
Prof. Dr. Michael Griebel
Prof. Dr. Jochen Garcke

Dr. Bastian Bohn
Jannik Schürg

5
DEEP NEURAL NETWORKS

Send your solutions
to this chapter’s tasks
until

July 3rd.

After having considered unsupervised learning methods on sheets
3 and 4, we now come back to supervised learning once more. Recall
that we are given data D := {(xi, yi) ∈ Ω× Γ | i = 1, . . . , n} drawn
i.i.d. according to some measure µ and we are looking for a function f ,
which approximately achieves f (x) = y for (x, y) ∼ µ. As before, we
tacitely assume Ω ⊂ Rd and Γ ⊂ R. We now turn to the model class
of (artificial) neural networks and especially deep neural networks (DNN).
This class is very popular in machine learning nowadays and a vast
zoo of specific types of DNNs exists, which are used formany different
tasks such as speech recognition, automated video sequencing, graph
learning or image generation, see e.g. http://www.asimovinstitute.
org/neural-network-zoo/ and [2, 6].

The basic idea of a neural network is tomodel theway inwhich infor-
mation is propagatedbetweenneurons in thehumanbrain. Specifically,
they are built on the analogon of sending an electrical signal along a
neuron synapse. In an artificial neural networkmodel, certain neurons
are connected to each other and - based on the state of a neuron - a
signal is passed along these connections to adjacent neurons. Depend-
ing on how important a connection is, it is given a certain weight. We
will stick here to the class of feedforward networks, which means that
information is passed only in one direction.
a single-layer feedforward network

A feedforward neural network can directly be modeled as a specific
directed acyclic graph. In the easiest case, we are dealing with a single-
layer neural network1, see figure 5.1. For this simple network model,
the i-th neuron of the input layer contains the component zi of an input
vector z ∈ Rd. Then it propagates this information to the single output
layer neuron by multiplying it with the connection weight wi. At the
output neuron, the propagated information of all input neurons is
summed up and a bias b is added. The result is

f (z) =
d

∑
i=1

wizi + b.

1 Note that the output layer is usually not counted. Therefore, we refer to this as a single-
or one-layer neural network.

49

Send anonymous feedback for this page.

http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/
https://beta.ins.uni-bonn.de/feedback/mllab?page=49&vcs=803bd8b6&obj=Script

50 deep neural networks

z1

z2

...

zd

f (z) := ∑d
i=1 wizi + b

w1

w2

wd

Input
layer

Output
layer

Figure 5.1: A one-layer neural network, which gets a vector z = (z1, . . . , zd)
as input and computes f (z) by propagating it to the output layer.

Viewing the weights wi for i = 1, . . . , d and the bias b as degrees of
freedom,we alreadyknow themodel class of f verywell: This is exactly
the class of affine linear functions. Thus, the model class that can be
represented by this most simple neural network is the class of affine
linear functions. To obtain a classifier, usually a nonlinear activation
function φ : R → R is applied to the result in the output layer. The
most simplest one in the case of two classes Γ = {0, 1} would be the
heaviside function

φ(t) =

{
1 if t > 0

0 else

for whichwe obtain the so-called perceptron neural network, whichwas
invented by F. Rosenblatt in 1957, see [11]. It resembles the first step
for machine learning with neural networks. While this is a nice fact
per se, we already exhaustively dealt with this model class on the first
sheets. To create a broader model class, we will now add more layers
(so-called hidden layers) in between the input and the output layer to
the network.

a two-layer feedforward network

Let us now consider a more involved two-layer network, see figure
5.2. This network consists of an input layer with d1 := d neurons, one
hidden layer with d2 neurons and an output layer with a single neuron.
For an input z ∈ Rd the network does the following:

• Neuron i of the input layer gets the data zi of the input vector.

• The information zi is passed on by neuron i of the input layer to
neuron j of the subsequent layer multiplied by the weight w(1)

i,j .

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=50&vcs=803bd8b6&obj=Script

5.2 a two-layer feedforward network 51

z1

...

zd

...

f (z)

w(1)
1,1

w(1)
1,2

w(1)
1,d2

w(1)
d,1

w(1)
d,2

w(1)
d,d2

w(2)
1

w(2)
2

w(2)
d2

Hidden
layer

Input
layer

Output
layer

Figure 5.2: A fully-connected two-layer neural network (one hidden layer),
which gets a vector z = (z1, . . . , zd) as input and computes f (z)
by propagating the input through the network architecture. Here,
the hidden layer has d2 neurons.

