

Scientific Computing 2

Summer term 2017 Prof. Dr. Ira Neitzel Christopher Kacwin

Sheet 2

Submission on Thursday, 4.5.2017.

Exercise 1. (variational inequality)

Let $X \subset \mathbb{R}^n$ be convex and $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a convex function which is continuously differentiable. Given the optimization problem

$$\min_{x \in X} f(x) \,,$$

show that $x^* \in X$ is a solution iff the variational inequality

$$\nabla f(x^*)^\top (x - x^*) \ge 0$$

holds for all $x \in X$.

(6 points)

Exercise 2. (ACQ and GCQ)

Determine the tangential cone T(X,x) and linearized tangential cone $T_l(g,x)$ for the feasible set $X = \{g(x) \leq 0\}$ and a given $x^* \in X$. Visualize your results. Furthermore, check if the Abadie-Constraint-Qualification and Guignard-Constraint-Qualification are satisfied.

a)
$$g(x) = (x_2 - x_1^5, -x_2)^{\top}, x^* = (0, 0)^{\top}$$

b)
$$g(x) = (x_2^2 - x_1 + 1, 1 - x_1 - x_2)^{\top}, x^* = (1, 0)^{\top}$$

(4 points)

Exercise 3. (Slater CQ)

Let $f, g_1, \ldots, g_m \in C^1(\mathbb{R}^n)$ be convex and $X = \{x \in \mathbb{R}^n \mid \forall i : g_i(x) \leq 0\}$ be the feasible set. For an optimization problem

$$\min_{x \in X} f(x) \,,$$

X satisfies the Slater condition if there exists $y \in \mathbb{R}^n$ such that $g_i(y) < 0$ for i = 1, ..., m. Show that the Slater condition is a constraint qualification, i.e., the Guignard-Constraint-Qualification is satisfied for all $x \in X$.

(6 points)

Exercise 4. (Cones)

Let K be a cone and K° its polar cone. Prove the following statements.

- a) K is convex iff $K + K \subset K$.
- b) K° is always convex and closed.
- c) If K is convex and closed, it follows that $(K^{\circ})^{\circ} = K$.

(4 points)