

Scientific Computing II

Summer term 2018 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 3

Submission on Tuesday, 8.5.18.

Exercise 1. (weak-* convergence) Let $Y = (0,1)^n$ and $a \in L^\infty_{\sharp}(Y)$. For $a^{\epsilon}(x) = a(x/\epsilon)$, show that

$$a^{\epsilon} \rightharpoonup \int_{Y} a(y) \, \mathrm{d} y$$

weakly-* in $(L^1(\mathbb{R}^n))'$.

Exercise 2. (two-scales convergence)

a) Let $Y = (0,1)^n$ and $a \in C^0(\Omega \times Y)$ with $a(x,\cdot)$ Y-periodic and $a_{\epsilon}(x) = a(x,x/\epsilon)$. Then one has

$$a^{\epsilon} \rightharpoonup a$$

in the two-scales sense and

$$a^{\epsilon} \rightharpoonup \int_{Y} a(\cdot, y) \, \mathrm{d}y$$

weakly in $L^2(\Omega)$.

- b) If $u^{\epsilon} \to u$ strongly in $L^2(\Omega)$, then also $u^{\epsilon} \rightharpoonup u$ in the two-scales sense.
- c) If u^{ϵ} has an asymptotic expansion

$$u^{\epsilon}(x) = \sum_{i \in \mathbb{N}} \epsilon^{i} u_{i}\left(x, \frac{x}{\epsilon}\right)$$

with Y-periodic functions $u_i \in C^0(\Omega \times Y)$, one has $u^{\epsilon} \rightharpoonup u_0$ in the two-scales sense. (6 points)

(4 points)