• All the information w(1)
i,j · zi for all i = 1, . . . , d that arrives in

neuron j of the hidden layer is summed up and a bias b(2)j is
added to create the so-called net sum:

net(2)j :=
d

∑
i=1

w(1)
i,j zi + b(2)j .

• The net sum is taken as input for an activation function φ(2) :
R → R. Thus, o(2)j := φ(2)(net(2)j) is the information computed
(and stored) in neuron j of the hidden layer.

• Now each neuron j of the hidden layer passes its information
o(2)j to each neuron of the next layer. In our case, this is the
output layer, which only consists of a single neuron. Again, the
information is multiplied by the corresponding weight w(2)

j .

• The information that arrives in the output layer is summed up to

net(3) :=
d2

∑
j=1

w(2)
j o(2)j + b(3),

where b(3) is the bias of the output neuron.

• We apply a final activation function φ(3) to obtain

f (z) = o(3) := φ(3)(net(3)) =

= φ(3)

(
d2

∑
j=1

w(2)
j · φ

(2)

(
d

∑
i=1

w(1)
i,j zi + b(2)j

)
+ b(3)

)
.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=51&vcs=803bd8b6&obj=Script

52 deep neural networks

This is called forward propagation of the information/input z and it
computes the output f (z) according to the neural network f defined
by the architecture fromfigure 5.2.Note that, for regression,we usually
choose the final activation function to be φ(3) := id, so o(3) = net(3).
Obviously, the model class from which f stems is now much more
involved than in the single-layer case.

deep neural networks

We can directly see that, themore hidden layers we add to the network,
the more involved and complicated the structure of f gets. Networks
with more than one hidden layer are usually referred to as deep neural
networks.

Computing point evaluations of f – forward propagation

For a given vector z ∈ d, we want to compute f (z), where f is the
function given by the neural network. The generalization from the
two-layer case to the L-layer case with L > 2 is straightforward: Given
the values o(l)i for i = 1, . . . , dl computed in the neurons of the l-th
layer2, we obtain the values in the l + 1-th layer by computing the net
sum of the j-th neuron by

net(l+1)
j :=

dl

∑
i=1

w(l)
i,j o(l)i + b(l+1)

j

and applying the activation function of the l + 1-th layer to get

o(l+1)
j := φ(l+1)(net(l+1)

j).

This procedure is then iterated until we reach the output layer. Note
that we can also write this in a matrix-vector-fashion

~net(l+1) :=
(

W(l)
)T
·~o(l) +~b(l+1)

with weight matrix entries W(l)
ij := w(l)

i,j . Often - by abusing notation -
you will see the application of the activation function written as

~o(l+1) := φ(l+1)(~net(l+1)
),

where the application of φ(l+1) is meant component-wise.
Apart from classic activation functions such as φ(l)(z) = tanh(z)

or φ(l)(z) = 1
1+e−z , the most famous one in recent artificial neural

networks is the so-called rectified linear unit or just ReLU-function
φ(l)(z) = ReLU(z) := max(0, z).

2 For the case l = 1, we just set o(1)i := zi for i = 1, . . . , d1 with d1 = d.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=52&vcs=803bd8b6&obj=Script

5.3 deep neural networks 53

While deep neural networks have already been studied in the 1960s,
their popularity in machine learning emerged only in the last 10 years,
due to the fact that adequate hardware andefficient training algorithms
to determine the weights and biases have been missing earlier.

Least-squares error minimization

Finally, let us have a look at how to train a neural network, i.e. how to
determine the weights and biases. To this end, we will again aim to
minimize the least-squares loss function

1
n

n

∑
i=1

Ci(f) :=
1
n

n

∑
i=1

(f (xi)− yi)
2 (5.1)

for the neural network model f . For L > 2 the minimization problem
is nonlinear and (usually) nonconvex, which makes the mathematical
and numerical treatment much harder than in the case of linear mod-
els. If a minimizer of (5.1) exists, it is usually not even unique and -
for deep networks with large L - many local minimizers exist. Never-
theless, many numerical experiments in the last decades have shown
that gradient-based minimization algorithms such as quasi-Newton
algorithms or even simple descent methods lead to very good results
when employed to solve (5.1). Note that we already employed a gra-
dient descent algorithm for the most simple neural network model
class, namely the affine linear one, on sheet 1. To compute the gradient
w.r.t. the weights and biases of (5.1), we will use the so-called backward
propagation or backprop algorithm, which is based on the chain rule.

