

Scientific Computing II

Summer term 2018 Priv.-Doz. Dr. Christian Rieger Christopher Kacwin

Sheet 7

Submission on Thursday, 28.6.18.

Exercise 1. (Helmholtz equation)

Let $\Omega = [0, 1]$ and consider the Helmholtz equation

$$-u'' = \lambda u \quad \text{in } \Omega$$
$$u(0) = u(1) = 0$$

for $\lambda \in \mathbb{R}$.

- a) Let (u, λ) be a strong solution. Show that $u \in C^{\infty}(\Omega)$.
- b) Let (u, λ) , (v, μ) be Eigenpairs with $\lambda \neq \mu$. Show that $(u, v)_{L^2(\Omega)} = 0$.
- c) Compute all Eigenpairs (u, λ) .

Exercise 2. (Laplacian)

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain and consider the Laplacian as a linear operator acting on $H_0^1(\Omega)$. Show that the Eigenfunctions $(\phi_i, \lambda_i)_{i=1,...,\infty}$ of $(-\Delta)$ on are an orthogonal basis of $H_0^1(\Omega)$. Show that the Eigenvalues are bounded from below by a constant c > 0.

(4 points)

(6 points)

Exercise 3. (ONB expansion)

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain and $T > 0 \in \mathbb{R}$. Let $L: H_0^1(\Omega) \longrightarrow L^2(\Omega)$ be a linear, continuous, elliptic operator. Let $(\phi_i, \lambda_i)_{i=1,...,\infty}$ be an orthonormal basis of $L^2(\Omega)$ of Eigenpairs to L. Consider the parabolic equation

$$\partial_t u + Lu = f$$
 in $\Omega \times [0, T]$
 $u(\cdot, 0) = u_0$ in Ω

with data $u_0 \in L^2(\Omega), f \in L^2(\Omega \times [0,T])$. Show that a solution can be written as

$$u(x,t) = \sum_{i=1}^{\infty} e^{-\lambda_i t} (u_0,\phi_i)_{L^2(\Omega)} \phi_i(x) + \sum_{i=1}^{\infty} \int_0^t e^{-\lambda_i (t-s)} (f(\cdot,s),\phi_i)_{L^2(\Omega)} \,\mathrm{d}s \,\phi_i(x) \,.$$
(6 points)