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The infinite horizon problem

Let yx denote the unique solution of the Cauchy problem{
ẏ(s) = f(y(s), α(s))

y(0) = x.

We aim to minimize the cost

J(x, α) :=

∫ ∞
0

`(yx(t), α(t))e−λtdt.

For that purpose we define the value function as

v(x) := inf
α∈A

J(x, α).

Prerequisites

Let A ⊂ RM compact.

(A0) {
A is a topological space,

f : RN ×A→ RN is continuous,

(A1) f is bounded on B(0, R)×A for all R > 0,

(A2) there is a modulus ωf such that

|f(y, a)− f(x, a)| ≤ ωf (|x− y|, R),

for all x, y ∈ B(0, R) and R > 0.

(A3)
(f(x, a)− f(y, a)) · (x− y) ≤ L|x− y|2 for all x, y ∈ RN , a ∈ A.

(A4) • ` is continuous,

• there are modulus ω` and a constant M such that

|`(x, a)− `(y, a)| ≤ ω`(|x− y|)

and
|`(x, a)| ≤M,

for all x, y ∈ RN and a ∈ A,

• λ > 0
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Exercises

Exercise 1. Prove: Assume (A0), (A1), (A3), and (A4). Then v ∈ BUC(RN ). If moreover
ω`(r) = L`r (i.e., ` is Lipschitz in y, uniformly in a), then v is Hölder continuous with the
following exponent γ:

γ =


1 if λ > L

any γ < 1 if λ = L
γ
L if λ < L

Hint: Under the assumptions from above a basic property of yx is

|yx(t, α)− yz(t, α)| ≤ eLt|x− z|

for all α ∈ A, and t > 0. L denotes the constant known from (A3).

(6 Punkte)

Feedback maps

Definition 1. A control law or presynthesis on a set Ω ⊆ RN is a map A : Ω→ A, that is, it
associates with each point x ∈ Ω a control function A(x) =: ax. It is optimall on Ω if the cost
associated with it, that is, JA(x) := J(x, αx), satisfies

JA(x) = min
α∈A

J(x, α) = v(x) for all x ∈ Ω.

The most important examples of control laws are generated by feedback maps Ψ : Ω → A,
provided the feedback is admissible in the following sense.

Definition 2. A feedback map on a set Ω ⊆ RN , Ψ : Ω → A, is admissible if for all x ∈ Ω
there exists a unique solution yx(·,Ψ) on [0,+∞[ of{

˙(y) = f(y,Ψ(y))

y(0) = x

such that t→ Ψ(yx(t,Ψ)) is measurable and yx(t,Ψ) ∈ Ω for all t ≥ 0.

It is natural to associate the following control law with an admissible feedback map

αx(·) := Ψ(yx(·,Ψ)) ∈ A;

αx in this case is called a closed-loop control.

Exercise 2. Denote by F the set of admissible feedback maps on RN , and set, for Ψ ∈ F ,

JF (x,Ψ) :=

∫ ∞
0

e−λt`(yx(t,Ψ),Ψ(yx(t,Ψ)))dt

vF (x) = inf
Ψ∈F

JF (x,Ψ).

(i) Prove that vF = v. [Hint: one inequality is trivial, the other is easily obtained by adding
time as a state variable.]

(ii) Prove directly (without using (i)) that vF is continuous and satisfies the Dynamic Pro-
gramming Principle.

(6 Punkte)

Treating the convex HJ equation in multiple space dimensions

We consider Hamilton-Jacobi equations in multiple space dimensions

ut +H(ux1 , . . . , uxd) = 0, Rd × [0, T ] (1)

Exercise 3. Generate the upwind scheme for (1) in case d = 2. Prove monotonicity and
consistency for that scheme. (Adapt the univariate proofs).

(6 Punkte)
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