Computing the gradients of Ci – backward propagation

Since the one-point loss Ci for i = 1, . . . , n is just a random instance of
C(f) := (f (x)− y)2 for (x, y) ∼ µ, we will focus on computing

∂C(f)

∂w(l)
i,j

and ∂C(f)

∂b(l+1)
j

∀ i = 1, . . . , dl and j = 1, . . . , dl+1

for l = 1, . . . , L.
Note that the chain rule gives us

∂C(f)

∂w(l)
i,j

=
∂C(f)

∂o(l+1)
j

·
∂o(l+1)

j

∂ net(l+1)
j

·
∂ net(l+1)

j

∂w(l)
i,j

=
∂C(f)

∂o(l+1)
j

·
(

φ(l+1)
)′ (

net(l+1)
j

)
· o(l)i .

For the first term we have

∂C(f)

∂o(l+1)
j

=


2(f (x)− y) if l = L,

∑
dl+2
i=1

∂C(f)

∂ net(l+2)
i

· ∂ net(l+2)
i

∂o(l+1)
j

else.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=53&vcs=803bd8b6&obj=Script

54 deep neural networks

Since ∂ net(l+2)
i

∂o(l+1)
j

= w(l+1)
j,i and

∂C(f)

∂ net(l+2)
i

=
∂C(f)

∂o(l+2)
i

·
∂o(l+2)

i

∂ net(l+2)
i

=
∂C(f)

∂o(l+2)
i

·
(

φ(l+2)
)′ (

net(l+2)
i

)
,

we can calculate ∂C(f)

∂w(l)
i,j

starting at the final layer and iterate backwards

step by step. This process is called backward propagation or simply back-
prop. To this end, let us iteratively define

δ
(l)
j :=

 2(f (x)− y) = 2(o(L+1)
1 − y) if l = L,

∑
dl+2
i=1 δ

(l+1)
i ·

(
φ(l+2)

)′ (
net(l+2)

i

)
· w(l+1)

j,i else.

Then, it follows

∂C(f)

∂w(l)
i,j

= δ
(l)
j ·

(
φ(l+1)

)′ (
net(l+1)

j

)
· o(l)i

for l = 1, . . . , L. Analogously, one can show

∂C(f)

∂b(l+1)
j

= δ
(l)
j ·

(
φ(l+1)

)′ (
net(l+1)

j

)
.

Again, we can write this down in a matrix-vector format by

~δ(l) :=

 2(f (x)− y) if l = L,

W(l+1) ·
(
~δ(l+1) �

(
φ(l+2)

)′ (
~net(l+2)

))
else,

which gives us the derivatives

∇W(l)C(f) =~o(l) ·
(
~δ(l) �

(
φ(l+1)

)′ (
~net(l+1)

))T

∈ Rdl×dl+1 ,

∇~b(l+1)C(f) = ~δ(l) �
(

φ(l+1)
)′ (

~net(l+1)
)

∈ Rdl+1 ,

where � denotes the Hadamard product.
This shows us, how the derivatives for one data tuple (x, y) can

be computed. Doing this for all (xi, yi) with i = 1, . . . , n gives us the
derivatives of (5.1) w.r.t. the weights and biases. This enables us to
employ a gradient descent algorithm.

Training the network – stochastic (minibatch) gradient descent

Let us now introduce an advanced variant of the gradient descent
optimizer we had on sheet 1. Instead of using a standard gradient
descent optimizer, which can be costly for large data sets, we will use
a stochastic variant, where a subset B ⊂ {1, . . . , n} is chosen randomly

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=54&vcs=803bd8b6&obj=Script

5.3 deep neural networks 55

in each iteration step and the gradient∇w,b w.r.t. all weights and biases
of

CB(f) :=
1
|B| ∑i∈B

Ci(f)

is computed instead of the gradient of (5.1). This is much cheaper if
|B| � n and gives an unbiased estimate of the gradient of C(f) since
the data is drawn i.i.d. according to µ. The overall stochastic minibatch
gradient descent algorithm for the minimization of (5.1) is given in
algorithm 5.5.

