

Scientific Computing II

Summer term 2018 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 1

Submission on Thursday, 26.4.18.

Exercise 1. (bilinear elements)

Consider the unit square $\Omega = [0,1]^2 \subset \mathbb{R}^2$. We call a continuous function $f: \Omega \to \mathbb{R}$ affine bilinear if $f(\cdot, y)$ is affine linear for all $y \in \Omega$ and $f(x, \cdot)$ is affine linear for all $x \in \Omega$.

a) Let $Q(\Omega)$ be the space of affine bilinear functions on Ω . Show that $Q(\Omega)$ has dimension 4, and find a basis which is nodal with respect to the corners of Ω .

Let $n \in \mathbb{N}$. We define $a_i = i/n$ for i = 1, ..., n and decompose Ω into a union of squares

$$\Omega_{ij} = \{ (x, y)^\top \in \Omega \mid a_{i-1} \le x \le a_i, a_{j-1} \le y \le a_j \} \subset \Omega$$

for i, j = 1, ..., n.

b) Find the dimension of

$$V = \{ f \in \mathcal{C}(\Omega) \mid f|_{\Omega_{ii}} \in Q(\Omega_{ij}) \text{ for } i, j = 1, \dots, n \}$$

and determine whether a nodal basis with respect to the gridpoints $(a_i, a_j)^{\top}$, $i, j = 0, \ldots, n$ exists.

(4 points)

Exercise 2. (stiffness- and mass matrix entries)

For given $n, i, j \in \mathbb{N}$, consider the space $Q(\Omega_{ij})$ given as in Exercise 1b). Let ϕ_1, \ldots, ϕ_4 be the nodal basis of $Q(\Omega_{ij})$. Compute $\int_{\Omega_{ij}} \phi_k(x)\phi_l(x) \, dx$ and $\int_{\Omega_{ij}} \nabla \phi_k(x)\nabla \phi_l(x) \, dx$ for $k, l = 1 \ldots, 4$.

(4 points)

Exercise 3. (Galerkin approximation)

Let $\Omega = [0,1]^2$ and consider the problem: Find $u \in H_0^1(\Omega)$ such that

$$a(u,v) \coloneqq \int_{\Omega} \nabla u(x) \nabla v(x) \, \mathrm{d}x + \int_{\Omega} u(x) v(x) \, \mathrm{d}x = \int_{\Omega} v(x) \, \mathrm{d}x \eqqcolon F(v)$$

for all $v \in H_0^1(\Omega)$.

- a) Let $n \in \mathbb{N}$ and V be the space defined in Exercise 1b). Define $V_0 = \{v \in V \mid v = 0 \text{ on } \partial \Omega\}$ and consider the problem: Find $u \in V_0$ such that a(u, v) = F(v) for all $v \in V_0$. Reformulate this problem as a linear system of equations using the Galerkin Ansatz.
- b) Solve this linear system explicitly for n = 3.

(4 points)

Exercise 4. (oszillating coefficient)

Let I = [0, 1] and consider the ODE

$$-[a_{\epsilon}(x)u'(x)]' = 1 \text{ in } I,$$

$$u(0) = u(1) = 0.$$

For $a_{\epsilon}(x) = (2 + \sin(x/\epsilon))^{-1}$, find a solution to the stated ODE and compute the corresponding effective coefficient

$$\left(\int_0^1 a_\epsilon(x)^{-1} \,\mathrm{d}x\right)^{-1}.$$
(4 points)