Aufgabe 30: a) Finden Sie eine stetige Funktion und eine offene Menge M (in \mathbb{R}) so dass f(M) nicht offen ist.

b) Sei $f:\mathbb{R}\to\mathbb{R}$ stetig und $U\subset\mathbb{R}$ offen. Zeigen Sie, dass $f^{-1}(U)$ stets offen ist.

Aufgabe 31: a) Sei a_n eine konvergente Folge, d.h. existiert a mit $\lim_{n\to\infty} a_n = a$. Ist die Menge $\{a_n : n \in \mathbb{N}\} \cup \{a\}$ abgeschlossen oder beschränkt?

b) Geben Sie ein Beispiel für offene Mengen an, so dass der Schnitt nicht offen ist.

Aufgabe 32: Berechnen Sie die Ableitung der Funktion

$$f(x) := \int_{-x^2}^{x^2} \frac{\sin(xy)}{y} \, dy.$$

Aufgabe 33: Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei stetig. Betrachten Sie die durch

$$x(t) := \frac{1}{k} \int_0^t f(u) \sin(k(t-u)) du$$

definierte Funktion.

a) Berechnen Sie $\dot{x}(t)$ und $\ddot{x}(t)$.

b) Zeigen Sie, dass die Funktion x=x(t) eine Lösung der Differentialgleichung

$$\ddot{x}(t) + k^2 x(t) = f(t)$$

ist und die Anfangswertbedingungen $x(0) = \dot{x}(0) = 0$ erfüllt.