Algorithm 5.5 Stochastic gradient descent algorithm to determine a
minimizer of (5.1).

Input: Data set D, learning rate ν > 0, minibatch size K, number of
steps S.

for all s = 1, . . . , S do
Draw a random set B ⊂ {1, . . . , n} of size K.
Calculate f (xi) ∀ i ∈ B via forward propagation.
Calculate ∇w,bCB(f) via backprop.
Update the weights and biases

W(l) ←W(l) − ν · ∇W(l)CB(f),
~b(l+1) ←~b(l+1) − ν · ∇~b(l+1)CB(f)

for all l = 1, . . . , L.
end for

Task5.1. Implement a classTwoLayerNN, which represents a (fully-connected,
feed-forward) two-layer neural network, i.e. L = 2. The activation functions
should be φ(2) = ReLU and φ(3) = id. The weights and biases can be ini-
tialized by drawing i.i.d. uniformly distributed random numbers in (−1, 1).
The class should contain a method feedForward to calculate the point evalu-
ations of f for a whole minibatch at once and a method backprop to calculate
∇w,bCB(f). To this end, avoid using for-loops over the minibatch and use
linear algebra operations (on vectors, matrices or tensors) instead.

Task 5.2. Augment the TwoLayerNN class by implementing methods to ran-
domly draw a minibatch data set and a method to perform the stochastic
minibatch gradient descent algorithm.

Task 5.3. Test your implementation by drawing 250 uniformly distributed
points xi in R2 with norm ‖xi‖ ≤ 1 and label them by yi = −1. Now draw
250 uniformly distributed points xi in R2 with 1 < ‖xi‖ ≤ 2 and label them
by yi = 1. Use your two-Layer neural network with d2 = 20 hidden layer
neurons, S = 50000 iterations and K = 20 to classify the data. Try different
learning rates ν. Output the least-squares error every 5000 iterations. After
S iterations, make a scatter plot of the data and draw the contour line of your
learned classifier. What do you observe? What happens if you increase S?

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=55&vcs=803bd8b6&obj=Script

56 deep neural networks

z1

z2

z3

z4

z5

z6

max

max

max

c1

c2

c3

c1

c2

c3

c1

c2

c3

c1

c2

c3

c2

c2

c3

c1

Convolutional
layer

Input
layer

Pooling
layer

Figure 5.3: A convolutional layer with three (shared) weights c1, c2, c3 applied
to z = (z1, . . . , z6) followed by a downsampling/max-pooling
layer with 3 neurons.

relation to other methods/models

Finally, let us remark some analogies of (deep) neural networks to other
models/methods.

A relation to kernel methods

While the weights and the biases are degrees of freedom of our model
class, the (possibly nonlinear) activation functions φ(l) are usually fixed
a priori. Let φ(L+1) = id. Since we are only dealingwith a single output
neuron, we can rewrite our model as

f (z) =
(
~w(L)

)T
· ψ(z) + b(L+1)

for a vector-valued function ψ : Rd → RdL depending on the weights,
biases and activation functions of the previous l = 1, . . . , L− 1 layers.
In this way, we have a direct analogy to SVM or kernel methods in
general, where ψ reflects the feature map which is chosen to transform
the data. However, the difference between the SVM and the hidden-
layer neural network model is that ψ—or equivalently the kernel K—
has been chosen a priori for SVM, whereas here ψ depends on the
degrees of freedom (namely the weights and biases of the hidden

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=56&vcs=803bd8b6&obj=Script

5.5 convolutional neural networks 57

layers). Furthermore, there also exist hybrids between kernel methods
and deep neural networks called deep kernel networks, see e.g. [1].

A relation to ordinary differential equations (ODEs)

Aspecial class of neural networks are so-called residual networks (ResNets).
Here, the forward propagation step can be written in the form

~o(l+1) =~o(l) + ∆t · φ(l+1)
((

W(l)
)T
·~o(l) +~b(l+1)

)
,

where ∆t > 0 is some positive scaling parameter. If we assume that
the activation function is the same in each iteration step, this can be
written as

~o(l+1) −~o(l)
∆t

= φ

((
W(l)

)T
·~o(l) +~b(l+1)

)
. (5.2)

Therefore, we can reinterpret this as a time-explicit Euler discretization
with step width ∆t for the ODE

~̇o(t) = φ
(

WT(t)~o(t) +~b(t)
)

. (5.3)

