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Theory recap (end of Chapter 3)

An important part in the conclusion of the previous chapter has been the study of the infinite-
horizon optimal control problem. We indicate with v the value function that we want to
estimate. Recall that our strategy is to firstly discretize time, obtaining vτ → v as τ = ∆t→ 0
(due to a discrete version of DPP - Thm 38) , then to choose a space discretization (with a
corresponding DPP principle) in a way that vτh → vτ as h → 0. Differently from the finite-
horizon case, we opted for a polyhedral finite-element method with leading parameter h (see
A7, Thm 40 and 41). In particular the function evaluation is then not limited on nodes only.

The solution to the infinite-horizon problem is finally given by Theorem 42, claiming the full
convergence vτh → v when τ → 0 and h → 0 too. After that section we assumed to have
c1h ≤ τ ≤ c2h for positive constants, justifying the writing vh → v understood to mean the
convergence in Thm 42 where now only h needs to go to zero thanks to the coupling with τ .

A practical question arises: how can we concretely generate the values vh(x)?

An opportunity widely used in the field is given by the so-called Q-values. For instance, if we
set:

• v0h(x) = 0

• Qk+1
h (x, a) = γτvkh(x+ τf(x, a)) + τ l(x, a)

• vk+1
h = mina∈AQ

k+1
h (x, a)

we observe that vk+1
h → vh as k →∞ by using the theorems just mentioned (nothing new). In

other words, there exists a limiting Qh and we have Vh(x) = mina∈AQh(x, a). Note how the
computation of Q requires a complete knowledge of f , l, and that - if it can help to clarify -
this is the Q used in the remark for proof of theorem 44 added later.

We introduced the Q-values in order to shift to the Reinforcement-Learning case. The RL set-
ting is based exactly on the same principles here stated, but aims to obtain a final convergence
to v without a complete information of f or l. In other words, we need different Q-values and
consequently a different iterative sequence. Note that for the values defined above, one has first
the convergence to vh, and then to v by letting h→ 0.

Key idea: it is possible to skip the step in between. For sequences satisfying the weak contraction
property (Thm 43) one has directly the convergence to v for k → ∞, h → 0, and generally is
not actually true that vkh → vh as k →∞ (this is the meaning of the triangle diagram pictured
in class).

According to the way in which Q is defined, we have a model-based or model-free algorithm.
We wrote in class both the precise definitions (as well as geometric intuition), but proved the
weak contraction only for the model-based case (Thm 44).
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Exercise 1. (Convergence of the model-free case)

If v is the exact value function for our optimal problem, explain how you would use the model-
free algorithm for approximating it. Point out the structure of the proof and which properties
do you need for concluding.

(9* Punkte)

The next exercise is understood to be in the context of Chapter number 4.

Exercise 2. (Monte Carlo in Reinforcement Learning)

Prove that the Monte-Carlo simulation formula

Jµ(i) = lim
M→∞

1

M

M∑
m=1

c(i,m)

is valid even if a state may be revisited within the same sample trajectory.

Hint: Suppose the M cost samples are generated from N trajectories, and that the k − th
trajectory involves nk visits to state i and generates nk corresponding cost samples. Denote
mk = n1 + ...+ nk. Write:

lim
M→∞

1

M

M∑
m=1

c(i,m) = lim
N→∞

1
N

∑N
k=1

∑mk
m=mk−1+1 c(i,m)

1
N (n1 + ·+ nN )

=
E(

∑mk
m=mk+1+1 c(i,m))

E(nk)

and prove that E(
∑mk

m=mk+1+1 c(i,m)) = E(nk)Jµ(i).

(5* Punkte)
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