

Numerical Simulation

Summer Semester 2015 Lecturer: Prof. Dr. André Uschmajew Assistent: Bastian Bohn

Excercise sheet 7.

Closing date **09.06.2015**.

Theoretical exercise 1. (Pointwise inequality contraints [5 points])

Let Ω be a bounded Lipschitz domain and let $u_a, u_b \in L_2(\Omega)$ fulfill $u_a \leq u_b$ almost everywhere. Prove that

 $U_{\mathrm{ad}} := \{ u \in L_2(\Omega) \mid u_a \le u \le u_b \text{ almost everywhere in } \Omega \}$

is a convex, bounded and closed subset of $L_2(\Omega)$.

Theoretical exercise 2. (Convergence of the Uzawa algorithm [8 points])

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, $b \in \mathbb{R}^n, d \in \mathbb{R}^m$ and let $C \in \mathbb{R}^{m \times n}$ have rank $m \leq n$. Now consider the indefinite system

$$\begin{pmatrix} A & C^T \\ C & 0 \end{pmatrix} \begin{pmatrix} u \\ \lambda \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix}.$$
 (1)

The Uzawa algorithm is defined by

Algorithm 1: Uzawa algorithm

Data: $\lambda^{(0)} \in \mathbb{R}^m, \alpha > 0, \epsilon \ge 0$ **1** Set k := 1; **2** do **3** Solve $Au^{(k)} = b - C^T \lambda^{(k-1)}$; **4** Set $\lambda^{(k)} := \lambda^{(k-1)} + \alpha(Cu^{(k)} - d)$; **5** Set k := k + 1; **1** Set $\lambda^{(k)} = \lambda^{(k-1)} + \alpha(Cu^{(k)} - d)$;

6 while $\|\lambda^{(k)} - \lambda^{(k-1)}\| > \epsilon;$

Prove that the sequence $(u^{(k)}, \lambda^{(k)})$ converges to the true solution (u, λ) of (1) if $\epsilon = 0$ and $\alpha < \frac{2}{\|S\|}$, where $S = CA^{-1}C^T$ denotes the Schur complement.

Theoretical exercise 3. (Optimal stationary heat equation with boundary control [5 points])

Let Ω be a bounded Lipschitz domain with boundary Γ and let $y_{\Omega} \in L_2(\Omega)$ and let $\alpha \in L_{\infty}(\Gamma)$ be a non-negative function with

$$\int_{\Gamma} \alpha^2 \mathrm{d}s > 0.$$

Determine the optimality conditions of the control problem

$$\min_{y \in H^1(\Omega), u \in L_2(\Gamma)} \|y(x) - y_{\Omega}(x)\|_{L_2(\Omega)}^2 + \frac{\lambda}{2} \|u\|_{L_2(\Gamma)}^2$$

such that

$$\begin{aligned} -\Delta y &= 0 & \text{in } \Omega, \\ \partial_{\nu} y &= \alpha(u-y) & \text{on } \Gamma, \\ -1 \leq u(x) &\leq 1 & \text{a.e. on } \Gamma, \end{aligned}$$

where ν is the outer normal on Γ . Use the framework of section 2.4. of the lecture and check that the corresponding forms a(y, v) und $F_u(v)$ are indeed bilinear and bounded. Derive the variational inequality for the adjoint state.