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Exercise sheet 7. To be handed in on Tuesday, 12.06.2017.

In this sheet we prove more properties of the First-Order-Upwind and the Lax-Friedrichs
schemes studied in class for the advection equation (CAE, VA).

As explained in the lecture after the Upwind scheme, a way to increase the consistency rate
is to use a larger stencil of points. E first naive way would be given by the Forward Euler
approximation, here written for the constant case:
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Exercise 1. (Euler scheme is unstable)

Prove that the previous Euler scheme is unstable.
(4 Punkte)
A solution to this inconvenience is suggested by the Lax-Friedrichs scheme (LF):
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Exercise 2. (Lax-Friedrichs: consistency and CLF condition)

Prove that the previous LF scheme:

1 is consistent, by showing the bound for the local consistency error:
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2 satisfies the CFL condition when £ &x <1

Hint: recall that for a smooth solution, it holds the approximation:
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(6 Punkte)

Now we come back to the upwind scheme, checking better the bahavior of the numerical

solution. First, recall the linear equation in one space dimension with constant coefficient
c>0

ug(x,t) + cug(x,t) =0, wu(x,0)=up(z). (1)

The exact solution of the discretized equations (finite differences) satisfies a PDE which is
generally different from the one to be solved:
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Exercise 3. (Numerical solution for the Upwind scheme)

Prove that the numerical solution of (1) by the upwind scheme:
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corresponds to a solution of:
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where A = %‘; and ... contains derivatives of order > 3. Hints:
e Expand all nodal values in the difference scheme in a double Taylor series about a single
point (x;,t;) of the space-time mesh to obtain a PDE;

e Express high-order time derivatives as well as mixed derivatives in terms of space deri-
vatives using this PDE to transform it into the desired form.
(5 Punkte)



