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Exercise sheet 3 - Sample solution for group exercises

G 1. (Weak derivative)

Let I = (a, b) be an open interval and let L1(I) be the space of functions f : I → R such

that
∫ b
a |f(x)|dx < ∞. Further denote by C∞c (I) the set of all infinitely differentiable

functions f with compact support supp(f) = {x ∈ I : f(x) 6= 0}. For m ∈ N, a function
u ∈ L1(I) is said to have a mth weak derivative v ∈ L1(I) if∫

I
u(x)ϕ(m)(x)dx = (−1)m

∫
I
v(x)ϕ(x)dx

for all ϕ ∈ C∞c (I). Analogously, the weak derivatives are defined for complex-valued,
integrable functions.

a) Let u ∈ C1(I)∩L1(I). Show that the classical and the weak derivative of u coincide in
L1(I). You may use the fact that, for f ∈ L1(I),

∫
I f(x)ζ(x)dx = 0 for all ζ ∈ C∞c (I)

implies f = 0.

b) Assume that both f and the weak derivative f (m) are contained in L2(T) ⊂ L1(T).
Show that

f (m) =
∑
k∈Z

(ik)m〈f, ek〉ek.

Solution.

a) Partial integration gives∫
I
u′(x)ϕ(x)dx = [u(x)ϕ(x)]ba −

∫
I
u(x)ϕ(x)′dx = −

∫
I
u(x)ϕ(x)′dx

for every test function ϕ ∈ C∞c (I). Now assume there is another v ∈ L1(I) such that∫
I v(x)ϕ(x)dx = −

∫
I u(x)ϕ(x)′dx for every test function ϕ. But then∫

(u′(x)− v(x))ϕ(x)dx = 0

for every test function and consequently, u′ = v in L1(I).

b) Let ϕ ∈ C∞c ((−π, π)) be a test function. For every Fourier monomial, we ha-

ve e
(m)
k (x) = (ik)mek(x). Since f ∈ L2(T), we have f =

∑
k∈Z αkek such that∑

k∈Z α
2
k < ∞. Likewise, we have f (m) =

∑
k∈Z βkek with

∑
k∈Z β

2
k < ∞. Now,

we calculate∑
k∈Z

βk〈ek, ϕ〉 = 〈f (m), ϕ〉 = (−1)m〈f, ϕ(m)〉 = (−1)m
∑
k∈Z

αk〈ek, ϕ(m)〉 =
∑
k∈Z

(ik)mαk〈ek, ϕ〉.

Hence, 〈
∑

k∈Z βkek −
∑

k∈Z(ik)mαkek, ϕ〉 = 0. Since ϕ was arbitrary, the same argu-
ment as in a) yields

∑
k∈Z βkek =

∑
k∈Z(ik)mαkek. Comparing coefficients yields the

result.



G 2. (An infinite-dimensional reproducing kernel space)

For T = [0, 2π] being the torus, consider the space L2(T) of all square-integrable functions
f : [0, 2π] → C, equipped with the inner product 〈f, g〉 = (2π)−1

∫ 2π
0 f(x)g(x)dx. Let

(ek)k∈Z be the Fourier ONB in L2(T). For m ∈ N, consider the Hilbert space

Wm
0 (T) =

f ∈ L2(T) : 〈f, e0〉 = 0 and
∑

k∈Z\{0}

|〈f, ek〉|2k2m <∞


with inner product 〈f, g〉Wm

0
:=

∑
k∈Z\{0}〈f, ek〉〈ek, g〉k2m.

a) Recall from Sheet 2, H1 c) the Banach space C(T) of continuous, 2π-periodic functions
equipped with the supremum norm ‖f‖∞ = supx∈T |f(x)|. Show that, for any f ∈
Wm

0 (T), the Fourier series
∑

k∈Z\{0}〈f, ek〉ek converges pointwise and conclude that
Wm

0 (T) ⊂ C(T).

b) Show that Wm
0 (T) is a reproducing kernel Hilbert space with kernel

R1(x, y) = 2
∑

k∈Z\{0}

k−2m cos(k(x− y)).

Hint: Recall Exercise G2 and G3 from Sheet 2.

Solution.

a) Consider the sequence of uniformly continuous functions (gk)k∈Z\{0} given by gk(x) =
〈f, ek〉ek(x). By Cauchy-Schwarz on the sequence space, we have∑
k∈Z\{0}

‖gk‖∞ =
∑

k∈Z\{0}

k−mkm|〈f, ek〉| ≤
√ ∑
k∈Z\{0}

k−2m
√ ∑
k∈Z\{0}

|〈f, ek〉|2k2m <∞

Hence, the sequence (gk)k converges absolutely which implies that the series∑
k∈Z\{0} gk converges in C w.r.t. the uniform norm ‖ · ‖∞. Moreover, the limit of a

sequence of uniformly continuous functions is again uniformly continuous.

b) Consider the partial sum sn(f) :=
∑

k 6=0,|k|≤n〈f, ek〉ek. We have

sn(f)(x) =
∑

k 6=0|k|≤n

〈f, k−2mek(−x)ek〉Wm
0

= 〈f,
∑

k 6=0,|k|≤n

k−2mek(−x)ek〉Wm
0
.

Let us write vnx =
∑

k 6=0,|k|≤n k
−2mek(−x)ek. The sequence (vnx)n∈N converges in Wm

0 .

Namely, for |k| ≤ n, 〈vnx , ek〉 = k−2mek(−x) and∑
k∈Z\{0}

|k−2mek(−x)|2k2m =
∑

k∈Z\{0}

|k|−2m <∞.

The last estimate holds true since a hyperharmonic series
∑

k∈Z\{0} |k|−α converges
for α > 1 according to the Cauchy condensation test. It is now easy to verify that

R1(x, y) := lim
n→∞

vnx(y) = 2
∞∑
k=1

k−2m cos(k(y − x))

has the reproducing property in Wm
0 (T).
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