
Numerical Simulation

Summer Semester 2015
Lecturer: Prof. Dr. André Uschmajew

Assistent: Bastian Bohn

Excercise sheet 9. Closing date 23.06.2015.

Theoretical exercise 1. (Distributed source control [8 points])

In an analogous fashion to Corollary 3.3, Lemma 3.4 and Theorem 3.5, derive the op-
erator S∗, the adjoint state p and the optimality conditions in variational form for the
problem of distributed source control on Q = (0, 1)× (0, T ):

min J(y, u) :=
1

2

∫ T

0

∫ 1

0
(y(x, t)− yQ(x, t))2dxdt+

λ

2

∫ T

0

∫ 1

0
u(x, t)2dxdt

subject to

yt(x, t) = yxx(x, t) + u(x, t) in Q

yx(0, t) = 0 in (0, T )

yx(1, t) + αy(1, t) = 0 in (0, T )

y(x, 0) = 0 in (0, 1)

with ua ≤ u ≤ ub almost everywhere and u, yQ, ua, ub ∈ L2(Q) and α, λ ≥ 0.

Theoretical exercise 2. (Uniqueness of optimal bang-bang control [4 points])

Prove the uniqueness statement in Theorem 3.6, i.e. show that the optimal Bang-Bang
control is unique.

Programming exercise 1. (Elliptic optimal control with Dirichlet boundary condi-
tions)

The programming exercises have to be done in C/C++. Please mail your
code to bohn@ins.uni-bonn.de by 30th of June.

Write a C/C++ code to solve the optimal control problem

min
y,u
‖y − yΩ‖2L2([0,1]2) +

λ

2
‖u‖2L2([0,1]2)

subject to

−∆y = u in [0, 1]2

y = 0 on ∂[0, 1]2

−1 ≤ u ≤ 1 almost everywhere on [0, 1]2

by the projected gradient method using a Finite Element PDE solver. To discretize
y ∈ H1([0, 1]2) and the adjoint state p ∈ H1([0, 1]2) use piecewise linear Finite Elements.
u ∈ L2([0, 1]2) should be discretized by piecewise constant Finite Elements. The FEM-
mesh is created by 5-times uniform (red-)refinement of



(1, 0)

(0, 1)

(0, 0)

(1, 1)

PDE-solver The code framework provided in the zip-archive on the website is the
FEM-code from the lecture Scientific Computing I (WS 13/14). The code is compiled
(on Linux-operating systems) by running make in your console. However, if you prefer to
use any other or your own PDE solver, feel free to do so. The code you should implement
yourself is just the projected gradient method. The PDE solver can be treated as a
black-box-algorithm. The results should then be written to two VTK-files which can be
visualized by e.g. paraview (this is already done in the reference code): One file for the
controls and one for the state.

In the reference code the reading and refinement of the geometry and the PDE solver
itself already exist and do not need to be changed. The only thing that needs to be done
in order to solve the state and adjoint equations is setting up the correct right hand
sides for the poisson solver. To do this you can use the function resetRHSByVec which
resets the right hand side elementwise. For the adjoint equation you need to compute
the L2-projection of the piecewise linear y − yΩ onto the space of piecewise constant
functions on the elements. To this end, you can just use a simple midpoint rule. Here
the function Mesh::getNodesToElement will be of good use to get the indices of the
nodes which belong to a certain element.

After the right hand side has been set, the actual PDE solving is done by consecutive
calls to

• generateGlobalStiffnessMatrixAndLoadVector,

• incorporateBoundaryConditions,

• pcCG.

See for example the corresponding calls in solvePDEFromFile as a reference.

To implement the projected gradient method for the control problem, you only need to
edit the file PDE exercise.cc where it states “YOUR CODE HERE”. The coarse struc-
ture of the function solveControlProblem is already given. The parameters maxCGIt

and eps are only relevant for the CG-algorithm of the PDE-solver.

When you send in your results, only send the files you actually changed (in the best
case, this would just be PDE exercise.cc).

Example-Problem Test your code with λ = 0.01 and λ = 0.001 for yΩ(a, b) = a(1−
a)b2(1− b). The stepsize for the projected gradient method can be chosen as 100. The
algorithm should terminate when the `2 norm of the coefficients of u(k−1)−u(k) is smaller
than 10−10.

2


