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Exercise 1. (1D heat equation)
We consider a metal rod and its temperature distribution
y:[0,1] x [0,T] — R

with initial condition y(-,0) = y°. Additionally,we assume that we are able to control the
heat flux of the metal rod at the end points. More precisely, we model y(x,t) to satisfy
the partial differential equation

Yt =Ygz = f in [Oa 1] X [0’ T]
—y:(0,-) = [ in[0,T7]
y(1,-) = r in[0,7)

y(~0) = 3 in[0,1]

with control parameters [(t), r(t) and additional enviromental influence f(z,t) (material
conditions, additional heat source...).

As a first step, we want to do a time discretization of the partial differential equation.
We interpret y(z,t) = y(t)(x) = y(t) € V (f likewise), where y is now a function of
time mapping into a function space V', which consists of functions defined on [0, 1] (for
instance C|0, 1]). Introducing the time steps ¢, = nT/N for n = 0,..., N we define
yr=y(ty) €V, = f(tn) €V, I(t,) =1" € R, r(t,) =" € R.

a) Use the implicit Euler scheme to derive the time-discretized formulation

T
yn = yn_1+ﬁ(fn+ygm)v n=1,...,N
—yr(0) = 1", n=1,...,N
ye(l) = ™ mn=1,...,N.

This is a system of N Poisson-like differential equations, which from now on we consider
in their weak form. Next, we do a spatial discretization V;, C V with basis functions

{(Z)Oa SRR ¢m}
b) Using the coefficient vector y" € R™*! with the Ansatz

m
YR Ve
i=0
derive the time-space discretized formulation

N

Here, M € RUM+DX(m+1) js the mass matrix with M;; = [ ¢;¢;, K € RImF1)x(m+1)
is the stiffness matrix with K;; = [(¢:)x(¢;)z, and L™ € R™ ! is the load vector
with L = f fbi + @i (0)I™ + @i (1)r".

T T
(M—FK)X"—NLn—i—My”l, n=1,...,N. (1)



(10 points)

Programmieraufgabe 1. (1D heat equation)
The goal of this programming exercise is the implementation of the routine outlined in

Exercise 1. This will take several steps:

e Calculation and Assemblation of M, K and L for a given finite element basis.
For M and K, we assemble the matrices as sparse multiplication routines to gain
computational speed.

e Implementation of an iterative solver for the equations (1).
e Solution plotting, variation of input parameters, ...

For the space discretization, we use piecewise linear, continuous elements.
Let m € N. We consider the spacial nodes x; = i/m, i = 0,...,m. The nodal basis to
the piecewise linear, continuous finite element space is given by

m(z — (i —1)/m) x € [(i—1/m),i/m]
¢i(z) =<1 —m(x—i/m) x €li/m,(i+1)/m)]
0 else
fori=0,...,m.
a) Calculate K,,, M,, € Rm+Dx(m+1) for this basis. Calculate L7 . for the case that

f™ is piecewise constant on the intervals [i/m, (i + 1)/m)] for i =0,...,m—1.

b) Implement a routine which takes m € N, [, € R and b € R™ as input and returns
as output the vector

1 m—+1
L= (g = | [ ostea)de -+ ou0) + ity
0 i=0
Here, b(r) is the piecewise constant function with b|(;/m (i11)/m] = bit1 for i =

0,...,m—1.

c¢) Implement a routine which takes m € N, a € R and a vector b € R™*! as input and
returns as output the vector (M,, + aK,,)b € R™"1. Make sure that this routine
has runtime O(m) (use the sparse structure of the matrices).

d) Implement an iterative solver for linear equation systems of the form
(M, + aKpn)b=c

which uses the matrix-vector-product routine from part b). Possible choices are for
instance the CG-method or the Jacobi method.

e) Write the final routine which solves the system (1). The input is given as T' € R,
m,N € N,y = [\, € R™HL f = [0 e RYX™ and 1= [N, r =

1 In=1, n=1»

[FN_, € RN. For n = 1,..., N, one obtains y" € R™*! sequentially as stated in
(1). The output is given by y = [y:‘]szgjzlo c R+ x(m+1)

f) Test your implementation with the following input data: 7' = 10, m = 100, N =
1000, Y =0 € R™ [ =7 = —0.1 € RN, and f = [f])27 2, € RN*™ defined

i In=1,i=
o [1 i=50,
fi :{

0 else.

via

Visualize the solution in a comprehensive manner, e.g. a GIF-animation.



g) One can easily show that the solution y to the original PDE satisfies

1 1
/ y(z,0)dr = / y(z,t)dz Vte[0,T].
0 0

Does the computed approximation show an analogous behaviour? Why/Why not?
(30 points)

The programming exercise should be handed in either before/after the exercise

class on 14.6.18 (bring your own laptop!) or in the HRZ-CIP-Pool, after making an
appoint- ment at ’angelina.steffens@uni-bonn.de’. All group members need to attend
the presentati- on of your solution. Closing date for the programming exercise is the
14.6.2018. You can choose the programming language yourself.




