
Scientific Computing II

Summer Semester 2014
Lecturer: Prof. Dr. Beuchler

Assistent: Bastian Bohn

Excercise sheet 3. Closing date 29.04.2014.

Theoretical exercise 1. (Triangle classes [5 points])

For the triangle ∆ with corners A,B,C let D denote the midpoint of the edge AB and

F the midpoint of BC. Define t(∆) := area(∆)
diam(∆)2

. Let t(∆) ≥
√

7
8 and AC ≤ BC ≤ AB.

Prove that AC ≥ max(CD,AD) and CD ≥ CF .

Theoretical exercise 2. (Triangle bisection [5 points])

Let ∆0,1 be a triangle. A bisection along its longest edge results in the triangles ∆1,1,∆1,2

on level 1. Continuing this process of bisecting along the longest edge for the two new
triangles and iterating further we get triangles ∆k,j on level k for j = 1, . . . , 2k. Let lk
denote the length of the longest edge of any triangle on level k.

a) Prove that the maximum edge length l2 of any edge in any of the resulting triangles
on level 2 fulfills

l2 ≤
√

3

2
l0.

b) We call a triangle ∆0,1 “suitable” if there exists an N > 0 such that

l2k ≤

(√
3

2

)min(k,N)

·
(

1

2

)max(k−N,0)

· l0 for k ≥ 0.

Prove that ∆0,1 is suitable if for each i = 1, . . . , 4 either

• ∆2,i is suitable or

• ∆2,i is similar to ∆0,1 and diam(∆2,i) =
diam(∆0,1)

2 .

Programming exercise 1. (Adaptive FEM [25 points])

The closing date for submission of the programming exercise is May, 25th. Please mail
your commented and compilable code to bohn@ins.uni-bonn.de. Points are given for
correctness, readability and runtime complexity.

Implement the Rivara algorithm for adaption in a triangle-based FE method (with linear
and quadratic Lagrangian basis) to solve 2nd order elliptic PDEs

−div(A(x) gradu(x)) + c(x)u(x) = f(x) on Ω

u = 0 on Γ1 ⊂ ∂Ω
∂u

∂~n
= g on Γ2 = ∂Ω \ Γ1

with elementwise constant A, c, f where A(x) is a diagonal matrix. As a basis you can
use your own non-adaptive FE code you created in Scientific Computing I or the code



from the website (this corresponds to last semesters’ reference code after the last exercise
sheet) supplied in FEMCode.tar. The Linux Makefile compiles the code and creates a
doxygen documentation. Feel free to implement any helper routine you might need.

You will need to enhance the code in the following way

a) Create an elementwise residual error estimator η2
K = h2

K‖r‖2L2(K) + hK‖R‖2L2(∂K)

where r = f + div(A∇uh)− cuh is the element residual on K and

R =

{
g − (A∇uh) · ~nK on Γ2

− [(A∇uh) · ~n] on ∂K ⊂ Ω \ (Γ1 ∪ Γ2)

is the boundary residual where nK is the outer normal vector of the element K and
[(A∇uh) · ~n] is the jump discontinuity at the interface.

Taking the reference code as basis, the most important things you need to implement
will be:

• The determination of the element diameter hK : This can be done by using the
coordinate information of the nodes of an instacne of the Element class.

• The evaluation of second order derivatives for quadratic Lagrange basis functions
has to be implemented in Basis.cc,

• The determination of the normal vector of an edge and the evaluation of the
normal derivatives of the basis functions (standard first order derivatives are
already implemented in Basis.cc),

• A numerical integration routine to evaluate the L2-norms. (The 7-point rule
implemented in IntegrationRule.cc for triangles can be used for integrals
over the reference element K̂),

• The information to which element(s) a certain edge belongs can be useful. If
you implement it as a new variable in the class Edge you have to be careful to
update/set the information at the correct places in the code.

b) Implement the element bisection along the longest edge for an instance of Element.
The following steps are the most important to be done:

• Determine the longest edge of the element.

• Bisect the longest edge, i.e. create a new node, two new edges and mark the old
edge as refined (you can use the already implemented RefineEdge routine in
Mesh.cc). Then create a new edge to bisect the element. You additionally have
to determine if an element shares the old edge and mark this element (and/or
the edge) as (possibly) nonconformal. Remark: The isRefined information of
an edge might be helpful to determine if an possibly nonconforming element still
uses an old edge and therefore needs to be refined later on.

• Delete the old element and create the two new ones to store them in the
elements vector.

c) Implement the Rivara algorithm (Algorithm 7.3 from the lecture). To do this you
need to be able to determine all nonconforming elements, bisect an element along its
longest edge and also bisect by connecting the “midpoints” of two edges. For the last
part, you can again use most of the code you implemented for bisecting along the
longest edge.

d) Test your code: Use the grid and PDE information from SampleGrid.txt (readable
by createTriMeshAndPDEFromFile) and run the Rivara algorithm five times. In
every iteration mark the (roughly) 33% of all elements which employ the largest
local error according to the residual error estimator. Visualize the solution and the
resulting grid using a VTK-file.

2



With the input file you will be able to solve the PDE

−∆x,yu(r, θ) = (
175

2
r + 100r−

1
2 − 375

2
) · sin(

1

2
θ)

on Ω = (−1, 1)× (−1, 1) \ {(x, 0) | 0 ≤ x ≤ 1}
u = 0 on ∂Ω

where (r, θ) are the polar coordinates corresponding to the cartesian coordinates
(x, y). By ∆x,y we mean the Laplace operator with respect to the cartesian coordi-
nates.

The solution can be written as

u(r, θ) =

{
(10r

1
2 − 50r

3
2 + 50r2 − 10r3) · sin(1

2θ) if r ≤ 1
0 else

Inspect the convergence rates of the `2 and the `∞ error on the FE-nodes for this
problem.

Everything is set in the SampleGrid.txt file except for the right hand side. To reset
the right hand side (elementwise constant) call resetRHS(tornRHS) before solving
the PDE. The right hand side as well as the corresponding analytic solution are
implemented in Functions.cc.

3


