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Theoretical exercise 1. (Lo error estimator [5 points])

Let Q C R? be a bounded, open and connected domain with Lipschitz boundary and
cone condition with o € Q. Furthermore, let a(u,v) := [ Vu - Vudz for u,v € Hg ().
Let pg > 0 be arbitrary, and let 6 € C§°(£2) be such that there for a constant C' > 0:
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With the standard notations from the lecture, prove that
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where G is the regularized Green’s function to the regularized delta function § and Iy is
the interpolation operator.

Theoretical exercise 2. (Linear combination of bubble functions [5 points])

For a uniform FE triangulation on a domain 2 as in exercise 1, let 7 be the patch to the
element 7 and set

v(z) = Z a5¢1,s($) + Z ﬁr(ﬁO,r(w)
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where ¢;  is the interior bubble function of the element 75 and ¢o - is the edge bubble
function corresponding to e,.. The coefficients ay, 8, are defined via
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where h,, is the diameter of 74 and 7, R denote piecewise constant approximations to
the interior residuals and the boundary residuals. Prove that the coefficients ay, 3, (for
{r | e, £ 9Q}) are uniformly bounded (without dependence of the constants on the
element diameters) from above and below.

Theoretical exercise 3. (Regularized Green’s functions [Bonus: 5 points])

For the setting from exercise 1 assume additionally that there exists 1 < pg < % such
that
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Prove that there exists a C' > 0 independent of p and pg such that
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for p | 1.
Hint: You may assume that there exists a ¢ > 0 such that
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for p | 1. This follows from Sobolev inequalities.
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