

Scientific Computing II

Summer term 2018 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 2

Submission on Thursday, 3.5.18.

Let $\Omega \subset \mathbb{R}^n$ be an open domain and $Y = (0, 1)^n$. Let $f \in L^2(\Omega)$ and $A \in \mathcal{A}_{\sharp}(\alpha, \beta, \Omega, Y)$, where A(x, y) = A(y). We consider the problem: Find $u^{\epsilon} \in H_0^1(\Omega)$ such that

$$\int_{\Omega} A\left(\frac{x}{\epsilon}\right) \nabla u^{\epsilon}(x) \cdot v(x) \, \mathrm{d}x = \int_{\Omega} f(x)v(x) \, \mathrm{d}x \tag{1}$$

holds for all $v \in H_0^1(\Omega)$.

Exercise 1. (asymptotic expansion I)

We assume that there exist smooth, Y-periodic functions $u_i(x, y), i \in \mathbb{N}$ such that

$$u^{\epsilon}(x) = \sum_{i \in \mathbb{N}} \epsilon^{i} u_{i}\left(x, \frac{x}{\epsilon}\right) \,.$$

Denote with div_y , ∇_y the corresponding differential operators with respect to the *y*-variable, as well as $\bar{y} = \frac{x}{\epsilon}$.

- a) Calculate $\nabla u^{\epsilon}(x)$ in terms of the $(u_i)'s$, ordered by powers of ϵ .
- b) Plug your result into equation (1) to obtain

Exercise 2. (asymptotic expansion II)

Assume that the equation from Exercise 1b) holds for general $y \in Y$ and equate coefficients to obtain the following differential equations:

$$-\operatorname{div}_y(A(y)\nabla_y u_0(x,y)) = 0$$

with $u_0(x, y)$ is Y-periodic. Conclude that $u_0(x, y) = u_0(x)$ is not depending on $y \in Y$.

•

$$\operatorname{div}_y(A(y)(\nabla_x u_0(x) + \nabla_y u_1(x, y))) = 0$$

with $u_1(x, y)$ is Y-periodic. Conclude that one can write

 $u_1(x,y) = u_1(x) + \nabla_x u_0(x) \cdot w(y)$

with $w: Y \to \mathbb{R}^n$ is Y-periodic, where $w_i(y)$ satisfies

$$\operatorname{div}_y(A(y)(\nabla_y w_i(y) + e_i)) = 0$$

for $i = 1, \ldots, n$ (assume that such w_i exist).

$$-f(x) = \operatorname{div}_{y}(A(y)(\nabla_{x}u_{1}(x,y) + \nabla_{y}u_{2}(x,y))) + \operatorname{div}_{x}(A(y)(\nabla_{x}u_{0}(x) + \nabla_{y}u_{1}(x,y)))$$

Integrate this equation with respect to Y and show that the first summand on the right hand side vanishes due to a periodicity argument. For the second term, plug in the representation for $u_1(x, y)$ and conclude that

$$f(x) = -\operatorname{div}_x(A^0 \nabla_x u_0(x))$$

with

•

$$A_{ij}^0 = \int_Y A(y)(e_j + \nabla_y w_j(y)) \,\mathrm{d}y \cdot e_i \,.$$

(6 points)

Exercise 3. (periodic boundary problem)

Let $Y = (0,1)^n$, $f \in L^2(Y)$ and consider the problem: Find $u \in \tilde{H}^1_{\sharp}(Y)$ such that

$$\int_{Y} \nabla u(y) \nabla v(y) \, \mathrm{d}y = \int_{Y} f(y) v(y) \, \mathrm{d}y$$

for all $v \in \tilde{H}^1_{\sharp}(Y)$. Here,

 $\tilde{H}^1_{\sharp}(Y) = \{ v \in H^1(Y) \mid v \text{ has periodic boundary conditions and zero mean} \}$

equipped with the usual H^1 -norm. Show that this problem has a unique solution u, which depends continuously on f. Show that if $u \in C^2(Y)$, it solves the PDE $-\Delta u = f$ in the strong sense.

(6 points)