Therefore, a stable forward propagation can only be guaranteed if the
ODE itself admits stable solutions. From ODE theory, it is well-known
that this holds if the real part of the eigenvalues of the Jacobian J of
the RHS of (5.3) are non-positive. Furthermore, it is needed that the
explicit Euler scheme is stable, which holds if

|1 + ∆t · λi(J(l))| ≤ 1 ∀ l = 1, . . . , L− 1

is fulfilled for all eigenvalues λi(J(l)) of the l-th layer Jacobian J(l)

of the RHS of (5.2). This reinterpretation motivates the creation of
new forms of neural networks which allow for stable evaluations, e.g.
Hamiltonian-based networks with a leapfrog-type discretization, see
[7].

convolutional neural networks

By many experts, the breakthrough in deep learning is considered to
be a model published in 2012. It was submitted to the ImageNet Large
Scale Visual Recognition Challenge3 (ILSVRC) by a team around Alex

In the literature the
model is referred to
as AlexNet.

Krizhevsky [8]. One remarkable observation about this model is, that
it used a machine learning technique which was not very popular at
that time. Therefore, none of the other entries did use it. The second

3 An annual challenge using a dataset of 1.2 million images from various sources. Each
image depicts objects from 1000 categories which were hand–labeled using Amazon
Turk. The collection of the ImageNet dataset is a great achievement by itself.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=57&vcs=803bd8b6&obj=Script

58 deep neural networks

remarkable thing is, that it did beat its competitors by over ten percent
points4 in the error rate.

The model is built using a class of neural networks called (Deep)
Convolutional Neural Networks (DCNN), which we will focus on in this
section.

When using the HoG features in section 3.4.1 we saw that the dif-
ferentiation could be implemented using an image convolution with a
kernel matrix. In a CNN such convolutions are used as layers in a neu-
ral network.While the weights for the convolution in the HoG features
were chosen by hand, the weights in a CNN are free parameters and
therefore subject to change during training.

For example, let c1, . . . , c2n+1 denote weights, and suppose we have
d input nodes z1, . . . , zd. If the first hidden layer is a convolutional layer
its inputs are computed by

net(2)j :=
n

∑
k=−n

zj+kcn+1−k

where the values zl for l > d or l < 1 are set to zero. In this way,
weights are shared in comparison to a fully-connected layer as previously
described. An example for d = 6 and n = 1 is depicted in figure
5.3. Usually more than one convolutional layer is used in parallel,
resulting in a multidimensional output. Also, the input dimension
can be arbitrary.

CNNs are especially popular for images. While we previously flat-
tened the image and used, for example, the pixels row-wise as input
to a classifier, we can now keep the 2D representation. The advantage
is that locality information is available to the net in this way.

Inmany cases a stack of convolutional layers is used at the beginning
of a network to learn features. Here, one expects the layers to learn
higher and higher abstractionsThis can be observed

empirically.
down the network. For example one

convolution at the beginning might encode lines in certain directions,
another one encodes circles, while deeper layers use these pieces of
information to recognize, say, body parts.

A certain type of activation functions is usually used for convolu-
tional layers. Here, a technique called subsampling is employed. The
idea is to apply a function to the convolution outputs in order to make
the network invariant under certain transformations. For example, the
common max-pooling selects the maximum values among all (possibly
overlapping) square regions of given size. In this way the network is
expected to be stable under small translations. Other options are for
example `1 or `2 averages. A neat side effect is that this decreases the
number of neurons if the regions do not overlap too much. In practice
max-pooling is implemented as an additional layer, see figure 5.3 for a
non-overlapping max-pooling example.

4 The results can be found here: http://www.image-net.org/challenges/LSVRC/
2012/results.html.

Send anonymous feedback for this page.

http://www.image-net.org/challenges/LSVRC/2012/results.html
http://www.image-net.org/challenges/LSVRC/2012/results.html
https://beta.ins.uni-bonn.de/feedback/mllab?page=58&vcs=803bd8b6&obj=Script

5.5 convolutional neural networks 59

After applying some convolutional layers, the input is often flat-
tened into a one-dimensional feature vector and then fed into a final
fully-connected layer for an M-class classification problem (M = |Γ|).
The output layer is then made of M nodes, representing a probability
distribution The labels are also

expected to be in this
form.

