

Wissenschaftliches Rechnen II

Sommerstemester 2012 Prof. Mario Bebendorf Raoul Venn, Jos Gesenhues

Übungsblatt 11.

Abgabe am Dienstag, 03.07.

Aufgabe 1. (Elementare Eigenschaften)

Es seien P_k , $\hat{\mathcal{P}}_k$, V_k und V wie in der Vorlesung definiert. Weiter seien A, A_k die zu den Bilinearformen $a(\cdot,\cdot)$ bzw. $a_k(\cdot,\cdot)$ assoziierten Operatoren mit $Av := a(v,\cdot)$ und $A_k v_k := a_k(v_k,\cdot)$. Zeigen Sie folgende Eigenschaften:

- a) $A_k = P_k'AP_k$ und $\hat{\mathcal{P}}_k = A_k^{-1}P_k'A$, wobei P_k' den adjungierten Operator, sprich die Restriktion bezeichnet.
- b) Der in der Vorlesung definierte Operator $\mathcal{P}_k := P_k \hat{\mathcal{P}}_k$ ist tatsächlich eine Projektion, d. h. $\mathcal{P}_k^2 = \mathcal{P}_k$ gilt. Außerdem gilt

$$a((I - \mathcal{P}_k)v, \mathcal{P}_k, w) = 0.$$

c) Für $\mathcal{P}_{ad} = \sum_{k=1}^{K} \mathcal{P}_k$ gilt

$$a(\mathcal{P}_{\mathrm{ad}}u, v) = \sum_{k=1}^{K} a_k(\hat{\mathcal{P}}_k u, \hat{\mathcal{P}}_k v) = a(u, \mathcal{P}_{\mathrm{ad}}).$$

Beachten Sie dabei, dass man $a_k(\cdot,\cdot)$ äquivalent definieren kann vermöge

$$a_k(u_k, v_k) := a(P_k u_k, P_k v_k)$$
, für alle $u_k, v_k \in V_k$.

Aufgabe 2. (Lemma 7.6)

Beweise Lemma 7.6 aus der Vorlesung, wobei \mathcal{T}_H quasi-uniform und $V_H := \mathcal{S}_0^{1,0}(\mathcal{T}_H)$ sei. Hinweis: Verwende Satz 2.83 und die inverse Ungleichung.