region method. arXiv:1511.04777 (2015)

62. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

63. Uschmajew, A.: A new convergence proof for the higher-order power method and
generalizations. Pac. J. Optim. 11(2), 309–321 (2015)

64. Wang, L., Chu, M. T.: On the global convergence of the alternating least squares method
for rank-one approximation to generic tensors. SIAM J. Matrix Anal. Appl. 35(3),
1058–1072 (2014)

65. Wedin, P.-Å.: Perturbation bounds in connection with singular value decomposition.
Nordisk Tidskr. Informationsbehandling (BIT) 12, 99–111 (1972)

66. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex opti-
mization with applications to nonnegative tensor factorization and completion. SIAM J.
Imaging Sci. 6(3), 1758–1789 (2013)

67. Zhao, X., Zhou, G., Dai, W., Xu, T., Wang, W.: Joint image separation and dictionary
learning. In: 18th International Conference on Digital Signal Processing (DSP), pp. 1–6.
IEEE (2013)