. This is achieved for example by the softmax activation
function,

o(L+1)
j :=

exp
(

net(L+1)
j

)
∑dL+1

i=1 exp
(

net(L+1)
i

) ,

where dL+1 = M.
Finally, a suitable choice has to be made for the loss function (opti-

mization objective). Matching the softmax function, log-likelihood is a
popular choice leading to maximum likelihood estimation (MLE)

max
w,b

M

∑
i=1

log(P[yi|xi, w, b]).

We will use the so called cross entropy loss, which is related to MLE.

Keras

For the final tasks we use the Keras library [4]. It provides a high-level
and easy to use abstraction for popular deep learning backends such
as Tensorflow.
Defining the network from task 5.3 could be done like this

import keras
import keras.layers as layers

model = keras.models.Sequential()

model.add(layers.Dense(20, input_shape=(2,),

activation=’relu’))

model.add(layers.Dense(1))

You can print a summary with print(model.summary()).
Continue with compiling the model mse stands for mean

squared error, cf.
eq. (5.1), sgd is an
abbreviation for
algorithm 5.5.

model.compile(loss=’mse’, optimizer=’sgd’,
metrics=[’accuracy’])

and then start training by
K = 20

S = 50000

history = model.fit(X_train, Y_train, batch_size=K,

epochs=S / (500 / K),

verbose=True)

The gradient implementation5 is derived using automatic differentia-
tion. In contrast to numeric differentiation (derivative approximated,

5 The network is at least piece-wise differentiable.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=59&vcs=803bd8b6&obj=Script

60 deep neural networks

e.g. by computing the difference quotient) here the symbolic knowl-
edge about the network is used. This works similar to a computer
algebra system (CAS) like Mathmematica, Maple, Octave, etc.

Keras has support for several gradient descent variants, which can
also be configured (e.g. change step size). Of course, the final layer can
have an activation function too, e.g. softmax when used for classifica-
tion.

A convolutional layer with a ReLU activation can be added with
model.add(layers.Conv2D(16, kernel_size=(3, 3),

activation=’relu’))

which adds 16 parallel layers (i.e. 16 layers of the same shape at the
same position6) each with a 3× 3 convolutional matrix for 2D input.
To flatten the result for classification use
model.add(layers.Flatten())

Regularization

To prevent over-fitting many techniques are known, but most of them
are not well understood. A very popular technique is called dropout,
where – during each training step – one neglects nodes in a layer with
a given probability p. In this way, random sub-nets are trained. To add
dropout regularization to a layer use
model.add(layers.Dropout(p))

after it.
Keras also has support for using regularization terms in the loss

function, similar to what we have seen when discussing SVMs.

Task 5.4. Use Keras to build a classifier for theMNIST dataset (see template
notebook).

(a) Build a model with the following layers:
– Fully-connected layer (Dense) with 128 output nodes + ReLU.
– Fully-connected layer with 128 output nodes + ReLU.
– Fully-connected layer with 10 output nodes + softmax.

Use the SGD optimizer with a batch size of 128 and the categorical
crossentropy loss (loss="categorical_crossentropy"), train for
20 episodes. Use the accuracy metric (set in model.compile) and
provide the test data as validation data to model.fit (set the parameter
validation_data to (X_test, Y_test)). Plot the fit history (return
value of model.fit).

(b) Build a new network by adding dropout (p = 0.3) to the first and
second layer of the model from (a). Train it for 250 episodes.

6 This can also be understood in the following way: Each neuron of the convolutional
layer contains a sixteen-dimensional vector.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=60&vcs=803bd8b6&obj=Script

5.6 outlook 61

(c) Build a third network by using the model from (b) with the optimizer
"adam" instead of SGD. Be prepared to roughly explain what this
optimizer does. Train for 20 episodes.

Task 5.5. Build a CNN with Keras with the following layers:

• 16 parallel conv. layer with kernel size 3× 3 + ReLU.

• 32 parallel conv. layer with kernel size 3× 3 + ReLU.

• A 2D max pooling layer of size 2 × 2, non-overlapping + dropout
(p = 0.25).

• Flatten + fully-connected layer with 128 outputs + ReLU + dropout
(p = 0.5)

• Fully-connected layer with output size 10 + softmax.

Train for 15 episodes, the other parameters should be the same as in the previous
model.

Feel free to change the network/training in order to improve the
error.

