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Preface

The Quocmesh library is a software collection jointly developed by the group “Modeling
and Numerical Simulation”, headed by Prof. Dr. Martin Rumpf, at Bonn University. The
main application is Finite Element computations and related numerical algorithms. It
is written in C++ (using partly features of the 2011 revision of the ISO C standard) and
follows the object oriented programming paradigm.

On the most abstract level the Quocmesh library defines objects and operators that can be
applied to objects. The principle of strong typing assures that objects fit together while
intensive use of template programming retains flexibility.

A basic example: matrix-vector operations

The most fundamental data structure is the vector representing a mathematical vector of
rational numbers. It is declared in the following way:

aol : : Vector <double> vec ( 42 ) ;

The argument specifies the length of the vector. Notice that the vector has a template
parameter specifying the integral data type used to represent floating point numbers.
Usually one would use double everywhere. Read and write access to the elements of the
vector is provided by the usual array syntax vec[ i ] .

A matrix, which is an operator on vectors, can be declared like this:

aol : : Fu l lMa t r i x <double> mat ( 23 , 42 ) ;

This will construct a dense matrix with 23× 42 entries. There are numerous other matrix
types tailored for specific applications. Especially for Finite Element computations sparse
matrices will be used. Notice that again the floating point data type has to be specified.
As long as we used the same type for the vector and the matrix we can now apply the
matrix to the vector.

mat . apply ( vec , dest ) ;



This will perform a matrix vector multiplication of mat and vec and write the result to
dest, which is just another vector. Checking if the dimensions of the matrix and the two
vectors fit together might be done at runtime if implemented.

If you are interested in more elaborated examples have a look at examples/vectorMatrixOps
(go to “Table of Projects” in the documentation provided).

Finite Element Operators

As an example we consider the following equation: For given α ∈ R find u : Ω̄→ R such
that

u− α∆u = u0 in Ω ,
∂νu = 0 on ∂Ω .

Discretization The weak formulation reads∫
Ω
(u− α∆u)φ =

∫
Ω

u0 φ for all φ ∈ H1,2(Ω) .

By partial integration we arrive at∫
Ω

u φ + α
∫

Ω
∇u · ∇φ =

∫
∂Ω
∇u · ν︸   ︷︷   ︸

=0

φ +
∫

Ω
u0 φ .

Let U0(φ) :=
∫

u0 φ. We now look for an approximation U ∈ Vh of u where Vh =
span{φ1, . . . , φN} is a finite dimensional space:

U = ∑
j

Ūj φj .

Inserting the approximation for u yields∫
Ω

∑ Ūj φj φi + α
∫

Ω
∑ Ūj∇φj · ∇φi = U0(φi) for all i .

We now define the mass and the stiffness matrix by

Mij :=
∫

φi φj, Lij :=
∫
∇φi∇φj .

Finally we obtain a linear system of equations:

(M + αL)Ū = Ū0 .

Matrix assembly The assembly of the Finite Element matrices will occur element based,
i.e. we have to iterate over all elements of the computational grid and on each element
consider every pairing of Finite Element basis functions whose support intersect with the
current element. To compute the integral a numerical quadrature is required.

The generic assembly loop is implemented in an interface class FELinOpInterface:



for each element T
prepareLoca lMat r ix ( T , l o c a l M a t r i x )
for i , j from 1 to numberOfLocalBasisFunctions

g loba l Index_ i , j = mapLocalToGlobalIndex ( i , j )
endfor
g lo ba lM a t r i x ( g loba l Index_ i , j ) = l o c a l M a t r i x _ i , j

endfor

The concrete implementation of prepareLocalMatrix depends on the specific Finite Ele-
ment operator that is considered. It is therefore implemented in a class derived from
FELinOpInterface and looks similar to the following generic version:

for each quadrature po in t q
for i , j from 1 to numberOfLocalBasisFunctions

b a s i s f c t _ i = eva luateBas isFunct ion ( i , q )
b a s i s f c t _ j = eva luateBas isFunct ion ( j , q )
l o c a l M a t r i x _ i , j += b a s i s f c t _ i ∗ b a s i s f c t _ j ∗ quadratureWeight ( q )

end ( for )
endfor

Similarly gradients may enter the integration or additional coefficients considered.

Configurator classes All information that is required to perform the above assembly
is centralized in so called configurator classes. They provide among other things:

• the dimension of the problem

• the integral data type used to represent floating point numbers

• the quadrature rule

• the type of Finite Element functions used

• the type of computational grid

Here is an example for bilinear Finite Element functions on a two dimensional uniform
quadrilateral grid on level 5 (i.e. it has 25 × 25 elements) using a Gauss quadrature rule
of order 3. To keep the code readable we suggest to use typedef expressions.

const qc : : Dimension DIM = qc : : QC_2D;
typedef double RealType ;
typedef aol : : GaussQuadrature<RealType , DIM,3 > QuadType ;
typedef qc : : QuocCon f igu ra to rT ra i tMu l t i L in <RealType , DIM , QuadType> ConfType ;
typedef typename ConfType : : I n i t Type GridType ;

GridType g r i d ( 5 ) ;
ConfType conf ( g r i d ) ;


