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Exercise 1. (1D heat equation)

We consider a metal rod and its temperature distribution

y : [0, 1]× [0, T ] −→ R

with initial condition y(·, 0) = y0. Additionally,we assume that we are able to control the
heat flux of the metal rod at the end points. More precisely, we model y(x, t) to satisfy
the partial differential equation

yt − yxx = f in [0, 1]× [0, T ]

−yx(0, ·) = l in [0, T ]

yx(1, ·) = r in [0, T ]

y(·, 0) = y0 in [0, 1]

with control parameters l(t), r(t) and additional enviromental influence f(x, t) (material
conditions, additional heat source...).

As a first step, we want to do a time discretization of the partial differential equation.
We interpret y(x, t) = y(t)(x) = y(t) ∈ V (f likewise), where y is now a function of
time mapping into a function space V , which consists of functions defined on [0, 1] (for
instance C[0, 1]). Introducing the time steps tn = nT/N for n = 0, . . . , N we define
yn = y(tn) ∈ V , fn = f(tn) ∈ V , l(tn) = ln ∈ R, r(tn) = rn ∈ R.

a) Use the implicit Euler scheme to derive the time-discretized formulation

yn = yn−1 +
T

N
(fn + ynxx), n = 1, . . . , N

−ynx(0) = ln, n = 1, . . . , N

ynx(1) = rn, n = 1, . . . , N .

This is a system of N Poisson-like differential equations, which from now on we consider
in their weak form. Next, we do a spatial discretization Vh ⊂ V with basis functions
{φ0, . . . , φm}.

b) Using the coefficient vector yn ∈ Rm+1 with the Ansatz

yn ≈
m∑
i=0

yn
i φi ,

derive the time-space discretized formulation(
M +

T

N
K

)
yn =

T

N
Ln +Myn−1 , n = 1, . . . , N . (1)

Here, M ∈ R(m+1)×(m+1) is the mass matrix with Mij =
´
φiφj , K ∈ R(m+1)×(m+1)

is the stiffness matrix with Kij =
´

(φi)x(φj)x, and Ln ∈ Rm+1 is the load vector
with Ln

i =
´
fnφi + φi(0)ln + φi(1)rn.
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(10 points)

Programmieraufgabe 1. (1D heat equation)

The goal of this programming exercise is the implementation of the routine outlined in
Exercise 1. This will take several steps:

• Calculation and Assemblation of M , K and L for a given finite element basis.
For M and K, we assemble the matrices as sparse multiplication routines to gain
computational speed.

• Implementation of an iterative solver for the equations (1).

• Solution plotting, variation of input parameters, ...

For the space discretization, we use piecewise linear, continuous elements.

Let m ∈ N. We consider the spacial nodes xi = i/m, i = 0, . . . ,m. The nodal basis to
the piecewise linear, continuous finite element space is given by

φi(x) =


m(x− (i− 1)/m) x ∈ [(i− 1/m), i/m]

1−m(x− i/m) x ∈ [i/m, (i+ 1)/m]

0 else

for i = 0, . . . ,m.

a) Calculate Km,Mm ∈ R(m+1)×(m+1) for this basis. Calculate Ln
m,i for the case that

fn is piecewise constant on the intervals [i/m, (i+ 1)/m] for i = 0, . . . ,m− 1.

b) Implement a routine which takes m ∈ N, l, r ∈ R and b ∈ Rm as input and returns
as output the vector

L = [Li]
m+1
i=0 =

[ˆ 1

0
φi(x)b(x) dx+ φi(0)l + φi(1)r

]m+1

i=0

.

Here, b(x) is the piecewise constant function with b|[i/m,(i+1)/m] ≡ bi+1 for i =
0, . . . ,m− 1.

c) Implement a routine which takes m ∈ N, a ∈ R and a vector b ∈ Rm+1 as input and
returns as output the vector (Mm + aKm)b ∈ Rm+1. Make sure that this routine
has runtime O(m) (use the sparse structure of the matrices).

d) Implement an iterative solver for linear equation systems of the form

(Mm + aKm)b = c

which uses the matrix-vector-product routine from part b). Possible choices are for
instance the CG-method or the Jacobi method.

e) Write the final routine which solves the system (1). The input is given as T ∈ R,
m,N ∈ N, y0 = [y0

i ]
m
i=0 ∈ Rm+1, f = [fni ]N,m−1

n=1,i=0 ∈ RN×m, and l = [ln]Nn=1, r =

[rn]Nn=1 ∈ RN . For n = 1, . . . , N , one obtains yn ∈ Rm+1 sequentially as stated in

(1). The output is given by y = [yni ]N,m+1
n=0,i=0 ∈ R(N+1)×(m+1).

f) Test your implementation with the following input data: T = 10, m = 100, N =
1000, y0 ≡ 0 ∈ Rm+1, l ≡ r ≡ −0.1 ∈ RN , and f = [fni ]N,m−1

n=1,i=0 ∈ RN×m defined
via

fni =

{
1 i = 50 ,

0 else.

Visualize the solution in a comprehensive manner, e.g. a GIF-animation.
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g) One can easily show that the solution y to the original PDE satisfies

ˆ 1

0
y(x, 0) dx =

ˆ 1

0
y(x, t) dx ∀t ∈ [0, T ] .

Does the computed approximation show an analogous behaviour? Why/Why not?

(30 points)

The programming exercise should be handed in either before/after the exercise
class on 14.6.18 (bring your own laptop!) or in the HRZ-CIP-Pool, after making an
appoint- ment at ’angelina.steffens@uni-bonn.de’. All group members need to attend
the presentati- on of your solution. Closing date for the programming exercise is the
14.6.2018. You can choose the programming language yourself.
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