Task 5.6. (Bonus) Use a CNN to learn features for pedestrian classification.
Proceed as follows:

• Design and train a CNN for pedestrian classification (use the data from
section 3.4). You can start with the network from task 5.5.

• Use the output after the flattening (see Keras’ FAQ on how to do this)
as a feature vector for a linear SVM, together with the HoG features.

Try to use PCA in order to improve the accuracy, also tweak the HoG parame-
ters. Make sure not to over-fit (the pedestrian dataset is small in deep learning
standards). You can also install the Augmentor library for Python in order
to enlarge the dataset (common technique in deep learning). We did obtain
a 93.5% error rate, but there is definitely room for improvement! You might
also want to take a look at the images which got classified wrongly.

outlook

gpus Keras (more precisely its backends) can take advantage of a
GPU (graphics card) in order to speed up the training. If you did the
tasks your training was probably using the CPU, even if your machine
has a GPU. Setting this up can be challenging. But if successful, the
performance gain is usually significant.We did run task 5.5 on six Xeon
3.6 GHz (Sandy Bridge) cores and on a Tesla P100 GPU. For the CPU
one episode of training took 30 seconds (a 2012 Quad-Core laptop took
over a minute), while on the GPU an episode was finished in three
seconds. Even higher speedups are common (our network is probably
too small).

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=61&vcs=803bd8b6&obj=Script

62 deep neural networks

Training a neural network is a lot of try-and-error and needs experi-
ence and patience.Modern networks can only be trained (in reasonable
time) on a GPU or dedicated hardware. For example, AlexNet had 60
million parameters and was trained over six days on two GPUs.

references on general neural networks and cnns For
further programming resources the free course at fast.ai7 could be
interesting. See also the book [6] or the review [10] on CNNs. There
you will also find references to attempts on describing the history of
neural networks.

adversarial neural networks Another interesting branch of
literature is the one on attacks against neural networks. For example [3]
designed a sticker that you can patch onto (or near) objects to make a
CNNclassify everything as a toaster.8 In [5] the authors investigate how
robust a CNN can detect traffic stop signs when the sign has graffiti
on it (“stop eating animals” or fake SOP signs). Finally, [9] provides
examples for manipulated but visually indistinguishable images of
traffic signs which get classified differently by a CNN.

references

[1] B. Bohn, M. Griebel, and C. Rieger. “A representer theorem for
deep kernel learning.” In: Computing Research Repository (2017).
arXiv: 1709.10441.

[2] M. Bronstein, J. Bruna, Y. LeCun,A. Szlam, andP.Vandergheynst.
“Geometric deep learning: going beyond Euclidean data.” In:
IEEE Signal Processing Magazine 34 (4 2017), pp. 18–42.

[3] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and
JustinGilmer. “Adversarial patch.” In: arXiv preprint arXiv:1712.09665
(2017).

[4] François Chollet et al. Keras. https://keras.io. 2015.

[5] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi
Kohno, Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song.
“Robust Physical-World Attacks on Deep Learning Models.” In:
arXiv preprint arXiv:1707.08945 1 (2017).

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[7] Eldad Haber and Lars Ruthotto. “Stable architectures for deep
neural networks.” In: Inverse Problems 34.1 (2018). 014004.

7 http://www.fast.ai/
8 A top Reddit comment argues that the CNN rightfully does so, and that, in fact, the

sticker does look like a toaster...or a Hunter S. Thompson version of a toaster.

Send anonymous feedback for this page.

http://arxiv.org/abs/1709.10441
https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.fast.ai/
https://beta.ins.uni-bonn.de/feedback/mllab?page=62&vcs=803bd8b6&obj=Script

References 63

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In:Advances inneural information processing systems. 2012, pp. 1097–
1105.

[9] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh
Jha, Z Berkay Celik, and Ananthram Swami. “Practical black-
box attacks against deep learning systems using adversarial ex-
amples.” In: arXiv preprint (2016).

[10] Waseem Rawat and Zenghui Wang. “Deep convolutional neural
networks for image classification: A comprehensive review.” In:
Neural computation 29.9 (2017), pp. 2352–2449.

[11] F. Rosenblatt. “The perceptron: a probabilistic model for infor-
mation storage and organization in the brain.” In: Psychological
Reviews 65 (1958), pp. 386–408.

Send anonymous feedback for this page.

https://beta.ins.uni-bonn.de/feedback/mllab?page=63&vcs=803bd8b6&obj=Script

