

V4E2 - Numerical Simulation

Sommersemester 2018 Prof. Dr. J. Garcke Teaching assistant: Biagio Paparella Tutor: Marko Rajković (marko.rajkovic@uni-bonn.de)

Exercise sheet 2. To be handed in on 02.05.2018 (during the exercise session).

Let $H : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ be a Hamiltonian and $\Omega \subset \mathbb{R}^d$ be an open domain. As usual, we consider the (stationary) problem:

$$H(x, u, Du) = 0, \quad \forall x \in \Omega.$$
(1)

with the ordinary assumptions here omitted.

Exercise 1. (Test functions are actually the usual one)

Show by a density argument that an equivalent definition of viscosity solution for (1) can be given by using $C^{\infty}(\Omega)$ instead of $C^{1}(\Omega)$ as the 'test function space'. [Hint: Friedrichs mollifier] (4 Punkte)

Exercise 2. (Min/max and change of coordinates)

Prove one of the following. You can also prove both, gaining then extra points:

- It is false, in general, that if u, v are viscosity solutions of (1) the same is true for $u \wedge v$, $u \vee v$ (give a counterexample).
- Let $u \in C(\Omega)$ be a viscosity solution of (1), and let $\Phi : \mathbb{R} \to \mathbb{R}$ be a function in $C^1(\mathbb{R})$ such that $\Phi'(t) > 0$. Then $v \doteq \Phi(u)$ is a viscosity solution of

$$H(x, \Psi(v(x)), \Psi'(v(x))Dv(x)) = 0, \forall x \in \Omega$$

where $\Psi = \Phi^{-1}$ denotes the inverse of Φ .

(3+3 Punkte)

Exercise 3. (A sufficient condition)

Let $A \subset \mathbb{R}^k$ be compact $f: \Omega \times A \to \mathbb{R}^d$ and $l: \Omega \times A \to \mathbb{R}$. Suppose that for all x, y, a

$$|f(x,a) - f(y,a)| \le L|x-y|, \quad |\ell(x,a) - \ell(y,a)| \le \omega(|x-y|)$$

where the constant L and the modulus ω are independent of $a \in A$. Let $H(x,p) = \sup_{a \in A} \{-f(x,a) \cdot p - \ell(x,a)\}$. Show that H satisfies:

$$|H(x,p) - H(y,p)| \le \omega_1(|x - y|(1 + |p|))$$

 $(\omega_1 : [0, +\infty[\to [0, +\infty[$ is continuous nondecreasing with $\omega_1(0) = 0)$. Why is this property important?

(4 Punkte)

For this last exercise we consider the time-dependent case reformulation of equation (1), whose precise definition and notion of viscosity solution have been given in the lecture.

Exercise 4. (An example with time-dependency)

Check that both $u_1(t,x) = 0$ and $u_2(t,x) = (t - |x|)^+$ are viscosity supersolutions of

$$u_t - |u'(x)| = 0, (t, x) \in (0, +\infty) \times \mathbb{R}$$
$$u(0, x) = 0, x \in \mathbb{R}$$

Is u_2 a subsolution? [Hint: look at $D^+u_2(1,0)$]

(4 Punkte)